
A Conceptual Framework for Efficient Web

Crawling in Virtual Integration Contexts

Inma Hernández, Hassan A. Sleiman, David Ruiz, and Rafael Corchuelo

University of Seville,
Seville, Spain

{inmahernandez,hassansleiman,druiz,corchu}@us.es

http://www.tdg-seville.info

Abstract. Virtual Integration systems require a crawling tool able to
navigate and reach relevant pages in the Web in an efficient way. Exist-
ing proposals in the crawling area are aware of the efficiency problem,
but still most of them need to download pages in order to classify them
as relevant or not. In this paper, we present a conceptual framework for
designing crawlers supported by a web page classifier that relies solely
on URLs to determine page relevance. Such a crawler is able to choose
in each step only the URLs that lead to relevant pages, and therefore
reduces the number of unnecessary pages downloaded, optimising band-
width and making it efficient and suitable for virtual integration systems.
Our preliminary experiments show that such a classifier is able to distin-
guish between links leading to different kinds of pages, without previous
intervention from the user.

Keywords: Crawlers, Web Navigation, Virtual Integration.

Virtual Integration aims at accessing web information in an automated manner.
The virtual integration process starts with queries, in which users express their
interests and information needs, and its goal is to obtain information relevant
to those queries from the web (probably from different sites), and present it
uniformly to the users. By relevant page, we mean a page that contains the
information required to answer a user query.

Automated access to the web requires a crawler, that is, a tool able to nav-
igate through web sites, looking for relevant pages, from which to extract the
information that is returned to the user. Note that this process is online, which
means that bandwidth and efficiency are important issues regarding virtual in-
tegration crawling [8], and downloading a minimum number of irrelevant pages
is mandatory.

In the design of a virtual integration crawler we consider some requirements:
first, the crawler must be able to fill in and submit forms, to access pages in

� Supported by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-
TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E,
and TIN2010-09988-E).

http://www.tdg-seville.info

the Deep Web; then, as we said before, the crawler must be efficient, that is, it
should minimise bandwidth usage and number of irrelevant pages downloaded.
To accomplish this, features for classification must be located outside the page
being classified; finally, creating large labelled training sets is burdensome for
the user, so we focus instead on training the crawler using an unlabelled set
obtained automatically.

Our goal in this paper is to present a conceptual framework that supports the
design of crawlers supported by URL-based classifiers. These crawlers determine
a page relevance from its URL without having to download it, which reduces the
bandwidth and makes them efficient and suitable for virtual integration systems.
Even though there are other crawling techniques and tools available that improve
traditional crawlers efficiency, our proposal is different, since it is based on link
classification to avoid downloading irrelevant pages. We focus on crawling web
sites that are designed following a certain navigation pattern, which is the most
common pattern in the Web [12]. This pattern consists on a form page that
allows issuing queries, followed by a hub page that contains a list of responses
to the queries, each of them containing links that finally lead to detail pages.

The rest of the article is structured as follows. Section 2 describes the related
work; Section 3 presents the conceptual framework proposed to solve the afore-
mentioned problem; finally, Section 4 lists some of the conclusions drawn from
the research and concludes the article.

1 Related Work

Next, we describe the related work in the area of web crawling, enumerating the
existing theoretical techniques, and analysing them according to the previous
requirements.

1.1 Crawling Techniques

Crawlers are designed considering different requirements, according to their pur-
pose. We distinguish between traditional crawlers, recorders, focused crawlers,
and others.

Traditional crawlers [18] collect as many pages as possible from the Web,
starting at a given entry point and following links until they meet some stopping
conditions. These crawlers have many applications, being the most obvious to
create a cache of all visited pages so that a search engine can index them later.
Other typical crawling tasks are related to web site maintenance, like validating
HTML or performing stress testing.

A recorder is a crawler in which each navigation step is defined by the user.
Some examples of recorders are [3], [4], [6], [15], [21]. All of them rely on the user
to define which links should be followed in every step, what forms to be filled,
and which words to be used for that purpose, so that the crawler reaches exactly
the pages targeted by the user. To help the user in the definition tasks, many
proposals include a supporting graphical interface [3], [15]. However, in non-GUI

proposals, the user has to know HTML code details, and define a step-by-step
script, including the references to fields that must be filled in, the actions needed
to submit the form (i.e., clicking on a button or a link), and the indication of
what links to be followed. In both cases, the user has to provide the values for
the different form fields.

Focused crawlers [1], [7], [5], [14], [16], [17] are crawlers which retrieve all pages
belonging to a certain topic. They are used, for example, to create a corpora
of documents for information retrieval purposes. Their behaviour is similar to
that of a traditional crawler, but every retrieved page is analysed to check if it
belongs to the topic, usually, with the help of a content-based web page classifier.
If the page belongs to the topic, all its links become new seeds for the crawler.
Otherwise, the page is judged not relevant and discarded.

Content-based classifiers use either: i) features in the page itself, often a bag
of words; or ii) features that are in neighbour pages (pages that either link to
or are linked by the target page), like words in the text surrounding the link,
the link anchor, and the URL itself. Getting features from the linking page for
classification avoids downloading the page beforehand. If the text surrounding
the anchor or the anchor text itself contain descriptive words, it is possible to
decide the page topic prior to downloading it.

Other crawlers consider different selection criteria for retrieved pages. For
example, features like page structure or its location inside the web site directory.
Furthermore, they are automated, requiring little intervention from the user,
which distinguishes them from recorders. Some examples are [12], [13], [20].

1.2 Analysis

In Table 1, we present a comparison of existing crawling techniques, regarding
the following requirements:

– Form filling: either user defined (UD) or applying intelligent techniques. As
for the source of keywords for filling, it can be either values from a database
(DB), provided by the user (UD), or extracted from the site itself (FA, TDF-
IDF) (Column 1)

– Efficiency: Optimisations made to the crawler to reduce the number of irrel-
evant pages retrieved (Column 2)

– Features: whether they are obtained from the page itself (TP) or from the
pages linking to it (LP) (Column 3)

– Training set: labelled (L) or unlabelled (U) (Column 4).

2 Conceptual Framework

We first present an overview of the framework, as shown in Figure 1. Then, we
present the details of each module, including a definition of its responsibilities,
an example of a typical use case, a list of the possible issues that should be
considered in the design, and a discussion of the alternative solutions.

Table 1. Related work (UD = User Defined, ML=Machine Learning, FA=Frequency
Analysis, LP=Linking Pages, TP=Target Pages, L=Labelled, U=Unlabelled)

CRAWLING

TECHNIQUE
PROPOSAL

FORM FILLING
EFFICIENCY

FE

AT
TS

TECHNIQUE KEYW

TRADITION.

Ravaghan01 Matching fields - values DB - - L

Barbosa04 Automated FA - - U

Madhavan08 Automated TF-IDF - - U

Ntoulas05 Query selection algorithm DB, FA - - U

FOCUSED

Chakrabarti98 - - - LP U

Chakrabarti99 - -
Content classifier & hubs and authorities

location
TP

L

Aggarwal01 - - Multiple features classifier LP L

Mukherjea04 - -
Nearness in directory structure and discarding

useless directories
TP

L

Pant05 - - Pre-crawled classifiers TP L

Barbosa05 - - Link classifier LP L

Pant06 - - Link context classifier LP L

Assis07 - - No training, genre & topic classifier TP -

Partalas08 - - Reinforcement Learning TP L

RECORDER

Anupam00 UD UD UD - -

Davulcu99 UD UD UD - -

Pan02 UD UD UD - -

Baumgartner05 UD UD Links matching XPATH given by user - L

Blythe07 UD UD Links matching model from users actions - L

Bertoli08 Discard password and keyword forms - Links matching model from users actions - L

Wang08 Automated UD Paradigm Page-Keyword-Action - L

OTHERS

Liddle02 Default Query (empty fields) - - -

Lage04 Matching fields - values UD Object-rich page classifer; detect Next links -

Vidal07 Automated FA Structural classifier TP L

A virtual integration process starts with an enquirer, which translates the user
interests into queries that are issued to forms. Usually, responses to queries are
hub pages, lists of results ordered and indexed, each of them showing a link to
another page with detailed information. Relevant pages, when found, are passed
on to the information extractor, which obtains and structures the information,
that is returned to the user.

We distinguish two phases: the training and the normal execution phase. In
the training phase, the keyword manager and form filler focus on obtaining
automatically a set of links from the site under analysis, which is later used to
train the classifier. In the latter phase, the form filler is used to reach pages
behind the forms, and then the crawler uses the trained classifier to select which
links to follow. In this paper we focus on the training phase of the framework,
namely in the setup and classifier modules.

The only requirement for the training set is to be representative of the site
under analysis, hence it is extracted from hub pages, which contain a high num-
ber of links in comparison with the rest of pages in any site. Furthermore, they
are pages linking directly to pages containing the relevant information, so they
assure that we have examples of links leading to relevant pages.

2.1 Keyword Manager

The keyword manager is responsible for finding a list of keywords that allow to
obtain a representative collection of links when performing the corresponding
searches in a given web site. As an example, to obtain a collection of links from
Amazon.com, which offers a variety of products, the keyword manager chooses

Navigation

Virtual Integration

Crawler

Information

Extractor

Link Classifier

Link Extractor

Prototype

Analyser

Setup

DW Access

Form Filler

Form AnalyserKeyword Manager Form Model

Link

Prototyping

User Interest

Keywords

PrototypesLabeled

Prototypes

URLs

Hub Pages

Info Pages

Enquirer
Structured

Information

Fig. 1. Conceptual framework diagram

a list of the most common English words [9]. Instead, another site like Microsoft
Academic Search belongs to a more specific domain, so a list of the most cited
authors, for example, would be more useful for this purpose.

The main concerns in this module are related to the language and type of
words that are accepted by each site, specially stop words. For instance, stop
words tend to have a higher frequency, and they usually yield a higher number of
links, but not every site takes stops words into account. Consider Wordpress.com,
which is unable to find any result related to the keywords ’a’ or ’the’, while
the same words in Youtube.com yield respectively 32,800,000 and 40,000,000
results. Furthermore, stop words may deviate the search and deteriorate results.
The lexical type of word must also be considered, given that verbs are not as
frequent as nouns, for example, so they may yield a smaller number of results.
Other important factor is the domain to which the site belongs, since it defines
a specific vocabulary.

The simplest solution consists of finding a public or well-known corpus, like
the Oxford English Dictionary [9]. In some specifical domains, it may be more
difficult to find such a list. For example, to search in Apple Store, we need to
find a list of the most frequent words in English related to media and technology.
If we try to use the list of English most common nouns, we find that for ’week’
(17th position), the Apple store is unable to find any related results. However,
in a more general site like Amazon, the same keyword yields 61,494 results.

The last resort is to use the pages of a site to extract the list of keywords, by
performing a frequency analysis of the words in the site pages.

2.2 Form Analyser

The form analyser is responsible for visiting a given site, obtaining all the infor-
mation about the forms and fields that it contains and using that information to
build a site form model. For example, to extract information from Amazon, the
form analyser opens the Amazon home page, where it finds the following form:

�� <���� ��	
�����������	
�� ������
	��������>
�� <�����	 ��������
������������������� >
�� <��	
�� ���������>���<���	
��>
 � <������	>
!� <
���	 	"���	��	
��	��	�#������	��	#��

������
����$�"����� �>
%� <
���	 	"���
��&�

�����		����
��&������'�������
��&�������>
(� <�����>

The analyser then obtains a model that includes the form, with a name attribute
with value site-search, and no id attribute, its three fields, and its submission
method, which consists of clicking over the image.

One of the main issues to be solved by the analyser is the lack of standardis-
ation in forms and fields identification. The analyser (and later, the form filler)
has to deal with the problem of referencing that HTML element for later pro-
cessing. HTML standard includes identification attributes for each element (“id”
and “name”), but actually in some web sites we find form elements with none of
them. In the latter case, the analyser needs to use a different location strategy,
usually in the form of an XPATH expression.

However, although XPATH is flexible and allows to define an expression for
every element, this expression can be hard to understand and handle, and also
sensitive to small changes in the HTML page. Of course, changes in an element
id or name can also invalidate the former location strategy, but it is more usual
to change an HTML page by inserting a new paragraph, or deleting an image,
than to alter an element id or name attributes.

Youtube.com is a good example of the variety of ways to identify form ele-
ments. In its home page we can find, amongst others, a form with id and no
name: <form id=”masthead-search” action=”/results” >, a form with name and no
id <form name=”logoutForm” action=”/”>, and a form without name nor id <form

action= ”/addtoajax”>

There are many form modeling proposals, ranging from simple models that
just keep a record of all the fields to more complex models that add semantics
to each field, analysing field tags [2], [10], [12], [18] surrounding text, identifying
mandatory fields [19] or relationships between fields [10].

2.3 Link Extractor

The link extractor is responsible for the extraction of links from hub pages. In
the Amazon example, for every page retrieved by the form filler, the extractor
analyses all the anchors in the page, including the following:

�� <�
�����)�&� ������������&�>
�� <� ������		�����������'�������*
�����"����

��	��������������������+
��,*-.><
�&
�����		����
��&������'����������%/�0�& �><��>

�� <� ������		�����������'�������*
�����"����
��	��������������������+
��,*-.>*
�� 1��"���
��	���������2<��>

 � <� ������		�����������'���������
���3
��
�3������������$����������(+
��,*-.4�����>*�� ��
�� 3
��<��>

!� <� ������		�����������'�������*
�����"����
��	����������������	����
�����������
�&+
��,*-.�>

%� <� �����0������
�	���
�1/25>)�	 �� $���<��>
(� <� ������		����������#����
�$���	���$5���> <
�&

�������
	� �����		����
��&�� ����'�������
�&��0�&><��>
.� <� ������		�����������'�������&��������

�
�	
�&��������+
��,*-.4����
	
��� ���>(6 ���<��>
6� <� ������		�����������'�������&��������

�
�	
�&��������+
��,*-.4����
	
��� ����> � ����<��>

The main issue for the extractor is that a single URL may be written in different
formats, either in relative or absolute form. For example, in Amazon, link 1 can
be written http://www.amazon.com/ref=logo, /ref=logo or ./ref=logo. Therefore, the
system needs to transform all links to their absolute form.

A related issue are links that do not lead to a page, e.g, links to JavaScript
functions (in the previous example, line 6), and hence should be discarded, as
they are not useful for our purposes. Duplicated links have to be discarded as
well.

2.4 Link Prototyping

Its goal is to build a collection of prototypes from the set of extracted links.
Each prototype represents a subset of URLs, hence it is defined by a regular
expression, and the set of all prototypes is later used to build a link classifier.
In traditional machine learning approaches, prototype based classifiers classify
elements by computing the distance between the element to be classified and
each prototype, and assigning the element to the cluster of the prototype whose
distance is lower. In our case, instead, whenever a link matches the regular
expression of a prototype, it is assigned to its related cluster. In addition, for each
prototype, a coverage value is estimated that gives a hint about the importance
of the cluster, by counting the number of URLs in the link training set that
match its regular expression. In the Amazon example, analysis of training links
yields the prototypes in Table 2.

The link analysis is supported by a tokeniser, which parses every URL and
splits it into its different components according to RFC 3986. Sometimes URLs
include special characters, spaces and other symbols that make it difficult pars-
ing URLs. Furthermore, URL query strings contain parameters, which may be
optional or mandatory, and which may be arranged in different orders. The gen-
erator has to detect this in order to make a more accurate regular expression.

URL rewriting makes things worse by eliminating the structure of a query
string in exchange for ’friendly’ URLs with a better readability. URL rewriting
is not a standard procedure, but only a concept that is being adopted lately by
many popular web sites, each of them defining their own friendly URL format.

Table 2. Prototypes obtained from Amazon.com, before user labelling

Id Prototype (Regular Expression) Coverage
P0 ^http://www.amazon.com/.+/product-reviews/.+?ie=UTF8$ 30%
P1 ^http://www.amazon.com/.+/dp/.+?ie=UTF8&s=dvd$ 17%
P2 ^http://www.amazon.com/.+/dp/.+?ie=UTF8$ 13%
P3 ^http://www.amazon.com/gp/offer-listing/ref=olp?ie=UTF8$ 14%
…
Pn ^http://ad.doubleclick.net/.+/feature.html?docid=.+$ 0.5%

Table 3. Labelled prototypes obtained from Amazon.com

Label Prototype (Regular Expression) Cov.
Product Reviews ^http://www.amazon.com/.+/product-reviews/.+?ie=UTF8$ 30%
Product Descriptions ^http://www.amazon.com/.+/dp/.+?ie=UTF8$ 30%
Buy New Products ^http://www.amazon.com/gp/offer-listing/ref=olp?ie=UTF8&condition=new$ 8%
Buy Used Products ^http://www.amazon.com/gp/offer-listing/ref=olp?ie=UTF8&condition=used$ 6%

2.5 Prototype Analyser

Once the prototyping is complete, the prototypes are analysed and improved so
that the result is more accurate. Finally, the analyser helps the user to assign
a label to each prototype, defining the semantic concept contained in the links
of the cluster that the prototype represents. Moreover, the user selects from the
set of prototypes those representing relevant concepts, which will be considered
during later crawling.

In the Amazon example, after processing the prototypes the analyser outputs,
amongst others, the labelled prototypes included in Table 3.

There are some ways to improve prototypes accuracy, mainly: prototype join-
ing, prototype splitting and prototype discarding.

Joining two different prototypes representing the same concept results in a sin-
gle prototype with a more general regular expression. For example, prototype P1
is composed of pages with DVD products information, while P2 represent pages
about any other type of products. They are joined to form Product Description
prototype in Table 3.

Splitting a prototype results in two smaller and more cohesive prototypes.
For example, in Amazon prototype P3 includes both links to buy new and used
products. The analyser splits this prototype into two different prototypes: one
for buying used products and one for buying new products.

URLs that appear only a few times in the training set and whose format is
completely different from the other URLs, lead to a prototype with low coverage,
which are seldom helpful for the crawler, (e.g., advertising URLs), so they can
be discarded without diminishing the classification power of the prototype set.
For example, the last prototype in Table 2, whose coverage is low in comparison
with the others (0.5 %), is excluded from the labelled prototype set in Table 3.

3 Conclusions

In this paper, we present a conceptual framework for designing crawlers sup-
ported by a prototype based link classifier, that classifies pages according to
their URL format without downloading them beforehand. Parting from an unla-
belled set of links, a set of prototypes is built, each of them representing one of
the different concepts embodied in a particular web site. Then, the user selects
those concepts that are relevant, and the crawler uses the related prototypes to
reach only pages containing those concepts. With respect to the requirements
we mentioned in section 1, we observe the following:

Efficiency: Our proposal classifies web pages depending on the link URL for-
mat, it is not only efficient, but also generic and applicable in different domains.

Traditional crawlers browse the whole site, retrieving all pages, and spending
a significant time and bandwidth while downloading them. Focused crawlers
retrieve pages belonging to a topic more efficiently than traditional crawlers do,
but still a page has to be classified to know if the crawler must follow that path,
and that requires the page to be downloaded in most cases.

In general, using features located on a page to classify it requires downloading
it previously, which results in wasted bandwidth. There are, some proposals that
classify pages according to the anchor text and text surrounding the link in the
referring page. However, not all sites include in their links and their surroundings
words useful for classification. The same problem of specificity can be noted in
ad-hoc techniques (classifiers designed for a specific site), and also in recorders.

Form Filling: Our goal is to adapt existing form modeling proposals and inte-
grate them into our crawler. As we explained in Section 1, form filling has been
studied thoroughly in the literature, so it is not our matter of research.

Unlabelled training set: In this proposal, the classifier is trained using a set
of links collected automatically. The system analyses them and gives the user
a list of prototypes representing concepts, while the user is only responsible for
defining his or her interest, by labeling and picking one or more prototypes. Users
intervention is unavoidable, given that the relevancy criteria depends solely on
them. Recorders provide efficient crawlers that retrieve only relevant pages, but
they depend entirely on the user.

As a result, we designed an efficient crawler, able to access web pages auto-
matically, while requiring as little intervention as possible from the users. Some
preliminary results of our implementation of the link classifier are shown in [11].

References

1. Aggarwal, C.C., Al-Garawi, F., Yu, P.S.: On the design of a learning crawler for
topical resource discovery. ACM Trans. Inf. Syst. 19(3), 286–309 (2001)

2. Álvarez, M., Raposo, J., Pan, A., Cacheda, F., Bellas, F., Carneiro, V.: Crawling
the content hidden behind web forms. In: ICCSA (2), pp. 322–333 (2007)

3. Anupam, V., Freire, J., Kumar, B., Lieuwen, D.F.: Automating web navigation
with the webvcr. Computer Networks 33(1-6), 503–517 (2000)

4. Blythe, J., Kapoor, D., Knoblock, C.A., Lerman, K., Minton, S.: Information in-
tegration for the masses. J. UCS 14(11), 1811–1837 (2008)

5. Chakrabarti, S.: Focused web crawling. In: Encyclopedia of Database Systems, pp.
1147–1155 (2009)

6. Davulcu, H., Freire, J., Kifer, M., Ramakrishnan, I.V.: A layered architecture for
querying dynamic web content. In: SIGMOD Conference, pp. 491–502 (1999)

7. de Assis, G.T., Laender, A.H.F., Gonçalves, M.A., da Silva, A.S.: Exploiting genre
in focused crawling. In: String Processing and Information Retrieval, pp. 62–73
(2007)

8. Edwards, J., McCurley, K.S., Tomlin, J.A.: An adaptive model for optimizing per-
formance of an incremental web crawler. In: WWW, pp. 106–113 (2001)

9. Fowler, H.W., Fowler, F.G.: Concise Oxford English Dictionary, 11th edn. revised.
Oxford University Press, Oxford (2008)

10. He, H., Meng, W., Lu, Y., Yu, C.T., Wu, Z.: Towards deeper understanding of the
search interfaces of the deep web. In: WWW, pp. 133–155 (2007)

11. Hernández, I.: Relc demo (2011),
http://www.tdg-seville.info/inmahernandez/Thesis+Demo ,

12. Lage, J.P., da Silva, A.S., Golgher, P.B., Laender, A.H.F.: Automatic generation of
agents for collecting hidden web pages for data extraction. Data Knowl. Eng. 49(2),
177–196 (2004)

13. Liddle, S.W., Embley, D.W., Scott, D.T., Yau, S.H.: Extracting data behind web
forms. In: ER (Workshops), pp. 402–413 (2002)

14. Mukherjea, S.: Discovering and analyzing world wide web collections. Knowl. Inf.
Syst. 6(2), 230–241 (2004)

15. Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, Á.: Semi-automatic wrapper
generation for commercial web sources. In: Engineering Information Systems in the
Internet Context, pp. 265–283 (2002)

16. Pant, G., Srinivasan, P.: Link contexts in classifier-guided topical crawlers. IEEE
Trans. Knowl. Data Eng. 18(1), 107–122 (2006)

17. Partalas, I., Paliouras, G., Vlahavas, I.P.: Reinforcement learning with classifier
selection for focused crawling. In: European Conference on Artificial Intelligence,
pp. 759–760 (2008)

18. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. In: World Wide Web
Conference Series (2001)

19. Shu, L., Meng, W., He, H., Yu, C.T.: Querying capability modeling and construc-
tion of deep web sources. In: Web Information Systems Engineering, pp. 13–25
(2007)

20. Vidal, M.L.A., da Silva, A.S., de Moura, E.S., Cavalcanti, J.M.B.: Structure-based
crawling in the hidden web. J. UCS 14(11), 1857–1876 (2008)

21. Wang, Y., Hornung, T.: Deep web navigation by example. In: BIS (Workshops),
pp. 131–140 (2008)

http://www.tdg-seville.info/inmahernandez/Thesis+Demo

	A Conceptual Framework for Efficient Web Crawling in Virtual Integration Contexts
	Related Work
	Crawling Techniques
	Analysis

	Conceptual Framework
	Keyword Manager
	Form Analyser
	Link Extractor
	Link Prototyping
	Prototype Analyser

	Conclusions
	References

