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Static and dynamic properties of curved
vapour-liquid interfaces by massively parallel
molecular dynamics simulation

M. T. Horsch, S. K. Miroshnichenko, J. Vrabec∗, C. W. Glass, C. Niethammer, M.
Bernreuther, E. A. Müller, and G. Jackson

Abstract Curved fluid interfaces are investigated on the nanometre length scale
by molecular dynamics simulation. Thereby, droplets surrounded by a metastable
vapour phase are stabilized in the canonical ensemble. Analogous simulations are
conducted for cylindrical menisci separating vapour and liquid phases under con-
finement in planar nanopores. Regarding the emergence of nanodroplets during nu-
cleation, a non-equilibrium phenomenon, both the non-steady dynamics of conden-
sation processes and stationary quantities related to supersaturated vapours are con-
sidered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures
of quadrupolar fluids confirm the applicability of the capillarity approximation and
the classical nucleation theory.

1 Introduction

The influence of curvature on the properties of a nanodroplet, as opposed to an
interface that is planar (on the molecular level), is hard tocapture experimentally.
Yet it is important for refrigeration and energy technologyas well as meteorology to
understand fluid interfaces with extremely high curvaturesbecause they characterize
the onset of condensation and boiling processes.
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Beginning in the 1930s with the work of Verschaffelt [1], researchers became
aware of the necessity of taking the internal structure of fluid interfaces into ac-
count. They increasingly looked beyond the picture of a discrete dividing surface
as postulated by Gibbs [2]. In the subsequent years, this ledto the theoretical work
of Guggenheim [3] and Tolman [4] which, nonetheless, was mostly still based on
effective radii and hence on discretization.

Today, molecular dynamics (MD) simulation provides a meansof accessing the
internal structure and the non-equilibrium behaviour of vapour-liquid interfaces di-
rectly, on the basis of physically sound but algebraically simple effective pair po-
tentials. For the truncated and shifted Lennard-Jones (LJ·TS) potential [5]

u(r) =

{

4ε
[

σ12(r−12− r−12
c )+σ6(r−6

c − r−6)
]

, for r < rc,
0, for r ≥ rc,

(1)

with a cutoff radius ofrc = 2.5 σ , which constitutes a reliable model for the no-
ble gases and methane [6], fluid phase boundaries have been simulated by several
groups in the recent past [6, 7, 8, 9, 10]. Molecular simulation is particularly suit-
able for investigating metastable states, cf. Fig. 1. Virial isotherms that accurately
describe the conditions of fluid phase coexistence at planaror curved interfaces

p
T

=
5

∑
j=1

b jρ j , (2)

which were correlated to the present data, are given in Tab. 1. Therein,p is the
pressure,T is the temperature,ρ is the density, and the conventionk = 1 is used.
On this basis, the present work regards both equilibrium andnon-equilibrium phe-
nomena for vapour-liquid interfaces of the LJ·TS fluid. Nucleation in supersaturated
vapours is considered for mixtures of quadrupolar fluids as well. For a more detailed
exposition, the reader is pointed to four recent articles [10, 11, 12, 13].

2 Curved fluid interfaces in equilibrium: Theory

The Tolman [4] approach to curved vapour-liquid interfacesis based on comparing
different effective radii of a droplet, namely the Gibbs adsorption radiusRρ , for
which the interfacial excess density is zero, and the Laplace radiusRL from

γ =
1
2

RL(pı − p), (3)

i.e. the Laplace equation in terms of the surface tensionγ and the pressurepı inside a
droplet containingı molecules under equilibrium conditions. The deviation between
these radii, the Tolman length

δ = Rρ −RL, (4)
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Fig. 1 Isotherms in a
pressure-volume diagram
for the LJ·TS fluid as de-
termined by canonical MD
simulation at temperatures of
T = 0.65 (▽), 0.75 (♦), 0.85
(△), and 0.95 ε (�) as well
as the saturated states (•) ac-
cording to Vrabecet al. [6] in
comparison with the present
fifth-order virial expansion
(—), cf. Tab. 1 and Eq. (2).
Results in the vicinity of the
spinodal line are not shown
here, and no such values were
used for adjusting the virial
coefficients, to ensure that
only states unperturbed by
nucleation were taken into
account.

characterizes the curvature dependence of the surface tension [4]. The capillarity
approximation, which postulates the droplets to be spherical and incompressible
with a curvature independent surface tension, assumesδ to be zero.

Table 1 Virial coefficients for the LJ·TS fluid as determined from a fit to the MD simulation
results shown in Fig. 1 and to the saturated vapour and liquiddensities determined by Vrabecet al.
[6]. The spinodal densities(ρ ′)# and(ρ ′′)# for liquid and vapour, respectively, were determined
from the virial expansion, cf. Eq. (2).

T −b2 b3 −b4 b5 ρ ′ ρ ′′ (ρ ′)# (ρ ′′)#

0.65 11.7675 44.5866 96.9625 71.4351 0.813 0.00406 0.660 0.0592
0.7 9.77572 34.176 76.4866 59.4954 0.787 0.00728 0.636 0.0740
0.75 8.43697 27.7315 62.373 50.3464 0.759 0.0124 0.613 0.0886
0.8 7.33394 21.854 41.1349 40.3329 0.730 0.0198 0.588 0.103
0.85 6.48592 18.3318 40.0252 34.6962 0.699 0.0304 0.564 0.119
0.9 5.44587 12.3036 25.0989 23.6305 0.664 0.0446 0.532 0.134
0.95 4.97043 10.0411 17.1387 16.0653 0.622 0.0648 0.499 0.149
1 4.67665 9.83155 15.6063 13.8778 0.571 0.0962 0.466 0.174

According to the formalism employed by Buff [14] and Kondo [15], the surface
tension becomes mimimal if it is evaluated with respect toRL. It can be shown that
this assertion is only valid if the interfacial areaF is proportional toR2

L
. However,

both mechanical and thermodynamic equilibrium conditionsfor a droplet containing
ı molecules imply
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RL = 2

(

∂Vı

∂F

)

N,V,T
, (5)

whereVı andV are the volumes occupied by the droplet and the system as a whole,
respectively. This only agrees withF ∼ R2

L
if curvature effects cancel out.

For cylindrical interfaces, the surface tension varies with the radius according to

[(

∂ lnRL

∂ lnγ

)

T
−1

]−1

=
δ
RL

+
δ 2

2R2
L

, (6)

an expression that is similar and analogous to Tolman’s equation for droplets, where
RL is defined to be positive for convex and negative for concave menisci. By com-
bining the Young equation [16] with an expansion ofγ to first order in 1/RL, the
contact angleϑ of a fluid confined in a planar nanopore is obtained as

cosϑ =

(

γ∞

∆γs
+

δ∞

Rmin

)−1

. (7)

Therein,γ∞ is the surface tension of the planar vapour-liquid interface, δ∞ is the
Tolman length in the planar limit, and the pore diameter is 2Rmin, while∆γs indicates
the difference between the specific surface energies of the substrate when it is in
contact with the vapour and the liquid, respectively.

3 Curved fluid interfaces in equilibrium: MD simulation

Using thels1 mardynMD program [19], equilibrium states involving droplets and
cylindrical menisci were simulated for the LJ·TS fluid.

Vapour-droplet equilibrium MD simulations were conductedfor droplets con-
taining on the order of 100 to 1 000 molecules in the canonicalensemble, where
such equilibria can be stable – as opposed e.g. to the grand canonical ensemble
where this corresponds to a free energy maximum. The dropletsize was evaluated
according to a version of the cluster criterion of ten Wolde and Frenkel [20] with the
connectivity radiusRℓ = 1.5 σ and coordination numbersj ≥ 4 defining the liquid
phase. The present results correspond to moderately supersaturated vapours, cf. Fig.
2, and are consistent with the results of Vrabecet al. [6] on larger droplets as well
as the study of Napariet al. [17] covering vapours at pressures that approach the
spinodal line. In the intermediate regime, the droplet sizein equilibrium generally
agrees well with the capillarity approximation.

Cylindrical interfaces were investigated by simulating liquid slabs, cf. Fig. 4,
confined between two planar and layered walls represented bycoupled harmonic
oscillators. The equilibrium positions of the wall atoms were aligned according to
a hexagonal structure with an interatomic distance of 0.3816σ , corresponding to
the bond length in graphite expressed in terms of theσ parameter value for fluid
methane. Both the fluid-fluid and the fluid-wall interactionswere modelled by the



Curved vapour-liquid interfaces by massively parallel MD simulation 5

LJ·TS potential, employing equal size parametersσfw = σ in both cases, while the
dispersive energy between fluid molecules and wall atoms

εfw = ζε, (8)

was systematically varied. The arithmetic mean of the saturated vapour and liquid
densities was selected as a criterion for detecting the phase boundary. A circle was
adjusted to the resulting profile at distances between 2 and 11 σ from the wall, cf.
Fig. 4, and the tangent to this circle at a distance of 1σ from the wall was examined
to determine the contact angle. Qualitatively, the contactangles obtained by the
present MD simulations are captured by Eq. (7), assuming a proportionality law for

∆γs = Kγ(ρ ′−ρ ′′)(ζ − ζ), (9)

cf. Fig. 5. The magnitude of the fluid-wall dispersion for which ϑ becomes rect-
angular (ζ = 0.118) was found to be temperature independent.

4 Homogeneous vapour to liquid nucleation: Theory

The foundations of the classical nucleation theory (CNT), concerning the first step
of a first-order phase transition in the bulk of a metastable phase, were laid by

Fig. 2 Droplet sizeı⋆ over
the supersaturation ratioSµ
(in terms of the chemical
potential) for vapour-droplet
equilibria of the LJ·TS fluid
(•) from the present work,
(▽) according to Vrabecet al.
[6], (△) according to Napari
et al. [17], and following the
capillarity approximation (—)
as well as the Laaksonenet al.
[18] model (– –).
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Fig. 3 Simulation snapshots
for the reduced fluid-wall
dispersive energyζ of 0.09
(left) and 0.16 (right) at a
temperature of 0.73 ε . The
upper half is reproduced
in the bottom to illustrate
the effect of the periodic
boundary condition.

Fig. 4 Vapour-liquid interface
profiles for the reduced fluid-
wall dispersive energyζ of
0.07 (△), 0.10 (�), 0.13 (◦),
and 0.16 (▽) at a temperature
of 0.82ε .

Fig. 5 MD simulation results
for ϑ overT with a reduced
fluid-wall dispersive energy
of ζ = 0.07 (�), 0.09 (◦), 0.1
(H), 0.11 (�), 0.13 (�), 0.14
(△), and 0.16 (•) as well as
following the proportionality
law (—, – –), cf. Eq. (7),
with ζ = 0.118,δ∞(T) from
a correlation based on the
data of Vrabecet al. [6], and
a reduced fluid-wall surface
energy difference ofKγ = 7
σε , cf. Eq. (9).

Volmer and Weber [21] as well as Farkas [22]. On the basis of the capillarity ap-
proximation, the free energy of formation∆A of a droplet containingı molecules
in the thermodynamic limit (i.e. for an infinitely large vapour phase at a constant
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supersaturation ratio) evaluates to

∂A
∂ ı

= γ∞
∂F
∂ ı

−

(

µ − µı +
pı − p

ρ ′

)

, (10)

in differential terms, whereµı and pı are the chemical potential and the pressure
inside the droplet, respectively, whileµ andp refer to the vapour. In theı→ ∞ limit,
the rightmost term of Eq. (10) yields an effective chemical potential difference

∆ µe = µ − µs(T)+
ps(T)− p

ρ ′
, (11)

that accounts for the ‘pressure effect’ [23] of the vapour – which may include the
contribution of an inert carrier gas. Note thatµs(T) and ps(T) do not depend on
ı since these quantities characterize the saturated bulk fluid. As visualized in Fig.
6, the presence of a carrier gas increases the free energy barrier ∆A⋆ of a nucle-
ation process, i.e. the maximum of∆A reached for acritical droplet in (unstable)
equilibrium with the vapour, corresponding to the conditions discussed above.

From the analysis of a random walk overı, the probability for a droplet containing
ℓ molecules to eventually reach macroscopic size can be determined as

Q(ℓ) =

∫ ℓ
1 exp(2∆A/T)dı

∫ ∞
1 exp(2∆A/T)dı

, (12)

while the nucleation rate, i.e. the number of macroscopic liquid drops formed by
homogeneous nucleation per volume and time unit, is

J = CNT ·
N′zF⋆

V
exp

(

−∆A⋆

T

)

, (13)

Fig. 6 Free energy of forma-
tion according to CNT for
CO2 droplets in supersatu-
rated vapours atT = 250.2 K
with Sρ = 2.72 andCO2 mole
fractions ofy = 1 (—), 1/2
(– –), and 1/3 (· · ·), reaching
a maximum for the critical
droplet (�). Note that in the
thermodynamic limit, i.e. in
a macroscopic system, the
Gibbs, Helmholtz, and Lan-
dau free energies of formation
for small droplets converge.
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Fig. 7 Number of droplets per
volume over simulation time
for droplets containingı > 10,
25, 50, and 100 molecules
in a canonical ensemble MD
simulation of the LJ·TS fluid
at T = 0.7 ε andρ = 0.03421
σ−3 in comparison with the
aggregated number of dæmon
interventions per volume
in a grand canonical MD
simulation withT = 0.7 ε , Sµ
= 2.8658, andℓ = 51.

according to CNT. In this expression,T refers to the rate at which vapour monomers
collide with an interface (per surface area),N′ is the number of monomers in the
system,F⋆ is the surface area of a critical droplet, andV is the system volume. The
correction factorsC, N, andzwere introduced by Farkas [22], Federet al. [24], and
Zel’dovič [25], respectively. The overall pressure effect onJ following Eq. (13), as
discussed by Wedekindet al. [23], defines the carrier gas correction factorW.

5 Homogeneous vapour to liquid nucleation: MD simulation

Nucleation in supersaturated vapours was studied by simulating systems containing
between 100 000 and 17 000 000 molecules, exploiting the excellent scalability of
the ls1 mardynprogram on massively parallel computing platforms [26].

The method of Yasuoka and Matsumoto [27], where droplet formation rates are
evaluated during the stage of a condensation process that corresponds to nucleation
(rather than relaxation or droplet growth), was applied to the canonical ensemble.
In these simulations, the vapour pressure decreased over time due to the transfer of
molecules from the vapour to the dispersed liquid phase. Furthermore, steady state
quantities, pertaining to nucleation only, were investigated with a new simulation
method. This method combines the grand canonical ensemble with McDonald’s
dæmon[28], an intelligent being whose interventions eliminate droplets contain-
ing more thanℓ molecules; see Fig. 7 for a comparison between these approaches.
Results for the LJ·TS fluid agree well with CNT, using a temperature independent
value for the empirical correction factorC introduced by Farkas [22].

Canonical ensemble MD simulations were also conducted for multi-component
systems containing nitrogen, oxygen, and argon – at the ratio prevalent in the earth’s
atmosphere – as well as carbon dioxide with a greater partialdensity than at satu-
ration. The molecular models employed for this purpose, introduced by Vrabecet



Curved vapour-liquid interfaces by massively parallel MD simulation 9

Fig. 8 Nucleation rate of
the LJ·TS fluid over super-
saturation from the present
MD simulations of the grand
canonical ensemble with Mc-
Donald’s dæmon (•) as well
as according to CNT with
C = 200 (—) and the Laak-
sonenet al. [18] model (– –)
at temperatures ofT = 0.45,
0.65, 0.7, 0.85, 0.9, and 0.95
ε . The supersaturation ratio is
given in terms of the chemical
potential of the vapour phase.

al. [29], are well-established with respect to fluid phase equilibria [29, 30, 31]. For
these systems, the analysis of the carrier gas effect according to Wedekindet al.[23]
is confirmed qualitatively by the determined droplet formation ratesJℓ, given in Tab.
2, although significant quantitative deviations are present at high temperatures.

6 Conclusion

From the preceding analysis of curved vapour-liquid interfaces and homogeneous
nucleation it can be concluded that CNT is able to capture both the nucleation rate
and the critical droplet size for the considered systems, i.e. the LJ·TS fluid and a
quaternary mixture of quadrupolar and unpolar fluids. The main criticism usually
made of CNT is that it applies the capillarity approximationto small droplets where
significant curvature effects should be expected. However,a deviation from capillar-
ity is implicit in the prefactorC which empirically accounts for its overall influence
on the nucleation rate. This corresponds to stating that thecapillarity approximation
overestimates the free energy barrier byT lnC.

The physical foundation of this approach is more robust thanit might seem at
first sight. By combining recent simulation results on the equilibrium vapour pres-
sure of droplets, cf. Fig. 2, it becomes apparent that curvature effects are signi-
ficant in the immediate vicinity of the spinodal line for the vapour, corresponding to
ı⋆ < 100, while they are virtually undetectable for droplets containing more than 1
000 molecules. Thus, the deviation from Eq. (10) regarding the magnitude of∆A⋆
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Table 2 Droplet formation rate from Yasuoka-Matsumoto (YM) canonical ensemble MD sim-
ulation as well as critical droplet size (in molecules), Wedekind factorW, and the prediction
J/QCNT(ℓ) for the droplet formation rate according to CNT withC = 1, in dependence of tem-
perature (in units of K), supersaturation ratio (with respect to the partial density of carbon dioxide)
and YM threshold sizeℓ (in molecules) for the quaternary systemCO2+N2+O2+Ar. The mole
fractiony of carbon dioxide in the supersaturated vapour is indicatedin the table, while the com-
position regarding the other fluids corresponds to the earth’s atmosphere. The rates are given in
units of m−3s−1 and where no nucleation was detected,JCNT instead ofJ/QCNT is shown in the
last column.

T ρ/ρ ′′ y ℓ Jℓ ı⋆ W J/QCNT
238.4 2.80 1/2 50 1.5·1033 66 0.03 2.6·1031

85 1.6·1032 3.3·1030

1 50 5.6·1032 41 1 9.9·1031

85 2.1·1032 7.6·1031

3.08 1/2 50 5.5·1033 65 0.02 3.1·1031

150 3.1·1032 3.9·1030

1 50 6.3·1033 39 1 1.6·1032

150 2.9·1032 1.3·1032

3.36 1/3 — ≪ 1031 127 4.2·10−6 1.1·1027

1/2 50 1.1·1034 65 0.02 8.7·1030

300 3.2·1032 4.2·1030

1 50 6.7·1033 37 1 2.1·1032

300 1.4·1033 1.8·1032

250.2 2.34 1/2 50 1.1·1034 140 1.9·10−4 1.8·1033

100 1.1·1033 7.8·1029

1 50 1.3·1033 54 1 3.9·1032

100 3.4·1032 1.4·1032

2.53 1/2 85 7.4·1033 143 1.0·10−4 3.9·1030

200 7.4·1032 3.1·1028

1 85 2.2·1033 52 1 1.9·1032

200 7.7·1032 1.9·1032

2.72 1/3 — ≪ 1031 879 4.3·10−25 2.3·108

1/2 75 1.3·1034 150 4.2·10−5 1.8·1031

250 1.6·1033 1.7·1028

1 75 4.8·1033 50 1 2.6·1032

250 1.4·1033 2.5·1032

is dominated by an integral over the free energy of formationfor extremely small
droplets. At supersaturation ratios sufficiently distant from spinodal conditions, this
contribution does not depend onSand can be represented by−T lnC with a constant
value ofC.
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