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Abstract. Nowadays, many embedded processors include in their architecture 

on-chip static memories, so called scratch-pad memories (SPM). Compared to 

cache, these memories do not require complex control logic, thus resulting in 

increased efficiency both in silicon area and energy consumption. Last years, 

many papers have proposed algorithms to allocate memory segments in SPM in 

order to enhance its usage. However, very few care about the SPM architecture 

itself, to make it more controllable, more power efficient and faster. This paper 

proposes architecture extensions to automatically load code into the SPM whilst 

it is fetched for execution to reduce the SPM updating delays, which motivates 

a very dynamic use of the SPM. We test our proposal in a derivation of the 

Simplescalar simulator, with typical embedded benchmarks. The results show 

improvements, on average, of 30.6% in energy saving and 7.6% in performance 

compared to a system with cache. 
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1. Introduction 

In recent years, the commercial popularity of mobile embedded devices such as 

phones, PDAs, cameras, MP4 players, etc. has attracted strong economic interests. As 

a consequence, much research effort has been accomplished to increase the computing 

power of such devices to be able to incorporate as much functionality as possible. 

However this increment in performance has been not accompanied by a equivalent 

increment in battery technology. Despite the great step forward due to lithium-ion 

batteries, since then, larger energy consumption requires larger battery size. Conse-

quently, while battery technology slowly advances, the effort should be made to re-

duce the energy consumption of mobile embedded devices. 

Compared to general purpose computing, there is an important key characteristic in 

these devices that may be exploited: most of the workload is somewhat fixed and 

known at design time. Therefore, some techniques may be used to allocate code and 

data objects to a lower stage in the memory hierarchy (i.e. SPM). 
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In general computing, caches have played a decisive role in providing the memory 

bandwidth required by processors. In fact, they became as one important technique to 

reduce the famous “memory bottleneck”. The caches memory has a very dynamic and 

unpredictable behavior, capable of adapting its contents to any unknown workload. 

However, it is not energy efficient because it requires tag memory and the hardware 

comparison logic. Some authors have becoming to identify the memory subsystem as 

the energy bottleneck of the entire system [3]. 

High energy consumption of the cache, and predictable workload in embedded 

computing, has led the SPM memory to emerge as an efficient alternative to caches. 

In addition to its energy efficiency, it is fully predictable, playing an important role in 

real-time systems. The disadvantages are derived from the fact that the SPM is basi-

cally a small and fast memory mapped into the address space of main memory. There-

fore, its operation must be done explicitly by mapping memory objects by the linker 

and loader, or by programming. 

To do so, many approaches have been presented this decade to carefully select the 

contents to be stored in SPM to improve energy and/or performance. Orthogonal to 

them, this paper presents an original approach to reduce the overhead resulting from 

updating the SPM contents at run time. 

The contributions of the paper are new architectural extensions to dynamically 

control the SPM. The difference among others solutions is that SPM loading is done 

on the fly whilst code is fetched from memory for execution, with minimum time and 

energy cost. This fact will enable allocating techniques to dynamically adapt the con-

tents of the SPM to the program run at a reduced delay cost. Moreover, these tech-

niques will trade-off to favor frequent updates, adapting the SPM contents to the pro-

gram flow in a more effective and precise way 

Our proposal only requires small changes on the processor design. Our interest is 

to obtain a realistic solution, simple enough to be implemented in a real world. 

This paper is structured as follows. Section 2 reviews the related work. Section 3 

proposes the overall architecture of our approach. The experimental setup is explained 

in section 4. Section 5 discusses the experimental results obtained. Finally, section 6 

concludes the paper. 

2. Related work 

In the literature, there are many works that focus on reducing the energy consump-

tion and/or increasing performance by means of the effective use of SPM memories. 

These papers present the SPM as worthy alternative to cache memories, when energy 

and not only performance is important. 

Many of these studies present a range of techniques on the allocation of code in the 

SPM which can be divided into two types. First, those of a static approximation where 

the contents of the SPM are assigned in advance and remain unchanged during pro-

gram execution [1], [2], and [4]. Second, the ones that perform a dynamic update of 

the SPM contents at run time: Egger et al. [5] [6] and [7], Hyungmin Cho et al. [8], 

Janapsatyat et al. [9], Steinke et al. [10], Polleti et al. [11] , Lian Li et al. [13] and 



Doosan et al. [19]. The latter have the advantage of adapting the contents of the SPM 

to the program run but at the cost of periodically reloading the SPM contents. 

There are some papers that propose hardware extensions to better control the SPM 

[9], [11], [12], and [13]. In [9] Janapsatyat et al. introduce a special set of instructions 

at compile time in a number of key points using a heuristic algorithm, which trigger a 

hardware controller that manages the flow of data to the SPM. To the best of our 

knowledge, this is the technique that better approximates to ours. However, the main 

advantage of our solution is that it requires fewer instructions and less control logic to 

operate. 

Some papers propose the use of DMA to reduce the cost of copying data from main 

memory to the SPM [11], [19]. The main difference to our proposal is the larger die 

size and energy cost of this approach by using the DMA. 

3. Architecture extensions 

Our proposal is based on a number of changes in the processor architecture, which 

may be classified in two categories. The first contain small changes required in the 

processor hardware design in order to support our approach. Second, three new in-

structions have been added to the instruction set. Below we explain these changes. 

3.1 Hardware design 

Basically, the memory hierarchy is composed by the SPM and main memory. 

However, in order to take advantage of the spatial locality, we have added a prefetch-

ing buffer (see figure 1). This buffer behaves like a small cache memory with only 

one line in size. It will help in reduce the energy power and latency for those sequen-

tial fragments of code that are not selected to reside in SPM. 

The SPM will be updated dynamically at run time on the fly to contain loops and 

functions that are executed frequently. No explicit load instructions are needed. The 

processor has three execution modes: memory mode, SPM mode, and SPM function 

mode. Changes among modes are controlled by three specific instructions. 

In memory mode, instructions are brought to instruction decoder from main memo-

ry through the one-line-buffer (OLB) to exploit spatial locality. In SPM and SPM 

function mode, instructions are fetched from SPM memory. However, before the in-

structions may be used from SPM, they should be loaded to SPM from memory. This 

mechanism may be compared to a cache miss. 

These modes require some hardware changes. We add a second program counter, 

so called SPM_PC and a tag register containing the memory address of the first in-

struction in SPM. A refinement of the technique proposes that the SPM may be split 

in independent partitions or blocks. Each one will include a tag register (as shown in 

figure 2). This schema may be used to hold in SPM different functions and/or loops at 

the same time. However, this architecture is not comparable to cache, since SPM 

partitions are much larger than cache lines, and consequently, there are only few tag 



registers in SPM compared to cache. We also need a small tag controller for compari-

son and update, and a mechanism to invalidate the whole SPM partition in one cycle. 

3.2 Architectural issues 

To deal with the executions modes proposed in former section, three new instruc-

tions have been added to the processor architecture: SPM_start, SPM_call_start and 

SPM_end. Both SPM_start and SPM_call_start include an immediate field containing 

the SPM block number to be used. This block is selected by the programmer. These 

instructions are inserted into the original code by the compiler or programmer to tell 

the processor which pieces of code are selected to execute from SPM. For instance, 

when a loop is selected, two instructions are inserted to mark the bounds of the code: 

SPM_start at the beginning of the loop code, and SPM_end at the end. 

When a SPM_start instruction is executed, the following actions take place: first, 

processor changes to SPM running mode. Second, the counter SPM_PC is initialized 

to the beginning of the SPM block (explicitly chosen by the SPM_start). Next, the 

physical address of the instruction SPM_start is compared to the tag register corres-

ponding to the chosen SPM block. In case both addresses are equal, it means the con-

tents of the SPM block correspond to the instructions in main memory that follow the 

SPM_start. Thus, the code is fetched from SPM. Both SPM_PC and PC counters are 

incremented simultaneously to point to two instances of the same instruction, one in 

main memory, and a copy in SPM. This schema will allow continuing execution from 

main memory once the end of the SPM code is reached (either by reaching the end of 

SPM block, or reaching SPM_end instruction). This allows dealing with loops larger 

than the SPM block. Knowing SPM size, loops may also spread several SPM blocks. 

If tag comparison misses, the running code is not in the SPM block. The new start-

ing address is copied to the tag register and the SPM block contents are invalidated. 

Next, the instructions are fetched from main memory to perform both, SPM load, and 

execution. This operation may be compared to a cache cold start. For the second and 

following pass of the loop, instructions are fetched from SPM. 
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Figure 1. Architecture Figure 2. SPM blocks 



The former mechanism works well for loops and pieces of code frequently used. 

However, we propose an additional instruction, SPM_call_start, to deal with func-

tions that the source code is not available to the programmer (i.e. functions in com-

piled libraries). It works as follows: 

When the PC reaches a SPM_call_start, processor changes to SPM_function mode. 

Instructions are fetched from memory until a “call to function” instruction is found. 

Once the jump is taken, the target address (beginning of the function) is compared to 

the tag of the selected SPM block. The process that follows is somewhat similar to the 

one described for the SPM_start instruction. There is only one additional difference. 

The processor mode is changed to memory mode, once the end of the function is 

reached (return instruction). Therefore, it is not necessary the insertion of the 

SPM_end. This process may be seen in figure 3. Any call instruction to allocated 

functions, must be preceded by a SPM_call_start. Otherwise, the functions will be 

executed normally from main memory, without any SPM benefit. 

There are also some particular cases that require a detailed explanation. The SPM 

is loaded at the same time instructions are brought from memory for execution. 

Therefore, it is possible to have some instructions only in memory until a given itera-

tion requires their execution (i.e. if then else structure inside the loop). The processor 

must realize whether a location in SPM contains a valid instruction. In cache, this is 

solved at line by line basis, through costly tag comparison. Our approach cope with 

this issue performing a quick erase (invalidate) of the entire SPM block. This is ac-

complished in one processor cycle by a special hardware attached to the SPM memo-

ry addressing circuitry. The approach takes care to avoid any overhead in controlling 

the SPM. See figure 4 for the overall fetching process. 

The SPM is mapped in the same physical address space than main memory. A key 

benefit of our approach is that it does not require virtual memory manager, allowing 

its use in medium to small embedded processor. However, we have to take special 

care of any flow change (jump, call). For a piece of code that is brought from memory 

to SPM, for the point of view of the architecture, the instructions are changing their 

physical addresses. 

The main structures that require jump instructions are loop and if then else. Both of 

them use branch instructions with relative offset, thus no absolute addressing is neces-

sary. Regarding function calling, the returning address is stored in stack. The proces-

sor have to select either pushing the SPM_PC or the PC depending on where is placed 

the call instruction. When the return is executed, the program flow returns to the call-

er code, irrespective it is in SPM or in memory. The processor has to switch automati-

cally between memory and SPM modes. 

4. Experimental setup 

In order to compare the cache against the SPM, we have used the simulator Vatios 

[14]. Vatios is a simulator based on the popular SimpleScalar framework [15]. Simi-

larly to Wattch simulator [16], Vatios adds a model to calculate the energy consump-

tion of both entities, memory and processor. 



  

Figure 3. Fetching process 

 

Figure 4. Instruction fetch in SPM mode 

 

 

Vatios presents a series of advantages in the calculation of the energy consumption 

with respect to Wattch. To calculate the energy consumption of the SPM and the 

cache, Vatios is based on the energy model called Cacti [17]. The SPM energy effi-

ciency are due basically to the reduced control circuitry compared to the cache. To 

allow a fair comparison, both memories have been simulated using the same manufac-

turing technology. 

Attending to the intended target architecture of this technique, we have selected 

realistic benchmarks. In particular, we have chosen a collection of programs selected 

by the The Mälardalen WCET research group [18]. They are representative programs 

for embedded systems, and mainly intended to be used in WCET analysis tools. We 

have selected the following: 

 

Bsort100: Bubblesort program. Tests the basic loop constructs, integer compari-

sons, and simple array handling by sorting 100 integers. 

Cnt: Counts non-negative numbers in a matrix. Nested loops, well-structured code. 

Compress: Data compression program. Adopted from SPEC95 for WCET-

calculation. Only compression is done on a small buffer containing totally random 

data. 

Cover: Program for testing many paths. A loop containing many switch cases. 



Expint: Series expansion for computing an exponential integral function. Inner 

loop that only runs once, structural WCET estimate gives heavy overestimate. 

Fdct: Fast Discrete Cosine Transform. Many calculations based on integer array 

elements. 

Fir: Finite impulse response filter (signal processing algorithms) over a 700 items 

long sample. Inner loop with varying number of iterations, loop-iteration dependent 

decisions. 

 

The processor architecture of the simulator has been modified to incorporate the 

proposed approach. Since the simulator version that we used only offers a cache 

memory, we have implemented the SPM from scratch. We have considered the speed 

and energy models for this kind of memory. The decoder unit has accommodated the 

new instructions and, the necessary additional registers (SPM program counter) have 

been added. We have validated the correctness of the implemented extensions by 

exhaustive running of real workload. 

The SPM control instructions have been inserted into the code by heuristics. We 

have not used any automatic allocation technique. The hot spots in the program can be 

easily identified by profiling. Benchmarks that are focused to WCET have help in this 

task. 

The experimental process is as follows: first, from the C source code of bench-

marks, we have added the SPM control instructions. The resulting code is compiled 

with sslittle-gcc. The binary programs are simulated by the Sim-Vatios simulator to 

obtain a trace. This trace is used by the tool Power-Vatios to obtain the energy con-

sumption. 

Regarding the hardware configuration, the benchmarks are simulated over three 

different cache or SPM sizes: 128, 256 and 512 bytes. The cache is direct mapped. 

The SPM has only one block. This is due the fact that the programs considered do not 

have concurrent hot spots. Therefore, the optimal configuration is a larger and unique 

block, but it may be updated frequently, thanks to the reduced overhead of the ap-

proach. 

5. Experimental results 

The obtained results are depicted in figure 5 to 10. We can see that for 128B (Fig-

ures 5 and 6) the SPM performs better in both performance and energy consumption 

across all benchmarks. The SPM provides an average improvement in performance by 

17%, and 29% in energy consumption with respect to the cache. The better results are 

displayed for the fir benchmark in which our approach obtains an improvement in 

performance of 44% and energy consumption 53%. 

For 256B sizes (Figures 7 and 8) for the eight benchmarks used, only expint has 

better performance using a cache. This program consists of two nested loops where 

the outer loop cannot be entirely placed into the SPM and the most inner loop is ex-

ecuted only under certain circumstances. This makes that the cache takes advantage 



for this case. Summarizing, the SPM 256B has a 9% improvement in performance and 

31% in energy consumption with respect to the cache. 

Finally, for SPM and cache sizes of 512B (Figures 9 and 10) we note that with re-

spect to the performance, both of them behave similarly, but the cache shows the best 

results in five of the eight benchmarks. These differences are not significant showing, 

in average, a 3% in performance loss for the SPM with respect to the cache. The dif-

ferences are larger in terms of energy consumption, but in this case the SPM outper-

form the cache in all benchmarks, presenting an average of 32% improvement with 

respect to the cache. 

In general, we can observe that SPM slightly beats the cache in performance (7.6% 

on average), but largely reduces the energy consumption by 30.6% on average. It is 

important to mention that this results would be even better for SPM, if we were used a 

cache of the same silicon die size than the SPM. For simplicity reasons, we have 

compared directly both structures with same byte sizes. Many other works in the 

literature use the more fair comparison over the same die size. 

6. Conclusions and future work 

This paper has presented an original approach to better control the scratch-pad 

memory in embedded processors in order to reduce energy consumption. The key idea 

is to reduce as much as possible the overhead resulting from updating the SPM con-

tents at run time. This allows allocating techniques to dynamically adapt the contents 

of the SPM to the workload execution, maximizing the number of hot spots that may 

be loaded into SPM. 

The technique is orthogonal and complementary to many solutions presented to al-

locate objects in SPM. Those solutions may benefit and increase the effectiveness 

adopting the proposed architectural extensions. 

The proposed technique has been compared to a instruction cache over a typical 

workload for embedded systems. On average, compared to a processor with an on-

chip instruction cache of the same byte size, our approach improves performance by 

7,6% and reduces energy consumption by 30,6%. For certain workloads, our approach 

has reached an increment of 44% in performance, and a reduction in power around 

53%. 

This paper has exploited the reductions on energy of the SPM. Future work will 

focus on the predictable nature of the SPM to exercise our technique in order to obtain 

better worst case execution times for real-time systems. 
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Figure 5. Perfomance 128B 

 
Figure 6. Energy comsumption 128B. 

 
Figure 7. Performance 256B. 

 
Figure 8. Energy consumption 256B. 

 
Figure 9. Performance 512B. 

 
Figure 10. Energy Consumption 512B 
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