Abstract
This paper presents regression models based on an ensemble of neural networks trained on different data that negotiate the final decision using an optimization approach based on an evolutionary approach. The model is designed for big and complex datasets. First, the data is clustered in a hierarchical way and then using different level of cluster and random choice of training vectors several MLP networks are trained. At the test phase, each network predicts an output for the test vector and the final output is determined by weighing outputs of particular networks. The weights of the outputs are determined by an algorithm based on a merge of genetic programming and searching for the error minimum in some directions. The system was used for prediction the steel temperature in the electric arc furnace in order to shorten and decrease the costs of the steel production cycle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 15–27. Springer, Heidelberg (2002)
Barbosa, B., et al.: Evolving an Ensemble of Neural Networks Using Artificial Immune Systems. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 121–130. Springer, Heidelberg (2008)
Breiman, L.: Combining predictors. In: Sharkey, A.J.C. (ed.) Combining Articial Neural Nets, vol. 31. Springer, Heidelberg (1999)
Chen, H., Yao, X.: Multiobjective Neural Network Ensembles Based on Regularized Negative Correlation Learning. IEEE Trans. On Knowledge and Data Engineering 22, 1738–1751 (2010)
Jacobs, R., et al.: Adaptive mixtures of local experts. Neural Computation 3, 79 (1991)
Kendall, M., et al.: A window into the electric arc furnace, a continuous temperature sensor measuring the complete furnace cycle. Archives of Metallurgy and Materials 53(2), 451–454 (2008)
Ko{\l}odziej, J., et al.: Hierarchical Genetic Computation in Optimal Design. Journal of Theoretical and Applied Mechanics, ”Computational Intelligence” 42(3), 519–539 (2004)
Kordos, M., Duch, W.: Variable step search algorithm for feedforward networks. Neurocomputing 71(13-15), 2470–2480 (2008)
Millman, M.S., et al.: Direct observation of the melting process in an EAF with a closed slag door. Archives of Metallurgy and Materials 53(2), 463–468 (2008)
Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197 (1990)
Semya, E., et al.: Multiple crossover genetic algorithm for the multiobjective traveling salesman problem. Electronic Notes in Discrete Mathematics 36, 939–946 (2010)
Tresp, V.: Committee Machines. In: Handbook for Neural Network Signal Processing. CRC Press, Boca Raton (2001)
Tsutsui, S., et al.: Multi-parent Recombination with Simplex Crossover in Real Coded Genetic Algorithms. In: Tsutsui, S., et al. (eds.) The 1999 Genetic and Evolutionary Computation Conference, pp. 657–664 (1999)
Wendelstorf, J.: Analysis of the EAF operation by process modeling. Archives of Metallurgy and Materials 53(2), 385–390 (2008)
Wieczorek, T.: Intelligent control of the electric-arc steelmaking process using artificial neural networks. Computer Methods in Material Science 6(1), 9–14 (2006)
Wieczorek, T., Blachnik, M., Mączka, K.: Building a model for time reduction of steel scrap meltdown in the electric arc furnace (EAF): General strategy with a comparison of feature selection methods. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1149–1159. Springer, Heidelberg (2008)
Wieczorek, T., Kordos, M.: Neural Network-based Prediction of Additives in the Steel Refinement Process. Computer Methods in Materials Science 10(1) (March 2010)
Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic systems. Springer, Heidelberg (2010)
Zelinka, I., Senkerik, R., Oplatkova, Z.: Evolutionary Scanning and Neural Network Optimization. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 576–582. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kordos, M., Blachnik, M., Wieczorek, T., Golak, S. (2011). Neural Network Committees Optimized with Evolutionary Methods for Steel Temperature Control. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2011. Lecture Notes in Computer Science(), vol 6922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23935-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-23935-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23934-2
Online ISBN: 978-3-642-23935-9
eBook Packages: Computer ScienceComputer Science (R0)