Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 387))

Abstract

We introduce a new nature inspired algorithm to solve the Graph Coloring Problem (GCP): the Gravitational Swarm. The Swarm is composed of agents that act individually, but that can solve complex computational problems when viewed as a whole. We formulate the agent’s behavior to solve the GCP. Agents move as particles in the gravitational field defined by some target objects corresponding to graph node colors. Knowledge of the graph to be colored is encoded in the agents as friend-or-foe information. We discuss the convergence of the algorithm and test it over well-known benchmarking graphs, achieving good results in a reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences, Corrected Proof (2010) (in press)

    Google Scholar 

  2. Brlaz, D.: New methods to color the vertices of a graph. Commun. ACM 22, 251–256 (1979)

    Article  Google Scholar 

  3. Cases, B., Hernandez, C., Graña, M., D’anjou, A.: On the ability of swarms to compute the 3-coloring of graphs. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 102–109. MIT Press, Cambridge (2008)

    Google Scholar 

  4. Chiarandini, M., Süttzle, T.: An application of iterated local search to graph coloring problem. In: Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, Fachgebiet Intellektik, Fachbereich Informatik, and Technische Universitt Darmstadt Darmstadt, pp. 112–125 (2002)

    Google Scholar 

  5. Chvtal, V.: Coloring the queen graphs. Web repository (2004) (last visited July 2005)

    Google Scholar 

  6. Corneil, D.G., Graham, B.: An algorithm for determining the chromatic number of a graph. SIAM J. Comput. 2(4), 311–318 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cui, G., Qin, L., Liu, S., Wang, Y., Zhang, X., Cao, X.: Modified pso algorithm for solving planar graph coloring problem. Progress in Natural Science 18(3), 353–357 (2008)

    Article  Google Scholar 

  8. Dutton, R.D., Brigham, R.C.: A new graph colouring algorithm. The Computer Journal 24(1), 85–86 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Folino, G., Forestiero, A., Spezzano, G.: An adaptive flocking algorithm for performing approximate clustering. Information Sciences 179(18), 3059–3078 (2009)

    Article  Google Scholar 

  10. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33(9), 2547–2562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ge, F., Wei, Z., Tian, Y., Huang, Z.: Chaotic ant swarm for graph coloring. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol. 1, pp. 512–516 (2010)

    Google Scholar 

  12. Graña, M., Cases, B., Hernandez, C., D’Anjou, A.: Further results on swarms solving graph coloring. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6018, pp. 541–551. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1, 95–113 (2007)

    Article  Google Scholar 

  14. Herrmann, F., Hertz, A.: Finding the chromatic number by means of critical graphs. J. Exp. Algorithmics 7, 10 (2002)

    Article  MathSciNet  Google Scholar 

  15. Hsu, L.-Y., Horng, S.-J., Fan, P., Khan, M.K., Wang, Y.-R., Run, R.-S., Lai, J.-L., Chen, R.-J.: Mtpso algorithm for solving planar graph coloring problem. Expert Syst. Appl. 38, 5525–5531 (2011)

    Article  Google Scholar 

  16. Graay, M., Hernndez, C., Rebollo, I.: Aplicaciones de algoritmos estocasticos de otimizacin al problema de la disposicin de objetos no-convexos. Revista Investigacin Operacional 22(2), 184–191 (2001)

    Google Scholar 

  17. Johnson, D.S., Mehrotra, A., Trick, M. (eds.): Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA (2002)

    Google Scholar 

  18. Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, vol. 26. American Mathematical Society, Providence (1993)

    Google Scholar 

  19. Johnson, D.S., Trick, M.A. (eds.): Proceedings of the 2nd DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)

    Google Scholar 

  20. Lewandowski, G., Condon, A.: Experiments with parallel graph coloring heuristics and applications of graph coloring, pp. 309–334

    Google Scholar 

  21. Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS Journal on Computing 8(4), 344–354 (1996)

    Article  MATH  Google Scholar 

  22. Mizuno, K., Nishihara, S.: Toward ordered generation of exceptionally hard instances for graph 3-colorability, pp. 1–8

    Google Scholar 

  23. Mycielski, J.: Sur le coloureage des graphes. Colloquium Mathematicum 3, 161–162 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Reynolds, C.: Steering behaviors for autonomous characters (1999)

    Google Scholar 

  25. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Computer Graphics, pp. 25–34 (1987)

    Google Scholar 

  26. Sundar, S., Singh, A.: A swarm intelligence approach to the quadratic minimum spanning tree problem. Information Sciences 180(17), 3182–3191 (2010); Including Special Section on Virtual Agent and Organization Modeling: Theory and Applications

    Article  MathSciNet  Google Scholar 

  27. Turner, J.S.: Almost all k-colorable graphs are easy to color. Journal of Algorithms 9(1), 63–82 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruiz, I.R., Romay, M.G. (2011). Gravitational Swarm Approach for Graph Coloring. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol 387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24094-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24094-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24093-5

  • Online ISBN: 978-3-642-24094-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics