Skip to main content

Modeling Design and Flow Feature Interactions for Automotive Synthesis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6936))

Abstract

In the automotive industry Computational Fluid Dynamics (CFD) simulations have become an important technology to support the development process of a new automobile. During that process, individual simulations of the air flow produce a huge amount of information about the design characteristic, where mostly only a minority of information is used. At the same time knowledge about the relationship between design modifications and their aerodynamic consequences provides valuable insight into the entire aerodynamic system. In this work a computational framework is introduced, providing means to identify relevant interactions within the aerodynamic system based on existing design and flow data. For an efficient modeling, the raw flow field data is reduced to a set of relevant flow features or phenomena. Applying interaction graphs to the aerodynamic data set unveils interacting and redundant structures between design variations and observed changes of flow phenomena. The general framework is applied to an exemplary aerodynamic system representing a 2D contour of a passenger car.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiba, K., Jeong, S., Obayashi, S., Morino, H.: Data mining for multidisciplinary design space of regional-jet wing. In: IEEE Congress on Evolutionary Computation, vol. 3, pp. 2333–2340 (2005)

    Google Scholar 

  2. Cover, T.M., Thomas, J.A., Wiley, J.: Elements of information theory, vol. 1. Wiley Online Library (1991)

    Google Scholar 

  3. Depardon, S., Lasserre, J., Brizzi, L., Bore, J.: Automated topology classification method for instantaneous velocity fields. Experiments in Fluids 42, 697–710 (2007)

    Article  Google Scholar 

  4. Graening, L., Menzel, S., Hasenjäger, M., Bihrer, T., Olhofer, M., Sendhoff, B.: Knowledge extraction from aerodynamic design data and its application to 3d turbine blade geometries. Mathematical Modelling and Algorithms 7, 329–350 (2008)

    Article  Google Scholar 

  5. Graening, L., Olhofer, M., Sendhoff, B.: Interaction detection in aerodynamic design data. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 160–167. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Measurement Science and Technology 12, 1422 (2001)

    Article  Google Scholar 

  7. Jakulin, A.: Machine learning based on attribute interactions. Unpublished doctoral dissertation. University of Ljubljana 28, 252 (2005) (retrieved March)

    Google Scholar 

  8. Jakulin, A., Bratko, I.: Quantifying and visualizing attribute interactions. Arxiv preprint cs/0308002 (2003)

    Google Scholar 

  9. Katz, J.: Race Car Aerodynamics: Designing for Speed. Bentley Publishers (1995)

    Google Scholar 

  10. Keane, A., Nair, P.: Computational Approaches for Aerospace Design: The Pursuit of Excellence. Wiley, Chichester (2005)

    Book  Google Scholar 

  11. Kenwright, D.N.: Automatic detection of open and closed separation and attachment lines. In: Proceedings of Visualization 1998, pp. 151–158. IEEE, Los Alamitos (2002)

    Google Scholar 

  12. Krippendorff, K.: Information theory: structural models for qualitative data. Sage Publ., Thousand Oaks (1986)

    Book  Google Scholar 

  13. Krippendorff, K.: Information of interactions in complex systems. International Journal of General Systems 38, 669–680 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its application - Part I: Theory. Journal of Sound and Vibration 252(3), 527–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. McGill, W.: Multivariate information transmission. IRE Professional Group on Information Theory 4(4), 93–111 (2002)

    Article  MathSciNet  Google Scholar 

  16. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)

    Article  MATH  Google Scholar 

  17. Michard, M., Graftieaux, L., Lollini, L., Grosjean, N.: Identification of vortical structures by a non local criterion-Application to PIV measurements and DNS-LES results of turbulent rotating flows. In: 11th Symposium on Turbulent Shear Flows, Grenoble, France, pp. 25–28 (1997)

    Google Scholar 

  18. Obayashi, S., Sasaki, D.: Visualization and data mining of pareto solutions using self-organizing map. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 796–809. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: Feature extraction and visualization of flow fields. In: Eurographics 2002 State-of-the-Art Reports, pp. 69–100 (2002)

    Google Scholar 

  20. Schlemmer, M., Heringer, M., Morr, F., Hotz, I., Hering-Bertram, M., Garth, C., Kollmann, W., Hamann, B., Hagen, H.: Moment invariants for the analysis of 2D flow fields. IEEE Transactions on Visualization and Computer Graphics, 1743–1750 (2007)

    Google Scholar 

  21. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Siggraph Computer Graphics 20(4), 151–160 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rath, M., Graening, L. (2011). Modeling Design and Flow Feature Interactions for Automotive Synthesis. In: Yin, H., Wang, W., Rayward-Smith, V. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2011. IDEAL 2011. Lecture Notes in Computer Science, vol 6936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23878-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23878-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23877-2

  • Online ISBN: 978-3-642-23878-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics