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Abstract

This paper addresses two primary questions: (i) How much faster can we disseminate information in
a large wireless network if we have multiple communication channels available (as compared to relying
on only a single communication channel)? (ii) Can we still disseminate information reliably, even if some
subset of the channels are disrupted? In answer to the first question, we reduce the cost of broadcast to
O(log log n) rounds/hop, approximately, for sufficiently many channels. We answer the second question
in the affirmative, presenting two different algorithms, while at the same time proving a lower bound
showing that disrupted channels have unavoidable costs.

In more detail, we present upper and lower bounds for the multihop broadcast problem in the ¢-
disrupted radio network model. This model assumes that in every round: each processes can participate
on 1 out of C available communication channels, of which up to ¢ < C might be locally disrupted,
preventing communication. This model captures the unpredictable message loss that plagues real radio
networks. We begin by studying the case with no disruption (f = 0) and present a randomized algorithm
that solves broadcast in O((D + logn)(logC + logn) rounds, w.h.p., where D is the network diameter
and n is the network size. Notice, for a single channel (C = 1), our algorithm has the same running time
as the canonical Bar-Yehuda et al. algorithm [3], but as the number of channels increases so does our
algorithm’s performance advantage. We then prove that for a sufficiently large number of channels, our
algorithm is within a O(log log n) factor of optimal.

Having shown that multiple channels yield efficiency, we next turn our attention to showing that
they also yield robustness. We now consider a setting with adversarial disruption ({ > 0) and a com-
mon source of randomness. We present a randomized algorithm that solves broadcast in O((D +
log n)(% + lg%?)) rounds. For ¢ up to a constant factor of C, this algorithm performs only
a factor of O(loglogC) slower than the no disruption case: that is, even with significant disruption,
our multi-channel algorithm still outperforms solutions that assume a single, perfectly reliable channel.
For completeness, we conclude by considering the case with disruption and no common randomness.
We demonstrate a clear separation with the common randomness case by proving a lower bound of

ct

Q((D+logn)z=;) rounds, and then presenting an almost matching randomized upper bound that solves

broadcast in O((D + log n) &4 log (%)) rounds, w.h.p.
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1 Introduction

This paper addresses two primary questions: (i) How much faster can we disseminate information in a
large wireless network if we have multiple communication channels available (as compared to relying on
only a single communication channel)? (ii) Can we still disseminate information reliably, even if some
subset of the channels are disrupted? In answer to the first question, we reduce the cost of broadcast to
O(loglog n) rounds/hop, approximately, for sufficiently many channels. We answer the second question in
the affirmative, presenting two different algorithms, while at the same time proving a lower bound showing
that disrupted channels have unavoidable costs.

Multi-channel Networks. In more detail, we study the multihop broadcast problem in the ¢-disrupted radio
network model [11-14, 16, 24,28, 29]. This model describes a synchronous multihop radio network, and
assumes that in each round, each process chooses 1 out of C available communication channels to participate
on. Simultaneously, an adversary selects, at each process, up to ¢t < C channels to locally disrupt, preventing
communication. In this study, we also equip processes with receiver collision detectors, but assume that
disruption is indistinguishable from collisions.

As detailed in [11, 24], the adversary in the t-disrupted model does not represent a literal adversarial
device; it cannot spoof messages or reactively jam a broadcast (i.e., scan the channels to discover a broadcast
in progress, then jam the remainder of transmission). The adversary instead incarnates the unpredictable
message loss that plagues real radio network deployments. This message loss has many (non-malicious)
causes, including: unrelated protocols using the same unlicensed spectrum band, time-varying multipath
effects, and electromagnetic interference from non-radio devices, such as microwaves. The goal of the ¢-
disrupted model is two-fold: (1) to improve efficiency: most real radio network protocols have access to
multiple communication channels,' and therefore theoretical algorithms should enjoy this same advantage;
and (2) to improve robustness: a protocol proved correct in a model with unpredictable message loss is a
protocol more likely to remain correct in a real deployment, where such loss is often unavoidable.

Results: No Disruption. We start by showing that adding communication channels makes broadcast more
efficient, yielding O(loglogn) rounds/hop in a network of diameter D > logn with ©(logn) channels.
In more detail, in the setting with no disruption (f = 0), we present a randomized algorithm that solves
broadcast in O((D + logn)(logC + 10%")) rounds, w.h.p. Notice, for a single channel (C = 1), our
algorithm has the same running time as the canonical Bar-Yehuda et. al algorithm [3], but as the number of
channels increases so does our algorithm’s performance advantage. This comparison however, is not exact,

as unlike [3], we assume collision detection. With this in mind, we prove a lower bound (D + @)
rounds for broadcast algorithms in our collision detector-equipped model. It follows that for C = Q(logn):
our algorithm is within a factor of O(loglogn) of optimal, and for sufficiently small D, it is strictly more
efficient than the best possible single-channel algorithm.

The key insight of this algorithm is the following: At a high-level, standard single-channel broadcast
algorithms, such as [3], require processes to sequentially test logn broadcast probabilities, exponentially
distributed between 1/n and 1/2. The idea is that for every process with transmitting neighbors, one of
these probabilities will match what is required for the message to be received. Our algorithm, by contrast,
leverages multiple communication channels to test multiple probabilities in parallel, allowing processes to
hone in on the correct probabilities more efficiently.

While it may not be surprising that some speed-up is possible using multiple channels, it is non-trivial
to determine exactly what is feasible for two reasons. First, the multiple communication channels can only
speed up one part of the algorithm (i.e., the contention resolution); it cannot speed-up the time to relay
the message over long distances. Second, the multiple channels cannot all be used in parallel by any one

'The 802.11 b/g network protocols [1], for example, divide the shared 2.4 Ghz band into 13 channels, while Bluetooth [4]
divides the same band into 79 channels.



processor, as each has only one transceiver. Thus, the “obvious” solutions, e.g., multiplexing the single-
channel protocol over multiple channels, are not applicable. If log n channels could be used in parallel, we
could readily achieve a rounds-per-hop cost of O(1); that we can still achieve O(loglogn) rounds-per-hop
with only one transceiver, is, perhaps, surprising.

Results: t-Disruption. Having showing that additional communication channels improves efficiency, we
next turn our attention to showing that they also improve robustness. We now assume disruption (i.e., t > 0)
and that processes have access to a common source of random bits. We argue that this latter assumption
is often justified in practice, as most radio network deployments require devices to be configured with a
common network id, and a hash of this id can provide a seed for a pseudo-random bit generator.”

In this setting, we present a randomized algorithm that solves broadcast in O((D +logn) (% +

18% ? )) rounds, w.h.p., where ¢ is the upper bound on disrupted channels. Notice, for ¢ up to a constant factor
of C, this algorithm performs only a factor of O(log log C) slower than the no disruption case. In other words,
even with lots of disruption, our multi-channel algorithm still outperforms the best possible single channel
solution in many cases, and is more efficient than the canonical single channel algorithm of [3]. The key
insight of this algorithm is that we replace the broadcast and receive primitives used in the no disruption case
with simulated versions. These simulated broadcasts and receives use the common randomness to generate
coordinated random frequency hopping patterns. These patterns are used to evade adversarial disruption
with sufficient probability for the original no disruption arguments to still apply.

Lastly, we consider the case with disruption and no common randomness. We describe a randomized
algorithm that solves broadcast in this setting in O((D + logn) % log (%)) rounds, w.h.p. Notice, for large
t, this algorithm now performs slightly worse than [3], but this is arguably still a reasonable price to pay for
the added robustness. We conclude by showing this price to be not just reasonable, but also be necessary. In
more detail, we prove a lower bound of Q((D + logn) %) rounds to solve broadcast in this setting.
Related Work. We use the terminology multihop broadcast to describe the problem addressed in this paper,
as we want to clearly separate it from the local broadcast problem we solve as a subroutine. Previous work
on this problem, however, has used both reliable broadcast (e.g., [18]) and broadcast (e.g., [3]) to refer to
the same problem. All terms describe the same goal of disseminating a message from a single distinguished
source to every process in a radio network.

Theoretical concern with broadcasting in radio networks began with the investigation of centralized solu-
tions. Chlamtac and Kutten [5] opened the topic by proving the calculation of optimal broadcast schedules
to be NP-hard, Chlamtac and Weinstein [6] followed with a polynomial-time algorithm that guaranteed
schedule lengths of size O(D log? n), and Alon et al. proved the existence of constant diameter graphs that
require Q(log2 n) rounds [2]. An oft-cited paper by Bar Yehuda et al. [3] introduced the first distributed
solution to broadcast, launching a long series of papers investigating distributed solutions under different
model assumptions; c.f., [7-10,21]. The algorithm in [3] assumes no topology knowledge or collision de-
tection, and solves broadcast in O((D + logn)log (n)) rounds, w.h.p. In later work [10,20], this bound
was improved to O((D + logn) log (n/D)), which performs better in graphs with large diameters. For the
assumption of no topology knowledge, these broadcast bounds can be considered the best known.

Our algorithm for the no disruption setting matches the Bar-Yehuda algorithm for the case where C = 1,
and performs increasingly better as we increase the number of channels. Its comparability with the bound
of [10,20] depends on the diameter. Our model, however, unlike the model in [3, 10, 20], assumes receiver
collision detection, so these comparisons are not exact. (The O(D log n)-time broadcast algorithm of [27],
by contrast, does assume collision detection, but a direct comparison is foiled in this case because the model
of [27] constrains the communication graph to be growth-bounded, whereas our model, as in the canonical

2Note, if the adversary in the ¢-disrupted model represented an actual adversarial device, we would have to worry about keeping
such information secure. But as explained previously, this adversary is an abstraction of the diverse, and hard to predict interference
sources that plague real networks, and does not represent behavior with malicious intent.



results referenced above, works for arbitrary graphs.) This motivates the Q(D—l—%) lower bound we prove
in Section 6 for solving broadcast in our model. Notice, this implies that the best possible single-channel
broadcast algorithm in our model requires Q(D + log? n) rounds. For C = Q(logn), and sufficiently small
D, our no disruption algorithm is strictly more efficient. In Section 4, we show that even if we introduce
significant disruption, if we assume a common source of randomness we still outperform the best possible
single channel solution in many cases.

The t-disrupted model was introduced in [13], and has since been extensively studied in the context of
both single hop and multihop radio networks [11-14, 16,24,28,29]. (See [11] for a good overview of this
model and results.?) Koo [18] considered broadcast in a similar model that assumed a single channel and
Byzantine failures, which, due to their ability to spoof messages, are arguably more challenging than the
disruption faults considered in our work. The corrupt processes in this model, however, could not disrupt
communication. In later work, Koo, now collaborating with Bhandari, Katz, and Vaidya [19], extended the
model to allow for a bounded number of collisions. Their focus was on feasibility (i.e., for what amount
of corruptions is broadcast still solvable) not time complexity. Drabkin et al. [15] and Pelc and Peleg [25]
both studied broadcast in radio network models that assume a single channel and probabilistic message
corruption. Finally, in recent work, Richa et al. [26] considered efficient MAC protocols in a single channel,
multihop radio network, with an adversary that can cause a bounded amount of communication disruption.

2 Model

We model a synchronous multihop radio network with multiple communication channels, receiver collision
detection, and adversarial disruption. In the following, for integer = > 1, let [z] = {1,...,z}, and assume
log denotes the base-2 logarithm. Fix an undirected graph G = (V, E), with diameter D, where the vertexes
in V' correspond to the n > 1 processes in the network, which we uniquely label from [n]. We assume
processes know n. To simplify notation we also assume that n is a power of 2. In this paper, when we
denote a property holds with high probability (w.h.p.), we assume a probability of at least 1 — n% for some
sufficiently large positive integer . Fix a set [C] of communication channels for some integer C > 1, and a
known upper bound on disruption, ¢, 0 < ¢t < C. Executions in our model proceeds in synchronous rounds
labeled 1, 2, . ... Because we study broadcast problems, we assume processes can receive a message from
and output a message fo the environment, during each round. All processes start in round 1, but following
the standard assumption made in the study of multihop broadcast (e.g., [3]), we assume no process can
broadcast before it receives a message, either from another process or the environment.

In each round r, an adversary chooses, for each process 4, a set disp(i,r) of up to ¢ channels to disrupt.
The adversary can use the history of the execution through round r — 1, as well as the process definitions,
in deciding disp(i, r). It does not, however, have advance knowledge of the random choices made in . We
consider two cases for the random choices: (i) common randomness, where processes can access a common
source of random bits in each round, and (ii) no common randomness, case where the bits are independent
at each process. Next, each process i chooses a channel ¢ € [C] on which to participate, and decides whether
to broadcast or receive. If 1 broadcasts it receives nothing. If ¢ receives, three behaviors are possible: (1) if
no neighbor of 7 in G broadcasts on cin r and ¢ ¢ disp(i, ), i detects silence, indicated by _L; (2) if exactly
one neighbor j of i in G broadcasts on ¢ in r, and ¢ ¢ disp(i, r), i receives j’s message; (3) if two or more
neighbors of 7 in G broadcast on c in r, or ¢ € disp(i,r), i detects a collision, indicated by +. (That is,
receiving on a disrupted channel is indistinguishable from detecting a collision.) Notice, ¢ learns nothing
about the activities of processes on other channels during this round.

The Multihop Broadcast Problem.Our goal in this paper is to define bounds for the multihop broadcast
problem, which is defined as follows: At the beginning of round 1, a single source process is provided a

3This model has been called many different names. Originally [13] it was unnamed; later works [11, 14] called it the disrupted
radio network model; it was only in more recent work [24] that the more descriptive name of ¢-disrupted was introduced.



message m by the environment. We say an algorithm solves the multihop broadcast problem in r rounds if
and only if every process outputs m by round r, w.h.p.

The Local Broadcast Problem.In this paper, following the approach of [17], we decompose multihop
broadcast into first solving local broadcast, and then using the construction presented in [17] to transform
this local solution into a global one.

In more detail, the T's-local broadcast problem, for positive integer T4, assumes that the environment
injects a message m at arbitrary processes at arbitrary times, and that every process that receives the message
from the environment must eventually output ack. We say an algorithm solves the T s-local broadcast
problem if and only if the following hold: (a) If some process ¢ receives the message from the environment
in round 7 and outputs ack in round 7’ > r, then all neighbors of ¢ output the message by round /, w.h.p. (b)
We say a process is active in a given round r if it received the message from the environment in some round
r’ < r, and it has not yet output ack by the beginning of 7. Given any interval of T'4 rounds, if process i has
a neighbor that is active in every round of the interval, then ¢ outputs the message by the end of the interval,
with constant probability.

Transforming Local Broadcast to Multihop Broadcast. The following theorem, which follows from The-
orem 7.8 of [17], reduces the problem of multihop broadcast to local broadcast: *

Theorem 1 (Theorem 7.8 of [17]). Given an algorithm that solves the 'T'4-local broadcast problem, we can
construct an algorithm that solves the multihop broadcast problem in O((D + logn)T4) rounds.

3 Upper Bound for No Disruption

We begin with an algorithm for the case with no disruption (i.e., ¢ = 0), that solves multihop broadcast in
O((D +logn)(logC + l(’%)) rounds. For C = 1, this running time matches the canonical broadcast algo-
rithm of Bar-Yehuda et al. [3], but as the number of channels increases so does our performance advantage.
In Section 6, we will prove that for sufficiently large C, this is within a O(log log n) factor of optimal.

As described in Section 2, our approach is to first solve the local broadcast problem, then apply Theorem 1

to generate our global solution. Our algorithm only makes use of up to log n channels, so in this section we
assume, w.l.o.g., C < logn. All omitted proofs can be found in Appendix A.
Intuition. The key insight of our protocol is to trade channel diversity for time complexity. Most existing
broadcast algorithms (e.g., [3]) described at a high level, have processes sequentially test log n different
broadcast probabilities exponentially distributed between 1/n and 1/2. For each process waiting to receive a
message from transmitting neighbors, one of these probabilities should sufficiently reduce the contention and
hence match what is needed to ensure that the message is delivered. Our algorithm, by contrast, leverages
multiple channels to test multiple probabilities in parallel, gaining efficiency.

Our local broadcast algorithm consists of two subroutines: SEARCH and LISTEN. During, SEARCH,
processes assign an exponential distribution of probabilities to the channels (captured by schan in our
algorithm description). A receiving process can then do a binary search over the channels (with silence
indicating the probability is too low, and a collision indicating too high), to find the probability that best
matches the number of transmitting neighbors. (This search is what necessitates receiver collision detection
in our model.) If C < logn, however, then this SEARCH subroutine identifies only a rough range of
logn/C probabilities, in which is included the right probability for actually receiving a message. During

*Formally, the local broadcast problem described above is a simplified presentation of the Abstract MAC Layer formalism first
introduced in [22]. The result cited from [17] provides an implementation of multihop broadcast that uses a probabilistic Abstract
MAC Layer implementation. Our definition of local broadcast simplifies the Abstract MAC Layer definition down to only the
properties needed to apply the transformation in [17]. In more detail, receiving a message m from the environment in our model
corresponds to becast(m) in the Abstract MAC Layer, and outputting the message corresponds to calling recv(m). In addition, the
T4 parameter corresponds to fproq(A), the constant probability of the T4 property holding corresponds to 1 — €prog4, and the high
probability of all neighbors eventually outputting the message corresponds to 1 — €4.,. We do not define an equivalent of f,. or
frev, as neither are used in the transformation. We point the interested reader to [17] for more details.



the LISTEN subroutine, transmitting processes cycle through the different probabilities assigned to each
channel (captured by lchan in our algorithm description).> In both subroutines, care must be taken to
account for the fact that many processes are both transmitters and receivers: a problem we solve by having
processes choose a role with probability 1/2.

Algorithm Description. The local broadcast algorithm has all processes alternate between executing the
SEARCH and LISTEN subroutines presented in Figure 1, starting in round 1. Each call to SEARCH returns
a candidate channel c;, and the following call to LISTEN is made with channel = c;. On receiving a
message msg from the environment, a process sets m <— msg, and continues to try to transmit the message
for the subsequent AM AX calls to both subroutines, starting with the next call to SEARCH. After these
AM AX calls it outputs ack. In all other rounds, it sets m < 1. (Note, as required by our model, processes
do not broadcast until they first receive a message.)

Constants Used in Algorithm.Let k = [105"] The constant k represents the (approximate) number of

probabilities assigned to each channel. Let p, = 1/25(=1)+1 for ¢ € [C]. The function schan() returns
channel ¢ € [C] with probability p., and the null channel 0 with the sum of the remaining probability:
1-> celc] Pe- That is, schan chooses channels using an exponential probability distribution.

Next, we define a family of functions Ichan(r), for r € {1, ...,k + 3}. Intuitively, [chan partitions the
log n probabilities from %, %, ey %} among the C channels. This means that k, defined above as [lo(gz”},
describes the number of probabilities in each channel partition. For each index passed to lchan, it assigns
channels one of the probabilities from their partition, and then randomly selects a channel based on this
distribution. The function lchan(r) is defined as follows: if = 1, it returns channel 1 with probability 0;
if r > k + 1, it returns channel C with probability 0; if r = k + 3 and k& = 1, it returns channel C — 1 with
probability 0; for all other r and c pairs, it returns channel ¢ with probability (2p.)/2" 1. As with schan(),
it returns the null channel 0 with the sum of the remaining probabilities for the given r value. The function
lchanis defined for more than k values (i.e., k + 3 instead of k) because, to simplify the proof later, it helps
if in addition to using every probability in a given channel’s partition, we also use a constant number of
probabilities that have been assigned to neighboring channels.

Finally, let SMAX = 2([log (C)] + 1), LMAX = (10%] + 3, and AMAX = ©(logn), where the
constants are defined in our main theorem proof.

SEARCH(m) LISTEN(m, channel)
c1 < 1;¢c0 < C; count <+ 1 count <+ 1
while count < SMAX while count < LMAX
phase < random(broadcast, listen) phase < random(broadcast, listen)
if (phase = broadcast) and (m # L) if (phase = broadcast) and (m # L) then
be +— schan() be < lchan(count)
beast(m, b.) beast(m, b.)
else if (phase = listen) and (c1 # c2) else
channel < [c1 + (c2 — ¢1)/2] rmsg < recv(channel)
rmsg < recv(channel) if (rmsg # L) and (rmsg # +) then
if (rmsg = L) then ¢z < channel — 1 output(rmsg)
else ¢1 < channel count <+ count + 1

count < count + 1

Figure 1: The SEARCH and LISTEN subroutines called by our local broadcast solution. SMAX =
©(logC) and LM AX = ©(logn/C).

>To make the probabilities work in our proofs, transmitters also try, for each channel, a constant number of probabilities from
the neighboring channels. This is why Ichan cycles through log n/C + O(1) different probability assignments, not just log n/C.



Correctness Proof. We prove that each pair of calls to SEARCH and LISTEN receives a message with
constant probability, assuming there is a message to be received. We also prove that over AMAX calls
to these subroutines, a message is received w.h.p. It follows that we solve T'4-local broadcast problem
for Ty = O(SMAX + LM AX), which when combined with Theorem 1 yields an algorithm that solves
multihop broadcast problem in O((D + log n)(logC + 10%" )) rounds.

To begin the proof, fix a process ¢ and a call to SEARCH. Let I, |I| < A, be the set of active neighbors of
1 during this call—that is, the neighbors of ¢ with a message to send (i.e., m # L in their call to SEARCH).
We say a call to SEARCH is valid for this process ¢ if and only if these following three conditions hold: (1)
at the conclusion of the subroutine, ¢; = cg; (2) for each recv(c), if p.|I| < % it returns _L; and (3) for
each recv(c), if p.|I| > 4, it does not return L. (Otherwise, if a call to SEARCH is invalid, it may return a
channel with too much or too little contention.) We prove this occurs with constant probability:

Lemma 2. The call to SEARCH is valid with constant probability.

Proof (sketch). To prove the first condition of validity we must show that SEARCH sets phase < listen
at least v > ([log(C)] + 1) times. Since this occurs according to a binomial distribution, with median
% - SMAX > ~, we conclude that with probability at least % the SEARCH completes with ¢; = ca.

To prove the second condition, let £ contain every channel ¢ such that ¢ receives on ¢ and assume p.|I| <
%. For a given ¢ € L, the condition holds with probability (1 — %pc)u |, and hence by a union bound,
the condition holds over all relevant rounds with probability at least 1/2. We prove the third condition in a
similar manner, concluding that the condition holds over all relevant rounds with probability at least 0.8. [

We now show that if process i’s call to SEARCH is valid then, with constant probability, process ¢ will
receive a message during the subsequent call to LISTEN (assuming, of course, || > 0).

Lemma 3. Suppose process i’s call to SEARCH is valid and |I| > 0. Then, process i will receive a message
during the subsequent LISTEN subroutine, with constant probability.

Proof (sketch). Let c be the channel returned by the call to SEARCH.

We consider two cases for the size of I. In the first case, assume |I| = 1. Here, po|I| < 3 for every
channel ¢/ > 1. Since we assume SEARCH was valid (with constant probability), every call to recv during
the subroutine would return L. It follows that LISTEN executes on channel ¢ = 1, where process ¢ will
receive a message with probability at least % . % “p1 = é.

For the second case, assume |I| > 1. Let p,;,, be the smallest non-0 probability assigned to channel ¢ in
all £ + 3 calls to [chan in the listen phase, and let p,,,q, be the largest probability. We can then bound both
Pmaz A0 Pin: Pmaz|I| > 1 and ppn|I| < 2.

By definition, pyin < Pmaz. Combined, we conclude that there must exists a probability p’, among those
assigned to channel ¢ by Ichan during LISTEN such that 1 < p/|I| < 2. Consider the LISTEN round
during which p’ is assigned to channel ¢ by [chan. During this round, process i will receive a message with
probability pre, > 3p”|1|(1—p") 1111 where p" = 7, is the probability that a process broadcasts in channel
¢ in that round, and the first £ bounds the probability that i receives. Note that 5+ < p”|I| < 1 and p” < 3.
We now simplify pyey: prev = 50" |1] (1 — p”)m_1 > |1 (1 - p”)m. This later term is greater than or

an ) )
equal to %p” 7] (i)p i > % . % = %. Notice, the third step uses our above-stated fact that p” < %, and the

fourth step uses the other above-stated fact that £ < p”|I| < 1. O

We can now prove that the algorithm solves the local broadcast problem.

Lemma 4. The algorithm solves the 2(SM AX + LM AX)-local broadcast problem.



Proof. By Lemmas 2 and 3, we know the algorithm satisfies property (b) of the local broadcast problem, for
Ty = 2(SMAX + LM AX) (the factor of 2 accounts for the case that a message arrives after SEARCH
has begun, necessitating we wait until the next call to SEARCH begins before the process begins trying to
send the message). To show the algorithm satisfies property (a), assume that some process 7 receives the
message from the environment for the first time at some round r. Let j be a neighbor of i. By our above
argument, over the next AM AX pairs of calls to SEARCH and LISTEN, j will receive the message from
1 (or another neighboring process) with some constant probability p. Process j therefore fails to receive the
message in all AM AX pair of calls, with probability no greater than (1 — p)AMAX < =P AMAX Becayse
p is constant and AM AX = O(logn), for sufficiently large constant factors, this failure with probability
no more than #, for any positive constant . By a union bound over the O(n) neighbors of i, property
(a) holds w.h.p., as needed. ]

Given Lemma 4, we can now apply Theorem 1 to derive our final result:

Theorem 5. We can construct an algorithm that solves the multihop broadcast problem with no disruption
(t=0)in O((D +logn)(logC + lc’%)) rounds.

4 Upper Bound for Disruption and Common Randomness

In this section, we assume that channels may be disrupted (i.e., ¢ > 0) and that processes have access to
a common source of randomness. We present an algorithm that solves the multihop broadcast problem
in O((D + log n)(wg(élfotglogc + lg%?)) rounds, where ¢ is the known upper bound on disrupted chan-
nels. Therefore, for even large amounts of disruption (i.e., for any ¢ up to a constant factor of C) our
disruption-tolerant protocol performs only a factor of O(loglogC) slower than our no disruption protocol
from Section 3. This means that for sufficiently large C, we still outperform the best possible single channel
solution in many cases, and are more efficient than the canonical single channel algorithm of [3]. It follows
that common randomness is a potent weapon against disruptive interference.

Intuition. Our approach is to extend the no disruption algorithm from Section 3. In more detail, we replace
the broadcast and received primitives of the no disruption protocol with simulated versions that using co-
ordinated frequency hopping (specified by the common random bits) to evade disruption. The goal is to
simulate running the algorithm in the no disruption setting with just enough probability of success to ensure
that our analysis still applies, but not so much that our running time becomes unwieldy.

sim-bcast., (m, ¢): sim-recv.,(c)
stmcount < 1 rmsg < +; stimcount < 1
while simcount < ~y while simcount < ~y
1) <— a channel permutation generated with Y <— a channel permutation generated with
common source of randomness for this round. common source of randomness for this round.
beast(m, 1(c)) m < recv(y(c))
simcount <— simcount + 1 if m # & then rmsg < m

simcount <— simcount + 1
return rmsg

Figure 2: The simulated broadcast and receive functions that replace the bcast and recv functions of the no
disruption algorithm (Figure 1) to produce a local broadcast algorithm for the setting with disruption and a
common source of randomness. For SEARCH, v = @(é loglog C), and for LISTEN, v = @(%)

Algorithm Description. Our local broadcast algorithm replaces each call to beast and recv in the no disrup-
tion subroutines from Figure 1, with calls to simulated broadcasts and receives that use multiple rounds to
evade disruption. In more detail, in our modified version of the SEARCH subroutine from Figure 1, which



we call DSEARCH, we replace each call to beast(m, b.) with a call to sim-bcast.,, (m, b.), and each call to
recv(channel) with a call to sim-recv.,, (channel), where sim-bcast and sim-recv are defined in Figure 2,
and vg = @(é loglogC). For the modified LISTEN subroutine, which we call DLISTEN, we do the
same replacement of bcast and recv with sim-bcast and sim-recv, substituting v;, = @(é) for vg. For
any round r of an execution, we assume that every process generating the random channel permutation
during r, will generate the same permutation, using the common randomness.

Correctness Proof. We begin by bounding the probability that our simulated bcast and receives behave the
same as if we were in the no disruption setting. This claim follows primarily from the fact that the probability
that the adversary disrupts every channel in ¢(c) in the relevant round is O(1/logC).

Lemma 6. Suppose process i calls sim-recv during some round of DSEARCH, and all of i’s neighbors also
call either sim-bcast or sim-recv during this same round. With probability at least 1 — O(@), sim-recv
will return i the same value as if these same processes had called beast and recv, with the same parameters,
in the setting where t = 0.

If we replace g with vz, we can show a similar result for DLISTEN, this time with constant probability:

Lemma 7. Suppose process i calls sim-recv during some round of DSEARCH, and all of i’s neighbors also
call either sim-bcast or sim-recv during this same round. With constant probability, sim-recv will return
1 the same value as if these same processes had called beast and recv, with the same parameters, in the
setting where t = (.

We now show, much as in Section 3, that the local broadcast performs well:
Lemma 8. The algorithm solves the 2(SM AX - vs + LM AX - ~r,)-local broadcast problem.
Given Lemma 8, we apply Theorem 1 to derive our final result regarding multihop broadcast:

Theorem 9. We can construct an algorithm that solves the multihop broadcast problem with common ran-

domness in O((D + log n)(% + lg’f?)) rounds.

S Upper Bound for Disruption and No Common Randomness

In this section, we assume disruption and no common source of randomness. We present an algorithm that
solves multihop broadcast in O((D + log n)% log (%)) rounds. In Section 6, we prove this to be within a
factor of O(log (%)) of optimal. Unlike the common randomness case, here we actually perform (slightly)
worse than the single channel algorithm of [3] (at least, for large t). This difference, however, is bounded
by a factor of O(logn), which is arguably still a reasonable price to pay for the increased robustness. In the
following, we assume w.l.o.g. that C < 2¢.

Intuition. There are three basic challenges to overcome: First, because some ¢ channels are disrupted, pro-
cesses must attempt to communicate on more than ¢ channels, and to avoid the disruption, the communica-
tion must be randomized. Second, since the processes have no source of common randomness, the random
channel selection potentially delays the receivers from finding the broadcasts. Third, processes still have to
solve the problem of contention, i.e., the fact that many broadcasters may be competing to send a message.
To overcome these problems, we have processes repeatedly choose channels uniformly at random, cycling
through the log n broadcast probabilities that are exponentially distributed between 1/n and 1/2.
Algorithm Description. Our local broadcast algorithm works as follows. First, the execution is divided into
epochs of length [logn/C]. If a message is injected at a process v in some round r, then process v waits
until the beginning of the next epoch before trying to disseminate the message. We say that a process that has
received message m by the first round of some epoch e, but has not yet returned an acknowledgment for m,
participates in epoch e. In each round of an epoch, each participating process decides whether to broadcast



and on which channel. In particular, in round r, a participating process v broadcasts with probability 1/2"; it
chooses channel ¢ € [C] with probability 1/C. Every process u that is not broadcasting a message chooses a
channel on which to listen with the same uniform probability 1/C. A process v returns an acknowledgment
when it has participated for ©((C?logn)/(C — t)) epochs.

Correctness. We argue that this protocol solves T'4-local broadcast for T4 = O((C*logn/C)/(C —t)). We
first argue that if process u has a participating neighbor in epoch e, then by the end of the epoch, it receives
the message with constant probability:

Lemma 10. Let u be a process that has not received the message m prior to epoch e. Let V be the
set of neighbors of u participating in epoch e, and assume that |V| > 0. Then with probability at least
(C —t)/(32C?), u receives message m by the end of epoch e.

Proof (sketch). Process u receives the message m in a round r if the following three conditions are satisfied:
(a) there is exactly one process in v € V that broadcasts in round r; (b) the channel selected by v is not
disrupted in round 7; and (c) process u chooses to listen on the same channel on which v broadcasts in round
r. Consider round r = [log |V|] in epoch e. We now bound the probability that these three events occur.
Let ¢ € C be the channel chosen by u in round r of epoch e. With probability (C — ¢)/C we observe that
c is not disrupted. We calculate the probability that exactly one participating process in V' broadcasts on
channel ¢ 3, o a5 (1 — C;)W'*l > 1/(32C). Thus, with probability (C —t)/(32C?), process u receives
the message by the end of the epoch. O

From this we conclude that the protocol solves the T'4-local broadcast problem:

Lemma 11. The specified protocol solves the T s-local broadcast problem for Ty = 0(762 l(%g_(?)/ <) ).
Proof. First, we argue that every process with active neighbors receives the message within time 7’4 with
constant probability. Consider a process u. By Lemma 10, during each epoch in which a neighbor partici-
pates, u receives the message with probability (C — ¢)/(32C?). Thus, over (32C2/(C — t)) epochs, process
u receives the message with constant probability. An active neighbor may not participate for the first epoch
when it receives the message, and from this we conclude that if T4 = [(32C?/(C — t)) + 1] log(n/C), then
u receives the message as required.

Next, we argue that when a node sends an acknowledgment, every neighboring process has received the
message. Specifically: in each epoch, each neighbor receives the message with constant probability. Thus
within O(log n) epochs, every neighbor has received the message with high probability, as required. O

Since t < C < 2t, we can apply Theorem 1 to conclude:

Theorem 12. We can construct an algorithm that solves the multihop broadcast problem without common
randomness in O((D + log n)(%) log (%)) rounds.

6 Lower Bounds
We begin by showing that the O((D + logn)(logC + lo(gz”))—time broadcast algorithm from Section 3 is

log? n

(almost) tight for sufficiently large C, by proving a (D + =%-) lower bound for solving broadcast in this
setting. (In more detail, for C = (logn), the upper bound is within a factor of O(loglogn) of the lower.)
Theorem 13. For any D < n/2: every multihop broadcast algorithm requires (D + %) rounds.
Proof. We first note that we can simulate any protocol for a network with C > 1 in a network where C = 1.

In more detail, we use C rounds in the single channel network to simulate each round from the multi-channel
network, with each simulation round being dedicated to a different channel. It follows that if f(n) is a lower



bound for multihop broadcast in a network where C = 1, then f(n)/C is a lower bound for networks with
larger C. The question remains what lower bounds apply to our network model with C = 1. The commonly
cited (D log (n/D)) bound of Kushilevitz and Mansour [23], proved for randomized distributed multihop
broadcast, does not apply in our setting, as we assume receiver collision detection. In fact, there are no
bounds, that we know of, specific to distributed broadcast with collision detection. With this in mind,
we turn to the bound for centralized solutions to broadcast in single channel networks, from [2]. This
bound proves that there exists a family of constant-diameter graphs such that every centralized broadcast
algorithm requires at least f(n) = Q(log?n) rounds. Centralized solutions, of course, are stronger than
randomized distributed solutions with collision detection, so a bound for the former certainly holds for the
latter. By our above simulation argument, it holds that no algorithm can solve multihop broadcast in less
than f(n)/C = Q(m) rounds. If we replace n with n — D, due to our assumption that D < n/2 we get a

log? n

network of size O(n) that still requires {2(=%

of a line of D nodes, and make the far end the broadcast source, the bound extends to (D + %) O

) rounds to broadcast in. If we put this network on one end

We now continue with a lower bound for the setting with disruption (t > 0) and no common source
of randomness. In Section 5, we presented a O((D + log n) ; log (%))-time broadcast algorithm in this
setting. Our lower bound below shows this to be within a factor of O(log (%)) of optimal.

This bound uses the following fact, first proved in our study of the wireless synchronization problem in
the ¢-disrupted model [12]:

Lemma 14 (Theorem 4 of [12]). Assume there are two processes u and v attempting to communicate in a
t-disrupted network with C channels, t > 0, and no common source of randomness. Fix a constant €. With
probability €, u and v cannot communicate for Q(% log(1/€)) rounds.

We use this fact to prove our bound on broadcast:

Theorem 15. Assume no common source of randomness. It follows that every algorithm requires Q((D +
logn) %) rounds to solve the multihop broadcast problem.

Proof. We consider two different networks. First, consider the simple network with only two processes,
u and v. Lemma 14 shows that for ¢ = 2/n there is a probability of at least 2/n that u and v do not
communicate for £( Ccf ;) rounds.
Next, consider the “line” network consisting of a set of processes vg, vo, ..., vp, Where vg is the source
and can communicate only with vy, and, for 0 < ¢ < D, v; can communicate only with v;_; and v; 1. Fix
= 1/4e. By Lemma 14, we know that with probability 1 — €, for some constant ¢, it takes v; at least
c( CCt z—;) rounds to transmit the message to v;1.
We now calculate the probability that for some D /2 of the v;, the communication from v; to v;41 is faster
than c( ;). In particular, for a given set of D /2 links, the probability is ¢’ D/2 that each communication

from v; to v;41 is faster than C(C L). Moreover, there are at most (D/2) < (2€)P/2 such sets of D /2 links.
Thus, for ¢’ < 1/4e, we conclude that the probability of D /2 links exceeding the specified speed is at most
(2ee )D/2 < (1/2)P/2 < 1/2 (where D > 1) Thus, with probability at least 1/2, half the links require time
QL #%), leading to a running time of Q(D ) Combining these two claims yields the desired result. [

7 Conclusion

In this paper, we study the problem of multihop broadcast in a radio network model that assumes multiple
channels and a bounded amount of adversarial disruption. We show that additional communication channels
can add both efficiency (as compared to the single channel setting) and robustness (in terms of resilience to
a bounded amount of adversarial communication disruption). These advantages are especially pronounced
if we assume a common source of randomness. This reinforces our belief that broadcast algorithms should
better leverage the multiple communication channels made available today by most popular radio protocols.
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A Proofs from Section 3
Lemma 2. The call to SEARCH is valid with constant probability.

Proof. To prove the first condition of validity we must show that SEARCH sets phase < listen at least
v > ([log(C)] + 1) times. Let X be a random variable equal to the number of times phase < listen in
this call to SEARCH. Because X has a binomial distribution, its median is % - SMAX > . Thus, with
probability at least % the SEARCH completes with ¢; = ca.

To prove the second condition, let £ contain every channel ¢ such that i receives on ¢ and p.|I| < %
(Notice, no channel is used more than once during a listen phase of LISTEN, so | £| equals the total number
of rounds for which the corresponding condition was true.) For a given ¢ € L, the condition holds with
probability (1 — %pc)” | (each of the |I| neighboring processes chooses to broadcast with probability 1/2
and chooses channel ¢ with probability p.). By a union bound, therefore, the condition holds over all relevant

rounds with probability at least:
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The first inequality applies Bernoulli’s Inequality to the (1 — %pc)“ | term, which tells us that (1 — %pc)u | >
(1-— %pcll |). When we substitute and simplify, the full inequality follows. The substitution in the second
step leverages the following key observation: let {pi, p2,...} be the set of probabilities described by the
channels in £, listed in decreasing order. We know that each p; 1 < p;/2, therefore we can rewrite these
probabilities in terms of p1: p1, p2 < p1/2, p3s < p1/4,... Furthermore, because pi|I| < 1/2 (by the
definition of £), our sum Y 3pc|I| can be rewritten as 3 >~ .. pell| < (3 + 13 + 21 4+ ..), whichis
bounded by our 2%, term.

We prove the third condition in a similar manner. Let H contain every channel c such that ¢ receives on ¢
and p.|I| > 4. Once again by a union bound, the condition holds over all relevant rounds with probability
at least:

I 1
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> 0.8 (6)

Note, the substitution of 0.8 in step (6) is an easily verified coarse bound on the summation which is
sufficiently large for our purposes. To conclude, we have shown that each of the three conditions hold with
constant probability, therefore, so does their product. This provides the needed result that the probability of
all three properties holding is constant. O

Lemma 3. Suppose process i’s call to SEARCH is valid and |I| > 0. Then, process i will receive a message
during the subsequent LISTEN subroutine, with constant probability.
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Proof. Let c be the channel returned by the call to SEARCH.

We consider two cases for the size of I. In the first case, assume |I| = 1. Here, p|I| < 3 for every
channel ¢’ > 1. Since we assume SEARCH was valid, every call to recv during the subroutine would return
L. It follows that ¢ = 1. Therefore, in the second round of LISTEN, process ¢ will receive a message with
probability at least % : % -p1 = %. (In the above calculation, the first % bounds the probability that ¢ chooses
to receive, the second % is the probability that the single neighbor in I chooses to broadcast, and p; = % is
the probability that [chan(2) returns channel 1.)

For the second case, assume |I| > 1. Let py;,, be the smallest non-0 probability assigned to channel ¢ in
all £ 4 3 calls to Ichan in the listen phase, and let p,,4, be the largest probability. We proceed by bounding
both Pmazx and Pmin-

To do so, we first make the following observation about c. If ¢ = 1, then p.|I| > % as p; > % and
|I| > 1. If ¢ > 1, then process ¢ must have detected a collision or received a message on channel ¢ during
SEARCH. (By the definition of binary search, SEARCH returns the largest channel ¢ on which it did not
detect L, or 1 if it detects L on every channel.) Thus, by the definition of validity, we get p.|I| > %
Therefore, we can conclude that if SEARCH is valid and |I| > 1, it follows that p.|I| > 3.

Moving on, we will use this observation to help bound p,,.... Because p; = % and p.|I| >
Dmaz > min(%, ﬁ) (To generate the min statement, we note that if ¢ = 1 then pjae = %,
equals 2p..) Hence, pmaz|I| > 1. (Notice, this depends on the fact that |I| > 1).

Proceeding to pyin, We know by definition of lchan that pp,;, = max(Z 5L, %) First consider the
case where p,i, = 2 C2+ L, it follows that ¢ < C and SEARCH received | on ¢ + 1. By validity, we know
Pet1|I| < 4, thus ppin|I| < 2. By contrast, if ppi, = %, we get the same bound on p,,;,,|I| by noting:
Pminl | < %A = 1. In both cases, it holds that p,,;, |I| < 2.

We have established two facts: pqaz|I| > 1 and ppin|l| < 2. By definition, ppin < Pmaz. Combined,
we conclude that there must exists a probability p/, among those assigned to channel ¢ by Ichan during
LISTEN such that 1 < p/|I]| < 2. Consider the LISTEN round during which p’ is assigned to channel ¢ by
Ichan. During this round, process i will receive a message with probability p,c, > %p” 7|1 — p"HI=1,

, we know

1
2
otherwise it

where p” = %l is the probability that a process broadcasts in channel c in that round, and the first % bounds
the probability that i receives. Note that % < p'|lI| < 1andp” < % We now simplify pcy: prfﬁ =
p// I

>

(=T > Ly (1 = p”)!. This later term is greater than or equal to 1p”|1] (1)
% . i = %. Notice, the third step uses our above-stated fact that p” < %, and the fourth step uses the other
above-stated fact that % <p'|lIl <1. O
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B Proofs from Section 4

Lemma 6. Suppose process i calls sim-recv during some round of DSEARCH, and all of i’s neighbors also
call either sim-bcast or sim-recv during this same round. With probability at least 1 — O(@), sim-recv
will return i the same value as if these same processes had called beast and recv, with the same parameters,
in the setting where t = 0.

Proof. Fix some process ¢ that calls sim-recv.,. (c) for some channel c. Let m be the value that i would
have been returned in this round if ¢ and all of its neighbors had instead called bcast and recv with the same
parameters, and ¢ = 0. We must show that sim-recv returns m, with sufficient probability. There are three
cases to consider for m:

Case 1: If m = = then at least two processes called sim-bcast with the same channel c. It follows that
in every round of the simulated broadcasts and receives, these two processes will broadcast on the same
channel ¢ (c) that i is receiving on. If the channel is not disrupted, 7 will receive &+ due to a collision. If
the channel is disrupted, ¢ will receive = due to disruption. Either way, rmsg remains set to & until it is
returned by sim-recv.

Case 2: If m = L then no processes called sim-bcast with the same channel c. It follows that if in some
round of the simulated receive, 1(c) is non-disrupted, process i will receive L and set rmsg < bot. In all
other rounds, 1(¢) is disrupted, and ¢ will therefore do nothing to 7msg. We must now bound the probability
that at least one round of the simulated receive generates a permutation ¢ such that ¢)(c) is undisrupted in
that round. Because 1 is generated at random, in each round 1(c) will be non-disrupted with probability at
least % It is now straightforward to show that over yg = @(é loglog C) rounds, the probability that
1(c) is always disrupted can be bounded from above by O(@), as needed.5

Case 3: If m # | and m # =+ then exactly one process called sim-bcast with the same channel c¢. We
apply the argument from case 2 to show that with probability at least O(@), during at least one round
of the simulated receive, ¥ (c¢) will be undisrupted, and rmsg will get set to m. In all other rounds, it is
disrupted and therefore rmsg is not modified. O

Lemma 8. The algorithm solves the 2(SM AX - vs + LM AX - ~y1,)-local broadcast problem.

Proof. We follow the structure of the proof for the no disruption case presented in Section 3. For Lemma 2
to hold for our modified algorithm, we must show that with constant probability all SM AX calls to the
simulated broadcasts and receives behave like calls to regular broadcast and receive in the no disruption
setting. By Lemma 6, each call fails to behave properly with probability no more than O(@). By a
union bound, the probability that at least one of the SM AX = O(log C) calls fails to behave is constant, as
needed.

For Lemma 3 to hold for our modified algorithm, we must show that if the call to DSEARCH is valid,
a given process ¢ will receive a message in DLISTEN with constant probability, assuming there is at least
one message for ¢ to receive. The proof for Lemma 3 identifies a single round in LISTEN during which
there is a constant probability that exactly one neighbor of ¢ will broadcast on the same channel that ¢ is
receiving on. It follows that in DLISTEN there exists a round such that with constant probability ¢ calls
simulated receive and exactly one neighbor calls simulated broadcast with the same channel. By Lemma 7,
also with constant probability, ¢ will receive this message in this call to simulated receive. Combining the
two constant probabilities gives us an overall constant probability of ¢ receiving a message, as needed.

We can now apply Lemma 4, replacing SM AX and LM AX with SMAX - ~vg and LM AX - vy, and
the calls to Lemmas 2 and 3 with our modified lemmas described above. O

°In more detail: (1 — <5£)7s < e Tt = O(+-1).
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C Proofs from Section 5

Lemma 10. Let u be a process that has not received the message m prior to epoch e. Let V be the
set of neighbors of u participating in epoch e, and assume that |V| > 0. Then with probability at least
(C —1)/(32C?), u receives message m by the end of epoch e.

Proof. Process u receives the message m in a round r if the following three conditions are satisfied: (a) there
is exactly one process in v € V' that broadcasts in round 7; (b) the channel selected by v is not disrupted in
round 7; and (c) process u chooses to listen on the same channel on which v broadcasts in round r. Consider
round r = [log|V|] in epoch e. We now bound the probability that these three events occur.

Let ¢ € C be the channel chosen by w in round 7 of epoch e. With probability (C — ¢)/C we observe that
c is not disrupted. We calculate the probability that exactly one participating process in V' broadcasts on
channel c:

Vi-1 Vi-1
Yo o) = Tl
c2r cor 20|V | C|V|

veV veV
1
> —(1/4)?
> Y et
veV
> 1/(32C)
Thus, with probability (C — t)/(32C?), process u receives the message by the end of the epoch. O
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