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Abstract. This paper introduces a non-parametric sequential frame decimation
algorithm for image sequences in low-memory streaming environments. Frame
decimation reduces the number of input frames to increase pose and structure
robustness in Structure and Motion (SaM) applications. The main contribution of
this paper is the introduction of a sequential low-memory work-flow for frame
decimation in embedded systems where memory and memory traffic come at a
premium. This approach acts as an online preprocessing filter by removing frames
that are ill-posed for reconstruction before streaming. The introduced sequential
approach reduces the number of needed frames in memory to three in contrast to
global frame decimation approaches that use at least ten frames in memory and
is therefore suitable for low-memory streaming environments. This is moreover
important in emerging systems with large format cameras which acquire data over
several hours and therefore render global approaches impossible.
In this paper a new decimation metric is designed which facilitates sequential
keyframe extraction fit for reconstruction purposes, based on factors such as a
correspondence-to-feature ratio and residual error relationships between epipolar
geometry and homography estimation. The specific design of the error metric
allows a local sequential decimation metric evaluation and can therefore be used
on the fly. The approach has been tested with various types of input sequences
and results in reliable low-memory frame decimation robust to different frame
sampling frequencies and independent of any thresholds, scene assumptions or
global frame analysis.

1 Introduction

There has been a significant amount of research in the area of Strucutre and Motion
(SaM) in recent years. The approaches have matured enough to allow for reliable re-
constructions from image or video sequences. Lately more work has been introduced
to automate these approaches. One important step in SaM is the decimation of input
frames, in order to reduce the computation load but also discard frames that could pos-
sibly lead to pose and structure degeneracies. Most approaches introduced in previous
work apply a global frame decimation for parts of the captured image sequences. This
not only results in high memory consumption, as many frames have to be buffered, but is
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also not suitable for streaming environments, as high delays are introduced. These kinds
of environments include reconstructions based on image streams acquired through em-
bedded systems, where memory and network bandwidths are restricted and therefore
require a sequential frame decimation before streaming. This paper introduces a new
low-memory, non-parametric, sequential work-flow to frame decimation without usage
of thresholds or scene-dependent knowledge for streaming environments. To enable this
sequential work-flow a new frame decimation metric optimized for non-parametric, se-
quential frame decimation is introduced. Compared to decimation metrics introduced
in previous work the new metric is designed to have one global maxima representing
a good keyframe pair at each evaluation step. The goal of this approach is to avoid
input frames that result in error-prone reconstructions and reduce the total amount of
streamed data by filtering non-suitable frames as soon as possible.
Reconstruction errors can be introduced by degenerate camera poses, numerical errors
in triangulation with small baselines or bad correspondences caused by large baselines
which result in more occlusions. Degenerate camera poses can result from little or no
translation, in which case epipolar geometry estimation is respectively ill-posed or un-
defined. Numerical errors in triangulation on the other hand are introduced by small
baselines in relation to the depth of the viewed scene. This is because near-parallel rays
yield triangulated points that have a potentially large uncertainty in their computed po-
sitions. Lastly, large baselines introduce errors in correspondences as more occlusions
appear.
The main contribution of the introduced approach is to reduce errors in muti-view re-
constructions from the mentioned error sources with a low-memory sequential frame
decimation work-flow and newly introduced error metric, where no thresholds are used
nor assumptions about the scene are made. The error metric is based on errors evaluated
from different camera motion models and an analysis of the number of obtained cor-
respondences in relation to the number of possible features in the observed scene. The
sequential frame decimation is especially suited for pre-streaming filtering of frames in
low-memory, low bandwidth environments.

2 Previous Work

Structure and Motion from image sequences or videos has been a major focus in com-
puter vision. Pollefeys et al. [1] introduced a multi-view reconstruction approach based
on uncalibrated hand-held cameras. Nistér [2] reconstructed scenes with a hierarchy
of trifocal tensors from an uncalibrated frame sequence. Every algorithm based on un-
calibrated images extracts as a first step correspondences between frame pairs. These
correspondences are then used to extract the epipolar geometry or in other words the
fundamental matrix and the corresponding camera poses. The most often-used feature
matching algorithms are the scale-invariant feature transform (SIFT) by Lowe [3] and
the speeded-up robust features (SURF) by Bay et al. [4].
With the automation of SaM from image sequences and videos the challenge to find
good image pairs for pose estimation and reconstruction becomes apparent. Nistér [5]
introduced a frame decimation algorithm based on global motion estimation between
frames and a sharpness measure to remove redundant frames. Ahmed et al. [6] recently
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introduced a global frame decimation algorithm based on number of correspondences,
geometric robust information criterion (GRIC) [7] and a point-to-epipolar line cost be-
tween frame pairs. Both approaches analyze the given frames in a global manner and
are therefore well-suited for global decimation once all frames are available. These ap-
proaches also rely on empirically chosen thresholds for the frame decimation decision.
Royer et al. [8] introduced a simple sequential frame decimation algorithm for robotic
applications. Their frame decimation decision is based on the number of available cor-
respondences between keyframes, and tries to decimate as many frames in-between
keyframes without going below an empirically chosen number of correspondences. Torr
et al. [9] use their previously introduced GRIC approach to improve the correspondence
track extraction over several frames by analysing if the epipolar geometry or a homogra-
phy is a better motion model for the given frames. The active search algorithm proposed
by Davison [4] performs a global analysis of frames to decide which one adds the most
new information to a multi-view reconstruction. Beder and Steffen [10] introduced an
error metric to analyse the goodness of pairs of camera poses based on the uncertainty
of reconstructed 3D points. This error metric is only focused on good camera poses but
does not estimate the possible goodness of the correspondences.

3 Frame Decimation

This paper introduces a sequential frame decimation approach that reduces the amount
of input images for the SaM algorithm by filtering frames that could result in degener-
ate camera poses and numerically unstable triangulations. At the same time it ensures
that large baselines are avoided, as this results in less accurate correspondences based
on more occlusions. The sequential frame decimation is well suited for low-memory,
streaming environments.
Figure 1 shows the basic work-flow of this approach. The primary goal is to find reli-
able consecutive keyframes to allow a more robust multi-view reconstruction, which has
the additional benefit of reducing the amount of data transferred to the reconstruction
infrastructure. The first step of the algorithm is to extract correspondences between the
last keyframe and the present candidate frame. A frame decimation metric is extracted,
which is used for a sequential frame decimation decision. Never more than three frames
have to be kept in memory thanks to this sequential approach. It will be shown in the
remainder of this paper that this approach results in a reduction of error between con-
secutive pairwise reconstructions and in the final multi-view reconstruction, and finds a
locally optimal keyframe sequence while keeping memory usage low.

3.1 Sequential Frame Decimation

Most previous frame decimation approaches aimed to find the globally optimal keyframe
sequence and therefore required large subsets of the input frame sequence. This means
that the frames have to be obtained in advance or the frames have to be buffered for
a global analysis. It is obvious that these kinds of approaches are not well suited for
streaming or low-memory environments. The sequential frame decimation approach in
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Fig. 1: Work flow sketch for the introduced non-parametric sequential frame decimation algo-
rithm.

this paper overcomes these disadvantages by decimating frames on the fly. As a result
only data from three frames, the last keyframe, the last frame and the present frame
have to be managed in memory compared to at least ten frames in other approaches [6].
The introduced sequential work-flow can be used as long as the error metric is designed
to have one global maximum, which corresponds to the next keyframe. This paper in-
troduces a new decimation metric which incorporates a GRIC-based epipolar geometry
versus homography residual comparison and the ratio of good correspondences to pos-
sible features at each evaluated frame pair. This is perfectly suitable for the introduced
sequential frame decimation approach.
The sequential frame decimation is therefore performed by comparing the frame dec-
imation metricfG of keyframek with that of framek + i. The counteri is increased
as long asfG(k, k + (i − 1)) <= fG(k, k + i). As soon as the first frame pair with
a positive value forfG and a significant decrease in error metric is found, the previous
frame pair with a positivefG is chosen as a keyframe pair. To start the sequential frame
decimation the first suitable frame of the input sequence is used as the first keyframe.
The first possible key frame pair can be initialized based on Beder and Steffen [10] to
have a valid starting point. Every frame pair withfG(k, k + i) which results in a local
maximum is used for subsequent SaM calculations and framek + i is used as the next
start frame for further decimation. This work-flow is illustrated in figure 1. This sequen-
tial frame decimation approach gets rid of degenerate frames and reduces the number
of frames with small baselines in which simple triangulation algorithms such as linear
triangulation could fail, while keeping the baseline small enough to retain good corre-
spondences.
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3.2 Camera Pose and Structure Degeneracy Detection

There are two situations where relative camera pose estimation between two views re-
sults in degeneracies in which the epipolar geometry is not defined and therefore the
fundamental matrix extraction fails. These cases are motion degeneracy and structure
degeneracy. The motion degeneracy appears for example if the camera movement con-
sists only of a rotation and no translation, or if scene points lie on certain quadric sur-
faces. The structure degeneracy appears if all the correspondences used to calculate the
epipolar geometry are coplanar in the 3D scene. In these cases the fundamental matrix
cannot be reliably computed, but the relative scene change between cameras can be de-
scribed by a homography. Therefore, the comparison of residual error between these
two scene representations gives an insight into the frame quality for pose and structure
estimation. This comparison is performed based on the geometric robust information
criterion (GRIC) [7]. GRIC is not only based on the goodness of fit but also on the par-
simony of the two models. Equation 1 shows the relative comparison of fundamental
matrixF and homographyH.

relGRIC(F,H) =
GRIC(H)−GRIC(F )

GRIC(H)
(1)

GRIC(X) is defined by equations 2 and 3.

GRIC(X) =
∑

i

ρ(e2
i )i + λ1dn + λ2k (2)

ρ(e2
i )i = min(

e2
i

σ2
, λ3(r − d)) (3)

The goodness of fit is represented by the sum of squared residualsei of F and H
in relation to the input correspondences. The parsimony is based ond, the number
of dimensions modeled (d = 3 for F andd = 2 for H), k, number of degrees of
freedom in the model (k = 7 for F andk = 8 for H), r, dimension of the input data,
which corresponds tor = 4 in the case of 2D correspondences,σ2 is the variance
of the residual errors, and similarly to [6] we setλ1 = log(r), λ2 = log(rn) and
λ3 corresponds to a limit for the residual error, which was set ton, the number of
correspondences between frames.
Based on the definition ofrelGRIC and the fact thatF has high errors when there is a
small baseline or there is no translation at all and the fact thatH has low errors in these
cases but high errors with wider baselines it can be said that a frame is a good input for
SaM the higher therelGRIC is. It can also be said that ifrelGRIC < 0 a bad input
frame pair is found. In the sequential frame decimation work-flow all frame pairs with
a relGRIC smaller then zero are directly decimated and not used for the sequential
evaluation.

3.3 Correspondence Goodness

The value ofrelGRIC makes sure that frames with high degeneracy probability are
excluded from further SaM steps. A closer look atrelGRIC values and its definition
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shows that its value will remain high or even increase as soon asH is no longer a
good descriptor. In other words,relGRIC will have good values along longer baselines
between cameras, as long as there are enough good correspondences to calculate the
fundamental matrix. However, in the case of SaM reconstruction it is essential to find as
many good correspondences as possible, and this usually occurs with smaller baselines
since this results in fewer occlusions and matching errors. For this reason a weighting
termcW for relGRIC is introduced, which represents the probability of finding good
correspondences. Correspondences are extracted based on SURF [4] features. A good
first guess for the size of the baseline and therefore the possible number of occlusions is
taken by looking at the ratio between found featuresNF in the source keyframe and the
resulting correspondencesNC with the present target frame. This initial approximation
gives adequate results but does not take the possiblity of wrong correspondences into
account. To make this weight more reliable, only inlier correspondencesNI from the
RANSAC-based fundamental matrix calculation are used to calculatecW , as shown in
equation 4.

cW =
NI

NF
(4)

It can be seen thatcW tends to decrease if the baseline grows. To make sure that the
correspondences are a good representation of the given scene and cover as much of the
scene as possible, a correspondence areacA versus image sizeiA ratio is introduced.
The correspondence areacA is approximated by the axis-aligned bounding box of all
the given inlier correspondences. To get a good reconstruction of the scene, this ratio
aR, shown in equation 5, should stay as large as possible.

aR =
cA

iA
(5)

3.4 Frame Decimation Metric

The last sections introduced ways to detect camera pose and structural degeneracies,
and also evaluate camera baselines based on correspondence goodness. This chapter is
going to introduce a new frame decimation metricfG that combines the latter results
into a frame goodness for SaM estimation. TherelGRIC metric is a relative measure
of how good epipolar geometry describes the scene compared to a homography. In the
case ofrelGRIC < 0 this means that the frame pair is not well suited for reconstruc-
tion as there is either a camera pose degeneracy or the baseline is too small. On the
other hand, ifrelGRIC > 0 this means that this is a candidate frame pair for pose esti-
mation. In this instance the main introduction of error in the reconstruction comes from
the correspondences due in general to occlusions, which tend to increase with larger
baselines. The introduced decimation metric takes both terms into consideration and
weights the camera goodness by the correspondence goodness. This leads to the term
for fG seen in equation 6.

fG = (cW ∗ aR) ∗ relGRIC(F,H) (6)



Lecture Notes in Computer Science 7

Fig. 2: Comparison offG and its components (aR*cW , relGRIC) to reprojection error of the
pairwise reconstruction from frame k = 0 of the ‘kique’ sequence.

It can be seen thatfG will have a high value if therelGRIC has a high value and the
correspondence weight is high. This also means thatfG will at most have the value of
relGRIC, but also will decrease when the baseline grows. This behaviour represents
the search for the sweet spot in baseline size based on the two main reconstruction error
sources: camera pose and correspondences.

4 Results

The presented frame decimation algorithm has been tested with a large number of pub-
licly available image sequences, consisting of different scene types and camera mo-
tions. Some examples of the tested sequences can be seen in figure 6. The ‘kique’ data
set shown in figure 6a consists of aerial imagery taken while flying in a circle around
a city neighbourhood. The ‘medusa’ data set [1] in figure 6b represents an image se-
quence taken by a hand-held camera moving in a half-circle around an archeological
artifact, where the movement is very jittery at times. The data set ‘Leuven castle’ in fig-
ure 6c covers the outside of a building with a hand-held camera. Figure 6d shows data
set ‘castle-P30’ [11] which covers a building from the inner courtyard. The ‘house’
data set [12] in figure 6e represents a carefully spaced image sequence taken in a circle
around a toy house. It can be seen that these different target scenes and camera move-
ments are all handled well by the introduced frame decimation approach.
An evaluation of the goodness metric is performed. In figure 2 the frame decimation

values for the ‘kique’ data set are plotted in conjunction with the resulting reprojection
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Fig. 3: Comparison offG and its components (aR ∗ cW , relGRIC) to reprojection error for
each pairwise reconstruction with respect to keyframe k = 1, for the ‘medusa’ sequence.

error of the given frame pair reconstruction between the first suitable frame of the se-
quence and the following frames. It can be seen that thefG value for the keyframe pair
search starting at framek = 0 has its best value at framek + 3. This is in agreement
with the lowest reprojection error representing the best reconstruction in this sequence.
The plot shows also that framek + 1 is a bad frame for pose estimation as thefG
has a negative value, which is supported by the reprojection error. A bigger baseline as
suggested by therelGRIC (in framek + 5) is avoided thanks to the correspondence-
based weighting. The frame decimation is run on the ‘kique’ data set and results in a
sequence of keyframe pairs suitable for sequential multi-view reconstruction. By ex-
tracting 38 percent of the frames, degenerate camera poses are avoided while making
sure that the baselines of the cameras stay small enough to reduce possible problems in
correspondence calculation. This is all done on the fly with a sequential frame decima-
tion work-flow designed to suit low-memory streaming environments. Figure 6a shows
a selection of the first five extracted keyframes.
Another example of the tests that have been run is based on the ‘medusa’ data set [1].
For this test the input video has been decomposed into images with 10 frames per sec-
ond. Figure 3 shows the resulting values in the frame decimation from the first frame
k = 1 in the sequence. Based on the introduced algorithm the next keyframe is frame
k+12, which is the local maximum offG. The resulting dense pair-wise reconstruction
for this keyframe pair can be seen in figure 4a. It can also be seen that the reprojection
error for this frame pair is the local minimum. On the other hand there are similarly
low reprojection errors in framesk + 4 andk + 5. But asrelGRIC andfG have neg-
ative values it can be seen that these frame pairs are degenerate. Figure 4b shows the
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(a) Frames 1-13 (b) Frames 1-5

Fig. 4: Comparison of reconstructions between extracted keyframe pair 1-13 and low reprojection
error frame pair 1-5 with linear triangulation for the ‘medusa’ sequence.

reconstruction result with framek + 5. The reconstruction is clearly worse than with
the found keyframe. This can be explained by the fact that the baseline is too small and
therefore the noise in the point cloud, caused through numerical errors, is much bigger,
even though the reprojection error is small. It becomes clear from this that pairwise
reconstructions between keyframes should present low reprojection errors, but that re-
projection error in itself should not be used as the decimation metric.
Between the framesk + 8 to k + 11 a zig-zagging infG around zero and an explosion
in reprojection error can be seen. It is assumed that in these areas the given correspon-
dences and camera poses have high uncertainty. But these areas are decimated by the
given algorithm, as negativefG values are not taken into account, which results in a
good keyframe pair. The frame decimation was run on the entire sequence and results in
good keyframe extraction. In this example the input sequence is decimated to 23 percent
of the original frames. This high decimation rate can be explained by the slow camera
movement compared to reconstruction target size and distance. The original baselines
are small and therefore prone to numerical errors in triangulation. Figure 6b shows the
first five of the extracted keyframes.
The given results show that the sequential work-flow in combination with the frame dec-
imation metricfG results in good decimations. Based on the different movements and
reconstruction targets covered in the tested data sets, it can be said that this approach
is suitable for a large variety of sequences. A comparison between values ofrelGRIC
andfG show that in cases where large areas of the target scene are covered by every
frame therelGRIC and therefore the camera movement is dominant in the decimation
decision. The correspondence-feature-ratio integrated intofG comes into play the less
overlap there is in a given frame sequence. Two examples on opposite ends of these
frame sequence attributes can be seen in the ‘medusa’ and ‘castle-P30’ data sets. The
‘medusa’ data set consists of a camera movement around the reconstruction target. This
results in the fact thatfG decimation differs fromrelGRIC only with larger base-
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lines. In the ‘castle-P30’ case thefG metric results in more key frames as the overlap
between frames is much smaller. Both these cases comply with our expectations and
are valuable features for multi-view reconstructions.
Up until now it has been shown that the introduced algorithm decimates frames that are
not suited for good SaM. Several tests have been performed with image sequences that
have been carefully spaced before-hand, to allow good reconstructions. Figure 6e shows
one of these sequences introduced by Zisserman et al. [12]. The frame decimation in this
sequence results in no decimated frames and shows that there is no over-decimation.
To make sure that the introduced approach is independent of the spacing, or in other
words, frame rate of the input data, tests have been conducted for a video sequence
with different frames rates. This has been done with the ‘medusa’ data set [1], which
was decoded into 5, 10, 15 and 20 fps to allow this comparison. The frame decimation
was run for all the sequences, and the number of resulting keyframes and the corre-
sponding number of input frames is given in figure 5a. It can be seen that the number of
keyframes stays fairly constant. There is a small change in number of keyframes which
can be explained by the fact that the introduced algorithm does not find a unique frame
decimation, as the decimation is performed locally and sequentially, and the fact that
in the lower frame rates possible keyframes are already excluded by the lack of spatial
information.
To show how this frame decimation approach is well suited for sequential multi-view

(a) Number of key frames (b) Sequential reprojection error

Fig. 5: Comparison between number of total frames and number of extracted keyframes for dif-
ferent ‘medusa’ sequence decodings and reprojection error during sequential reconstruction with
decimated frames. The crosses represent keyframes and the corresponding reprojection error with
every newly added keyframe is plotted.

reconstruction, the average reprojection error resulting after every addition of a new
keyframe to the reconstruction is extracted. Figure 5b shows the average reprojection
error in pixels after addition of every extracted keyframe. The keyframes are repre-
sented by the crosses. All other frames are decimated by the introduced approach. It
can be seen that overall the reprojection error is small and also constant over time. This
shows clearly that all the introduced keyframes are well suited for reconstruction. This
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(a) ‘kique’

(b) ‘medusa’

(c) ‘leuven castle’

(d) ‘castle-P30’

(e) ‘house’

Fig. 6: First five keyframes extracted by non-parametric sequential frame decimation for different
data sets.

means that degenerate camera poses as well as frames with large baselines and there-
fore bad correspondences are avoided.

5 Conclusion

This paper introduced a non-parametric sequential frame decimation algorithm for scene
reconstructions in low-memory streaming environments. This frame decimation re-
duces the number of input images by eliminating frames that could lead to erroneous
pose and structure estimates on the fly. The main contribution of this paper is the intro-
duction of a sequential work-flow for frame decimation based on a newly introduced
smooth frame goodness metric, which is designed to choose only one global maximum
value at each keyframe evaluation. This allows for a sequential frame decimation with-
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out usage of thresholds or scene assumptions. This metric is based on a ratio between
good correspondences and possible features and the geometric robust information cri-
terion (GRIC) for residual error relationships between epipolar geometry and homog-
raphy estimation. The definition of this metric allows for a local error minimization
evaluation and can therefore be used on the fly. Thanks to the sequential nature of this
approach, less memory is used during the decimation evaluation as only three frames
have to be kept in memory at any time. In comparison, previous work that suggested
global decimation optimization uses at least ten frames at a time. This approach has
been tested with multiple publicly available data sets representing different types of tar-
get scenes and camera movements. The results show reliable frame decimation robust
to frame sampling rates and independent of any thresholds, scene assumptions or global
frame analysis.
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