Skip to main content

A Graph Matching Approach to Symmetry Detection and Analysis

  • Chapter
  • First Online:
  • 865 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 386))

Abstract

Spectral relaxation was shown to provide an efficient approach for solving a gamut of computational problems, ranging from data mining to image registration. In this chapter we show that in the context of graph matching, spectral relaxation can be applied to the detection and analysis of symmetries in n-dimensions. First, we cast symmetry detection of a set of points in ℝn as the self-alignment of the set to itself. Thus, by representing an object by a set of points S ∈ ℝn, symmetry is manifested by multiple self-alignments. Secondly, we formulate the alignment problem as a quadratic binary optimization problem, solved efficiently via spectral relaxation. Thus, each eigenvalue corresponds to a potential self-alignment, and eigenvalues with multiplicity greater than one correspond to symmetric self-alignments. The corresponding eigenvectors reveal the point alignment and pave the way for further analysis of the recovered symmetry. We apply our approach to image analysis, by using local features to represent each image as a set of points. Last, we improve the scheme’s robustness by inducing geometrical constraints on the spectral analysis results. Our approach is verified by extensive experiments and was applied to two and three dimensional synthetic and real life images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 26–33. IEEE Computer Society, Washington, DC, USA (2005)

    Google Scholar 

  2. Bioid, the bioid face database (2001), http://www.bioid.com/downloads/facedb/

  3. Brown, M., Lowe, D.G.: Recognising panoramas. In: Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 1218–1227 (2003)

    Google Scholar 

  4. Chen, S.: Extraction of local mirror-symmetric feature by odd-even decomposition. In: Proceedings International Conference on Image Processing, vol. 3, pp. 756–759 (2001)

    Google Scholar 

  5. Coxeter, H.S.M.: Introduction to Geometry. John Wiley & Sons, Inc. (1969)

    Google Scholar 

  6. Cornelius, H., Perďoch, M., Matas, J., Loy, G.: Efficient Symmetry Detection Using Local Affine Frames. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 152–161. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 313–320. MIT Press, Cambridge (2007)

    Google Scholar 

  8. Derrode, S., Ghorbel, F.: Shape analysis and symmetry detection in gray-level objects using the analytical Fourier-Mellin representation. Signal Processing 84(1), 25–39 (2004)

    Article  MATH  Google Scholar 

  9. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing 6(9), 1305–1315 (1997)

    Article  Google Scholar 

  10. Evans, C.S., Wenderoth, P., Cheng, K.: Detection of bilateral symmetry in complex biological images. Perception 29(1), 31–42 (2000)

    Article  Google Scholar 

  11. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  12. Hays, J.H., Leordeanu, M., Efros, A.A., Liu, Y.: Discovering texture regularity via higher-order matching. In: 9th European Conference on Computer Vision, pp. 522–535 (May 2006)

    Google Scholar 

  13. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004); ISBN: 0521540518

    Google Scholar 

  14. Kazhdan, M.M., Chazelle, B., Dobkin, D.P., Finkelstein, A., Funkhouser, T.A.: A reflective symmetry descriptor. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 642–656. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Kiryati, N., Gofman, Y.: Detecting symmetry in grey level images: The global optimization approach. International Journal of Computer Vision 29(1), 29–45 (1998)

    Article  Google Scholar 

  16. Kim, W., Kim, Y.: Robust rotation angle estimator. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(8), 768–773 (1999)

    Article  Google Scholar 

  17. Keller, Y., Shkolnisky, Y.: A signal processing approach to symmetry detection. IEEE Transactions on Image Processing 15(6), 2198–2207 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lee, S., Collins, R., Liu, Y.: Rotation symmetry group detection via frequency analysis of frieze-expansions. In: Proceedings of CVPR (June 2008)

    Google Scholar 

  19. Loy, G., Eklundh, J.-O.: Video and Image Bayesian Demosaicing with a Two Color Image Prior. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 508–521. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference of Computer Vision (ICCV), vol. 2, pp. 1482–1489 (October 2005)

    Google Scholar 

  21. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)

    Google Scholar 

  22. Lucchese, L.: Frequency domain classification of cyclic and dihedral symmetries of finite 2-D patterns. Pattern Recognition 37, 2263–2280 (2004)

    Google Scholar 

  23. Lei, Y., Wong, K.C.: Detection and localisation of reflectional and rotational symmetry under weak perspective projection. Pattern Recognition 32(2), 167–180 (1999)

    Article  Google Scholar 

  24. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference (BMVC), London, pp. 384–393 (2002)

    Google Scholar 

  25. Miller, W.: Symmetry Groups and their Applications. Academic Press, London (1972)

    MATH  Google Scholar 

  26. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  27. Martinet, A., Soler, C., Holzschuch, N., Sillion, F.: Accurate detection of symmetries in 3d shapes. ACM Transactions on Graphics 25(2), 439–464 (2006)

    Article  Google Scholar 

  28. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vision 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  29. Nilsback, M.-E., Zisserman, A.: A visual vocabulary for flower classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2006) (to appear)

    Google Scholar 

  30. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  31. Park, M., Lee, S., Chen, P.-C., Kashyap, S., Butt, A.A., Liu, Y.: Performance evaluation of state-of-the-art discrete symmetry detection algorithms. In: Computer Vision and Pattern Recognition Conference, CVPR 2008 (June 2008)

    Google Scholar 

  32. Prasad, V.S.N., Yegnanarayana, B.: Finding axes of symmetry from potential fields. IEEE Transactions on Image Processing 13(12), 1559–1566 (2004)

    Article  MathSciNet  Google Scholar 

  33. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context free attentional operators: the generalized symmetry transform. International Journal of Computer Vision, 119–130 (1995)

    Google Scholar 

  34. Shen, D., Ip, H., Teoh, E.K.: Robust detection of skewed symmetries by combining local and semi-local affine invariants. Pattern Recognition 34(7), 1417–1428 (2001)

    Article  MATH  Google Scholar 

  35. Scott, G.L., Longuet Higgins, H.C.: An algorithm for associating the features of two images. Royal Society London 244, 21–26 (1991)

    Article  Google Scholar 

  36. Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)

    Article  Google Scholar 

  37. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  38. Shiv Naga Prasad, L.S., Davis, V.: Detecting rotational symmetries. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 954–961 (2005)

    Google Scholar 

  39. Tang, F., Tao, H.: Object tracking with dynamic feature graph. In: PETS 2005, pp. 25–32 (2005)

    Google Scholar 

  40. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision, pp. 333–334. Prentice-Hall, New Jersey (1998)

    Google Scholar 

  41. Valstar, M., Pantic, M.: Fully automatic facial action unit detection and temporal analysis. In: IEEE Int’l Conf. on Computer Vision and Pattern Recognition 2006, vol. 3 (May 2006)

    Google Scholar 

  42. Weyl, H.: Symmetry. Princeton University Press (1952)

    Google Scholar 

  43. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)

    Article  Google Scholar 

  44. Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(12), 1154–1166 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Chertok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Chertok, M., Keller, Y. (2012). A Graph Matching Approach to Symmetry Detection and Analysis. In: Ogiela, M., Jain, L. (eds) Computational Intelligence Paradigms in Advanced Pattern Classification. Studies in Computational Intelligence, vol 386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24049-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24049-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24048-5

  • Online ISBN: 978-3-642-24049-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics