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75252 Paris Cedex 05, France,
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Abstract. In many domains where experts are the main source of knowl-
edge, e.g., in reliability and risk management, a framework well suited
for modeling, maintenance and exploitation of complex probabilistic sys-
tems is essential. In these domains, models usually define closed-world
systems and result from the aggregation of multiple patterns repeated
many times. Object Oriented-based Frameworks (OOF) such as Proba-
bilistic Relational Models thus offer an effective way to represent such
systems. OOF's define patterns as classes and substitute large Bayesian
networks (BN) by graphs of instances of these classes. In this framework,
Structured Inference avoids many computation redundancies by exploit-
ing class knowledge, hence reducing BN inference times by orders of
magnitude. However, to keep modeling and maintenance costs low, OOF
classes often encode only generic situations. More complex situations,
even those repeated many times, are only represented by combinations
of instances. In this paper, we propose to determine such combination
patterns and exploit them as classes to speed-up Structured Inference.
We prove that determining an optimal set of patterns is NP-hard. We
also provide an efficient algorithm to approximate this set and show nu-
merical experiments that highlight its practical efficiency.

1 Introduction

Bayesian networks (BN) [19] are a valued framework for reasoning under uncer-
tainty and their popularity stimulated the need for handling problems of ever
increasing size. However BNs turn out to be inadequate for large scale real-world
applications due to high design and maintenance costs [18,20]. Indeed, defining
a BN requires to specify explicitly probabilistic dependencies and conditional
probabilities over the whole set of its random variables. This may lead to un-
realistic modeling costs when dealing with complex systems. Furthermore, BN’s
design is static: any change in the topology of their graphical structure induces
significant update costs.

Solving these problems has been the main concern of several BN extensions
using the object-oriented paradigm [15,18]. Besides, first-order logic extensions
were proposed to offer more expressive power than the propositional framework



offered by BNs [13, 14]. Learning being a critical problem when exploiting BNs
over large knowledge bases, entity-relationship extensions were also proposed
for relational learning [8,10]. These extensions are all allegedly considered as
First-Order Probabilistic Models (FOPM) or as Knowledge Based Construction
Models.

During the last decade, the Probabilistic Graphical Model (PGM) community
has worked actively on FOPMs and object-oriented models have been somewhat
neglected: since the introduction of Object-Oriented Bayesian Networks [3, 15],
the amount of contributions on object-oriented PGMs has actually been rel-
atively small [1,2,8]. However, in many industrial areas, efficient frameworks
for the construction of large-scale complex systems are strongly needed and, in
domains like risk management or monitoring of complex industrial processes,
this usually boils down to experts modeling large-scale BNs by aggregating hi-
erarchically small network fragments repeated many times. In addition, all the
relations between these fragments are usually fully specified, thus resulting in
modeling “closed worlds”. For these domains, object-oriented frameworks seem
more suitable than first-order logic extensions. In particular, the “closed world”
assumption strongly degrades the behavior of lifted inference in FOPM.

Object-oriented frameworks assume that many parts of a large BN are similar
and can thus be described as instances of a generic class defined only once. This
scheme induces low construction costs. In addition, maintenance costs are kept
as low as possible since a modification in a class definition updates many areas
of the BN at once. Furthermore, repetitions of structures in the BN (multiple
instances of the same class) can speed-up inference by performing computations
within classes, caching them and using the cache for all their instances. This pro-
cess allows algorithms like Structured Variable Elimination (SVE) to outperform
classical BN inference engines by orders of magnitude [21].

In this paper, we propose an enhancement of structured inference for Proba-
bilistic Relational Models [7,25]. In real world applications, instances are often
combined and form patterns repeated many times throughout the network. By
using a frequent subgraph pattern mining algorithm, it is possible to discover
such combinations and exploit them to speed-up structured inference. However,
mining optimally such patterns is time expensive. In this paper, we both pro-
vide a structured inference algorithm for PRMs exploiting patterns and a mining
heuristic fast enough for efficient inference.

The paper is organized as follows: Section 2 recalls the basics of object-
oriented frameworks using PRMs. Section 3 generalizes structured inference.
Section 4 shows the complexity of mining patterns and provides an approximate
algorithm for such mining. Experiments reported in Section 5 show the practical
efficiency of our approach. Finally, concluding remarks are given in Section 6.

2 Description of PRMs

Using PRMs as an object-oriented framework can be surprising as they were
first proposed for relational learning [5]. However, it is important to remember



that PRMs are an extension of Object Oriented Bayesian Networks [21, 25] and,
thus, they offer a sound object-oriented framework.
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(a) A Bayesian network. The gray areas (b) Two connected classes £ and
do not belong to the BN specification F.

€ e1, e2;

F f1, f2, f3;

hes g

fa.p = ez

(c) System declaration and relational
skeleton for the BN of Figure 1(a).

Fig. 1. Representation of a BN as a PRM: analysis of the BN reveals the use of two
recurrent patterns (a), which are confined in two classes (b). Hence, a system equivalent
to the BN may be built (c).

Due to a lack of space, we only present briefly and incompletely the PRM
framework [7, 25]. Fig. 1.(a) shows a BN encoding relations between two different
kinds of patterns (variables {X;,Y;} and {U;,V;, W;}). Variables whose names
begin with the same letter share identical conditional probability tables (CPT).
Object-oriented representations aim to abstract each pattern as a generic entity
(a class) that encapsulates all the relations between the variables of the pattern.
So, in Fig. 1.(b), class € encapsulates precisely variables X; and Y; as well as their
probabilistic relations (arc (X;,Y;)) and their CPTs. The pattern of variables
U;,V;, W; cannot be directly encapsulated in a class since the CPTs of variables
U, are conditional to some variables Y}, (e.g., the CPT of Us is P(Us|Y>) accord-
ing to Fig. 1.(a)). Hence classes must have a mechanism allowing to reference
variables outside themselves. In PRMs, this mechanism is called a reference slot.
A reference slot p of a class C is a local name for another class D allowing C to
access its variables. As shown in Fig. 1.(c), the original BN can then be built up
from the PRM: it is sufficient to create two instances, say e; and es, of class €
as well as three instances f1, fo, f3 of F and connect them using one edge per
reference slot.



Definition 1 (Class, Attribute, Reference slot). In order to define classes,
one needs the following cross-definitions:

o A class is a quadruple (A(C),R(C),G(C),P(C)) where:

o A(C) is a set of attributes. An attribute C.X € A(C) is a random variable.
C s called the resident class of X.

e R(C) is a set of reference slots. C.p € R(C) is a surrogate for another
class, say D, giving access to all its attributes and reference slots from within C.
Range(p) denotes class D. The set A(C) of all the attributes reachable by way
of reference slots or within C is called the closure of C. o

e G(C) = (A(C), E) is a Directed Acyclic Graph (DAG) where E C A(C) x
A(C) : only the attributes of C have parents in this DAG.

e P(C)={P(X|lIx),X € A(C)} is the set of CPTs of attributes X € A(C)
conditionally to their parents in G(C).

Classes are not meant to be used as is, but through instances. For example,
a class may represent various failure odds of a cooling system in a nuclear power
plant and, when modeling a given power plant, such class is instantiated for each
occurrence of the cooling system in the whole plant.

Definition 2 (Instance, System). Let B be a BN,

e An instance ¢ of a class C is a subset of the random variables of B whose
relations are described by C. c¢.X (resp. c.p) refers to the instantiation of C.X €
A(C) (resp. C.p € R(C)) in c. By abuse of notation, we denote the sets of such
instantiations as A(c) and R(c) respectively.

o A system S is the representation of B in the PRM framework: it is a finite
set of instances such that Vi € S,Vp € R(i),3j € S such that Range(i.p) = j
and such that there is a one-to-one mapping between random variables of B and
the set of all attributes declared in the instances of S.

The graph representing instances by nodes and connections between range
and resident instances by edges is called the relational skeleton of S.

Definition 2 enforces the “closed world” feature of systems, i.e., they are finite
sets of instances with all reference slots properly defined. As mentioned in the
introduction, this constraint is reasonable for complex systems of many domains.
For instance, to reason on industrial milk fermenters, pipe connections need to
be fully specified.

3 Structured Inference

Determining the probabilities of random variables given evidence is the most
common query performed in probabilistic graphical models. There exists a wide
range of inference algorithms to compute these distributions. They often rely
in some way to a Variable Elimination scheme [4,17]. The basic idea consists
of marginalizing out random variables one by one from the joint distribution
until there only remains the variables of interest. Dechter’s Variable Elimination
(VE) is representative of this class of algorithms. It first fills a pool of functions



called potentials with the CPTs representing the decomposition of the joint dis-
tribution. Then, eliminating some variable X; from the joint probability just
amounts to extract from the pool all the potentials involving X;, multiply them
and sum-up the result over all the values of X, and insert back the resulting
potential into the pool. Conditional probabilities P(X|e) are computed similarly
by first adding to the pool some potentials representing the additional knowledge
brought by evidence e.

The above scheme is efficient and can be used in PRMs by applying it on
their grounded BN. However, by processing random variables separately, VE
is unable to exploit the structural repetitions in the graphical model to avoid
computation redundancies. The aim of Structured Inference is to fill this gap
[5,21] and Object-Oriented frameworks provide a simple and effective way to
achieve this goal. Indeed, consider an attribute A of a class C such that all of its
children also belong to C and let ¢y, ..., c; be some instances of C in which no
attribute received any evidence. Then it is easy to see that eliminating attributes
A € A(c;) in the grounded BN produces precisely the same computations for all
the instances ¢;, ¢ = 1...,k. In this case, eliminating attribute A within class
C, i.e., at class level, and updating accordingly all the relevant instances before
constructing the grounded BN avoids the redundancies involved by eliminating
A in each ¢, i.e., at instance level. This process is called Structured Inference
and the gain brought by this approach usually reduces computation times by
orders of magnitude.

More Formally, an attribute A € A(C) is called an inner or internal at-
tribute if all of its children also belong to A(C), otherwise A is called an outer
attribute. In addition, the attributes referenced in R(C) are called non-resident.
For instance, in Fig. 1.b, attributes X,U,V, W are internal, Y is an outer at-
tribute of class £ and p.Y is a non-resident attribute of F. Class-level elim-
ination corresponds to the elimination of all the inner attributes (using any
inference algorithm). As such, it amounts to substitute the pool of potentials
P(C) of class C defined over all of its inner, outer and non-resident attributes
by a new set of potentials P’(C) defined only over the outer and non-resident
attributes. The pool of potentials corresponding to any instance ¢ of C is thus
substituted by P’(¢) if no inner attribute in ¢ received any evidence, else it is
kept to P(c) U {potentials(evidence)} (because evidence may induce different
distributions from one instance to another).

4 PRM’s Patterns Discovery

4.1 Problem and Complexity

Marginalizing-out internal nodes at class level is the key to Structured Inference
efficiency as it reduces significantly redundant computations. However, not all
redundancies can be identified by this scheme: let C,D be two classes and let
X € A(C), Y € A(D) be two attributes such that the only non-resident child
of C.X is D.Y. Then X cannot be eliminated at class level because it is not
internal. However, if we consider a “new” class F defined by compound (C, D),



attribute F.X is no longer an outer attribute since Y € A(F). Hence, pairs
of instances (¢, d) of C and D that fit the definition of F can be considered as
instances of F in which X is internal, thus eligible for class-level elimination. Note
however that not all pairs (¢, d) are necessarily eligible: in Fig. 1, pairs (e1, f1) and
(e1, f2) cannot be both considered as instances of compound (€, F) as e; would
be counted twice in the grounded BN. Pair (e, f3) is neither eligible because
there is no edge between e; and f3 in the system. The key idea is that finding
effective compounds/instance-class reassignments should speed-up Structured
Inference since it increases the opportunities for class-level eliminations. It is
most convenient to search them in the following graph:

Definition 3 (boundary graph). A boundary graph is an undirected graph
BG = (Z,£), where

— T is a set of vertices representing instances;
- & CTIXTisa set of edges such that I(c,d) € € iff

L= ) (T.xNAW) U |J (TaxNA(c) #0.
XeA(c) XeA(d)
Edge (c,d) is labeled by Lq.

An edge (c,d) of the boundary graph and its label define precisely the at-
tributes that should be eliminated at class level if (¢,d) was considered as
an instance of a compound. So two pairs of instances (¢1,d;) and (¢g,ds) of
classes C and D should not be considered as instances of the same compound if
L.,a, # Leya,. Fig. 2 illustrates two boundary graphs for which different com-
pound classes will be mined. In this case, we can see that Y is an outer attribute
for compound {c;,d;} while being an inner attribute for compound {cs,ds}.
This suggests the following definition:

Definition 4 (dynamic class). Let BG be a boundary graph. A dynamic class
F in BG is a pair (F,B), where: F is a compound class; B C A(F) is the set
of all the outer attributes of F. Set B is called F’s boundary.

Hence, given a dynamic class 7, all the nodes in A (F)\B are internal and can
be eliminated at class level whereas nodes in B are referenced by other instances
and can only be eliminated at instance level. So, to improve structured infer-
ence, we shall search the boundary graph for frequent subgraphs, i.e., subgraphs
repeated many times, create their corresponding dynamic class, substitute each

Xze-Lzs

Fig. 2. Different possible connections between instances, resulting in different labels
(square nodes). We can see that compound {c1, d; } is different from compound {c2,d2}.




subgraph by one instance of its dynamic class and, finally, apply an inference
algorithm like SVE. However substitutions must be performed carefully: it may
actually happen that the occurrences of frequent subgraphs share some nodes.
In this case, only one of these occurrences can be substituted else some instances
of the “original” system would be counted several times (see (e1, f1) and (eq, fa)
in Fig. 1). Hence the following rule:

Rule 1 In the boundary graph, substituted subgraphs cannot share any node (i.e.
any instance of the original PRM).

Optimizing structured inference thus amounts to searching for the “best” set
of dynamic classes and subgraph substitutions satisfying Rule 1. Unfortunately,
as shown in the following proposition, this problem is NP-hard':

Proposition 1. The following problem is NP-hard:

Instance: a PRM, a boundary graph, an integer K>0.

Question: is there a set of dynamic classes and boundary subgraph substitu-
tions of these classes such that the number of operations (multiplications and
summations) performed by structured inference is smaller than K ¢

In a sense, this proposition is not very surprising since determining the mini-
mal number of operations in variable elimination algorithms such as SVE or VE
is equivalent to determining an optimal elimination sequence, which is known to
be NP-hard [22]. In addition, determining all the occurrences of a given subgraph
in a graph is NP-hard as well [6]. Finally, given a set of dynamic classes and their
subgraph occurrences in the boundary graph, determining which ones should be
substituted amounts to solve an Independent Set problem in which each vertex
represents a boundary subgraph and edges link vertices corresponding to over-
lapping boundary subgraphs. Again, this problem is NP-hard [6]. However, the
proof of Proposition 1 shows that finding the best dynamic classes/substitutions
remains NP-hard even in cases where inference in the grounded BN is polyno-
mial (singly-connected BNs). We shall however present in the next subsection
an efficient approximate algorithm for determining an effective set of dynamic
classes.

4.2 An Approximate Algorithm

The problem of finding frequent patterns in labeled graphs has received many
contributions in the literature, although the aim is somewhat different in that it
consists of finding subgraphs that appear in many graphs of a database of labeled
graphs [12, 16, 26]. However, the connection with our problem is sufficiently high
that techniques from this domain can be borrowed to solve our problem. In this
paper, we suggest to use a variant of gSpan [26].

The idea consists of creating a search tree T as follows: each node N (D)
of the tree represents a pair (D, (D)) where D is a dynamic class and O(D)

! Proof can be found at http://agrum.lip6.fr/doku.php?id=sum2011



is the set of its instances in the boundary graph BG. In other words, Q(D) is
the set of subgraphs of the BG that fit D. Tree T is initialized with all the
dynamic classes corresponding to 1-edge subgraphs of BG. In T, nodes at level
k + 1 are derived from those at level k by extending their associated subgraph
in BG with one of their adjacent node in BG. As a consequence, each node of T
represents a dynamic class whose boundary subgraph is connected and whose set
of instances is nonempty. The whole tree thus reveals precisely all the possible
substitutions that can be applied to the PRM. More precisely, V = U N(ﬁ)eT@(ﬁ)
represents the set of substitutions. There just remains to select among V the
“best” substitutions possible. To do so, we must enforce Rule 1. It is easily done
by observing that each node of BG can only belong to one dynamic class and,
more precisely, to one instance of this dynamic class. Hence, if we create a graph
G = (V,E) in which each node of V represents a given element of V| i.e., a
subgraph of BG, and each edge (v1,v2) € F represents the fact v; and vy have a
nonempty intersection in BG, then any subset W C V such that no pair of nodes
of W are adjacent in G corresponds to a set of substitutions satisfying Rule 1. In
other words, there is a one-to-one mapping between the Independent Sets of G
and the sets of substitutions satisfying Rule 1. Of course, some substitutions are
better than others because they induce higher speed-ups in Structured Inference
(see the B5/vp ratio below). So by weighting nodes of V' according to the speed-
up improvements they induce, the “best” substitutions we look for correspond
to solutions of a Max Weighted Independent Set problem [9].

1 edge
2 edges
3 edges

4 edges

Fig. 3. Dynamic class search tree T.

Of course, the size of T is exponential and, thus, some pruning is necessary.
Pruning rules will be described in the next subsection. But, to guaranty their
efficiency, we shall construct T in such a way that the “best” dynamic classes
are constructed first. For this purpose, gSpan defines a linear order that ensures
that the more promising the node the smaller its index in the order and suggests
to sort all the nodes of each level of T according to this order [26]. Thus, parsing
T in a depth-first search (DFS) manner guarantees that the “most promising”
dynamic classes are constructed first. This leads to the following algorithm:

4.3 Pruning Rules

For the first pruning rule, note that the descendants of a node in T define the
possible extensions of its corresponding dynamic class. Hence, if another node
of the search tree corresponds to the same dynamic class (say, e.g., that Dy is



Input: A PRM and its boundary graph BG
Output: A set of dynamic classes/substitutions
T <+ all dynamic classes of 1-edge subgraphs of BG
sort the nodes in T according to the gSpan linear order
parse T in a DFS manner
foreach node N (D) visited do
create the children of N(ﬁ), sort them w.r.t. gSpan’s linear order and add
them to T
prune the “unpromising” children
end
solve a Max Weighted Independent Set
return the set of “best” dynamic classes/substitutions
Algorithm 1: Computing dynamic classes/substitutions.

the same class as D), then both nodes and their descendants represent identical
dynamic classes. So, N(D;) and its descendants can be safely pruned from the
search. Determining whether two nodes represent the same dynamic class is
simply achieved through gSpan’s canonical labeling of subgraphs (see [26] for a
detailed description).

The second rule is related to the gain achievable in Structured Inference using
dynamic classes: nodes N (D) that define classes whose subgraph substitutions
do not speed-up Structured Inference can be pruned. To estimate the gain in
speed, recall that, by Rule 1, only a subset of the subgraphs of Q(D) can be
substituted in BG by instances of D. Let sz denote the cardinal of this subset.
The number of operations (multiplications, additions) performed by Structured
Inference on these substitutions is equal to ws + s X Ws, where ws and W
denote the number of operations necessary to eliminate D’s inner nodes at class
level and D’s outer nodes at instance level respectively. Now remember that, in
tree T, D corresponds to a 1-edge extension of its parent 7(D). So, the subgraphs
of @(D) that were not substituted are 1-edge extensions of subgraphs of O(m(D)).
Assuming that they were all substituted as instances of 7(D), their eliminations
by Structured Inference would have cost w5y + (|O(D)| — s5) x Wps where

Wp = Wrp) + kp and kp corresponds to the elimination of the edge added
to m(D). So the total cost incurred by the exploitation of N (D) is 85 = wp +
We(py+5p5 X Ws + (|O(D)| — s5) X Wp whereas, by just exploiting 7(D), it would
have been 75 = w,(5) + |0(D)| x Wp. So, class D is unattractive for inference
and N (D) may be pruned whenever as = 85 — 75 = wp + sp X (Wp —ws) > 0.
Finally, note that sz, ws,Ws, ks can be estimated quickly: as shown in the
preceding subsection, s5 can be estimated by solving a Maz Independent Set
problem induced by O(D). To estimate wgz, it is sufficient to compute a junction
tree of D’s DAG [23], eliminating only inner nodes, and to sum-up the sizes of
its cliques. Eliminating the remaining variables provides an estimation of wp.
ks can be estimated similarly.

Note however that T is not a-decreasing, i.e., it may happen that as > 0 for
a given node N (D), but not for some of its descendants. This property results
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from the fact that, in these descendants the number of inner nodes may be far
higher than that in D, hence decreasing wz (dropping constraints on the junction
tree’s elimination order) as well as W5 (the inner nodes do not belong to the
boundary). The a-non-decreasing property does not allow for a clear pruning
rule. In the paper, we used the following rule: whenever a node in T had an
ap > 0, we pruned the node and its descendants.

5 Experimental Results

We now describe different set of experiments that highlight the gain in inference
speed resulting from the combination of structured inference and pattern mining.
In each experiment, we compared our new algorithm (subsequently denoted as
PD for Pattern Discovery) with Structured Variable Elimination (SVE), the
standard inference algorithm for structured inference [24], and also with Variable
Elimination (VE), a classic and standard probabilistic inference algorithm for
Bayesian Networks [4]. Response times reported for PD take into account both
pattern mining and inference. For experiments using VE, results include both
grounding and inference time. It is important to note that our experiments
included no evidence. This choice was motivated by the fact that the structure
of the network varies drastically given evidence. Our goal here was to show
how pattern mining can improve inference when there exist repetitions in the
network. Moreover, evidence is not a good indicator of repetitions as it can either
be identically applied in each pattern, thus preserving repetition, or applied
randomly, thus breaking the structure. Experiences 1 and 2 show the results of
our new approach on networks with and without repetitions, hence providing
a good insight of PD’s performance. All our experiments were performed on
an Intel Xeon at 2.7 Ghz. The source code of our PRMs implementation, the
inference algorithm and the generation algorithms can be found in the aGrUM
project?.

The key to understand these experimentations lies in the generation of the
benchmarked PRMs. High level frameworks such as PRMs offer a wide variety of
generation methods. Here, our primary concern was the generation of PRMs in
which we could control the amount of structure repetition in order to prove that,
when confronted to a large amount of pattern repetitions, i) a substantial speed
gain can be achieved and ii) our approach does not suffer from a prohibitive
pattern mining cost. Our generator takes the following parameters as inputs:
domain is the domain size of each attribute; ming, is the number of attributes
common to all classes; maza,- is the number of attributes in each class; ¢ is
the minimal number of classes; maz,.¢ is the maximal number of reference slots
allowed per class; n is the number of instances in the system.

The PRM’s generation process is performed as follows: first, we generate
an interface® with mings, attributes which will be implemented by all classes

2 http://agrum.lip6.fr
3 If a class implements a given interface, then it guarantees the existence of the at-
tributes and reference slots defined in that interface [25].
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Fig. 4. Structural repetition is an important factor for PD’s performance. Unsurpris-
ingly, performance decrease dramatically for systems with no structural repetition.

and will be the slot type of each reference slot in each class. Next, for all
k € [0,...,max,.f], a class with precisely k reference slots is created. Then,
if maz,.r < c, we generate new classes until exactly c classes have been created.
For those new classes, the number of reference slots is chosen randomly between
0 and max,.s. Finally, we generate a DAG S representing the relational skele-
ton of our generated system: each node represents an instance and an arc i — j
represents the fact that there exists p € R(j) such that i = j.p. For a given node
i with m; parents in S, we instantiate a class randomly chosen among all the
classes with precisely m; reference slots. A given class C is generated as follows:
we first create a DAG G¢ with maxas, nodes, we then add to C k reference
slots and max ., attributes. Dependencies between attributes are defined using
Gc¢. For each reference slot p, we create a slot chain p.A, where A € A(Z) is
chosen randomly among all the attributes in A(Z). The slot chain is then added
as a parent of an attribute of C' chosen randomly. DAGs are generated using the
algorithm provided in [11].

In our first set of experiments, we generated systems with an increasing
number of instances. Each class contains 15 attributes (maxqu, = 15), each
attribute’s domain size is equal to 4 (domain = 4) and each class has at most 4
incoming arcs (max,.s = 4). Finally, the minimal amount of classes required was
set to ¢ = 5, which implies that there are precisely maz,.r+1 = 5 classes in each
system. These experiments highlight the behavior of PD when many repetitions
can be found in the system. Fig. 4(a) shows the response times of PD, SVE and
VE when no evidence is observed and with a number of instances varying from
100 to 1000. Clearly, in this case, PD significantly outperforms both VE and
SVE.

An important factor is the ratio of PD’s inference time over that of SVE. The
gain of PD against SVE and that of SVE against VE are due to the presence
of structural repetition in the generated networks. It can be seen that SVE’s
complexity is less impacted by the size of the system than VE’s complexity. But
for small systems with small classes, SVE does not guarantee a considerable
speed gain. By exploiting pattern mining, PD significantly increases the gain
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Table 1. Third experiment: patterns mining efficiency for PD. Values are averages.
Inst. stands for instances, attr. for attributes and pat. for pattern.

#inst. #pat. pat. max pat. Finst. max inst. % of attr.
repetition repetition per pat. per pat. in a pat.
200 11.88 2.92 6.26 2.15 4.08 37.29%
400 24.68 3.40 10.46 2.25 4.71 47.20%
600 36.35 3.91 15.92 2.36 5.25 55.90%
800 46.51 4.50 20.25 2.45 5.62 64.09%
1000 54.19 5.25 30.07 2.62 6.12 75.54%

obtained by repetition. Thus, where SVE does not perform well compared to
VE, PD infers larger patterns that can drastically increase performance. In our
first experiments, there is enough structure to see the possible gain provided by
our new approach. Yet, we must also consider cases where there are few or even
no structural repetitions. The amount of pattern repetitions can be influenced
by the number of classes, so if we increase that number we should observe a less
favorable ratio between PD’s and SVE’s inference time against VE. This is the
purpose of our second set of experiments.

In our second set of experiments we generated systems with an increasing
number of classes (¢ € [0,500]) and 500 instances. The remaining parameters
are equal to those of the first experiment. The goal here is twofold: we want to
show that, when no structure is exploitable, there is no overhead in proceeding
with the pattern mining and that pattern repetitions is critical for PD’s perfor-
mance. Fig. 4(b) shows that when the number of classes increases dramatically,
the speed gain induced by PD and SVE are considerably less significant. If we
compare those results with those obtained by VE, we see that PD and SVE are
considerably counter-performing. To anyone familiar with structural inference,
this is an unsurprising result and these results can be explained by the fact that
the elimination order used by PD and SVE (inner attributes before outer at-
tributes) is in most cases suboptimal. If PD and SVE show better results than
VE in Fig. 4(a) it is only because the gain resulting from the reduction of redun-
dant computations compensate the suboptimal elimination order. Fortunately,
detecting repetition is trivial in an object-oriented framework as the amount of
instantiations of each class is a good indicator of structural repetition. The pres-
ence of evidence is also a good indicator, as different evidence will break down the
structure and thus reduce the amount of repetition in the network. We can eas-
ily switch to classic inference if needed by detecting situations which would lead
to counter-performing results: few instantiations of each classes, heavy evidence,
seemingly random evidence. Finally, we observe no over-cost due to pattern min-
ing. This is also an unsurprising result as our pruning rules take into account
frequencies and cut the mining process when such value is too low (here the
minimal frequency allowed was set to 2).

In our third experiment, we analyze the amount of patterns found by PD with
the parameters from experiment 1 (mazgst = 15, domain = 4, MaTrer = 4,¢ =
5,mazyer + 1 = 5). The results of this experiment are summarized in Tab. 1.
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A noticeable point is the low number of instances in each pattern. This is a
consequence of our pruning rule which was designed to be strict. It favors smaller
patterns because larger ones are in most cases less cost effective (they often
induce a larger clique than an optimal elimination order would) and because
they are less frequent. In general, discovered patterns consisted of few small
patterns largely repeated and many different patterns less repeated. The latter
were used to fill-in the gaps in the structure once the main patterns were applied.
If we consider the last column of Tab. 1 we can see that the larger a system,
the more the attributes covered. The fact that the coverage increases with the
system size explains why the inference time of PD increases linearly with the
system size: the large number of usable patterns compensates the complexity
induced by the number of instances.

To conclude our experiments, we applied PD to a classic BN: the Pigs net-
work. This network is remarkable in that it only contains two distinct CPTs,
which are represented in our framework by two classes. The network in itself is
too small to point out any significant gain in inference time, however it is still
interesting to analyze the patterns found by PD. Our approach mined 14 differ-
ent patterns. On average, they are repeated 11 times and the maximal amount
of repetitions equals 45. Only patterns with 2 instances are found. Discovered
patterns cover up to 69% of the 441 attributes present in the Pigs network. As
for our previous results, our pruning rules favor smaller patterns since larger
ones tend to be less cost effective and less frequent. While the size of the Pigs
network does not enable to point out the efficiency of our approach in terms of
inference time, the existence of such structures and the results we obtained over
random networks can help conclude to the efficiency of our approach. We can
also point out its usefulness w.r.t. modeling: by pointing out frequent patterns
in a system we can infer new classes which can then be used by experts for
modeling purposes.

6 Conclusion

In this paper, we showed that mining patterns can significantly alleviate inference
costs. Although finding the optimal set of patterns is NP-hard, we provided
an efficient approximate mining algorithm. Our experimental results confirm
that this approach can lead to a significant improvement of inference tasks in
PRM. But there is still room for improving inference in PRMs. For instance,
our approach, especially its pruning, can still be improved. In addition, many
refinements of the PRM framework like class inheritance, structural uncertainty
or multiple references, should be used to speed-up inference.
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