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Abstract. In this paper we propose an extension of the Scalar-Costa-
Scheme (SCS), called Soft-SCS, which offers better or equal achievable
rates than SCS for the AWGN channel. After recalling the principle of
SCS we highlight its secure implementations regarding the Watermarked
contents Only Attack, and we also describe the relations between the al-
phabet size and the secure embedding parameters. Since the gap between
the achievable rates of secure-SCS and SCS is important for low Water-
mark to Noise Ratios (WNR) regimes, we introduce Soft-SCS, a scheme
which enables to achieve security by matching a given distribution of
watermarked content while minimizing the embedding distortion. The
embedding is given by the optimal transport and the distortion is com-
puted using the transportation theory. Contrary to SCS, the distribution
of watermarked contents is not piecewise uniform of width (1-α)∆, but
contains affine portions parametrized by a new embedding parameter
β used to maximize the robusness of Soft-SCS. As a consequence, the
achievable rates of Soft-SCS for low WNR regimes for both its secure
and robust implementations are higher than for SCS. Our conclusions are
that (1) the loss of performance between the secure and robust imple-
mentations of Soft-SCS for WNR regimes smaller than 0 dB is negligible
and (2) the robust implementation of Soft-SCS is equal to SCS for WNR
regimes over 0 dB.

1 Introduction

Watermarking can be used to convey sensitive information in a secure and robust
way. The security of symmetric watermarking techniques relies on the usage of
a secret key by both the embedding and decoding schemes. One way to increase
the security of the system is to use a different watermarking key for each content
to be watermarked, however this solution is practically difficult to implement.
For example, if one wants to watermark a database of images, he cannot use
different keys for each images because the watermark decoder would have to
know the mapping between the images and the keys. Another example is given
by the watermarking of digital sequences where the watermark is embedded
periodically and has to be decoded all along the sequence. In this practical



scenario, the key has to be repeated from time to time in order to enable fast
synchronization.

The assumption that a watermarking scheme uses the same key to water-
mark a set of No contents has given birth to a set of security attacks and
counter-attacks. The goal of these security attacks is to try to estimate the
secret key used to generate the watermark signal, they use Blind Source Sep-
aration techniques such as ICA [5,2] and PCA [7,3] or clustering techniques
such as K-means [1] and feasible sets [14]. Counter-attacks are however possible
through the development of secure watermarking schemes such as Natural Wa-
termarking or its adaptations for Gaussian host [4], or the Scalar-Costa-Scheme
(SCS) using specific parameters for uniform hosts. Those different schemes have
been proved to be secure under the Watermarked contents Only Attack (WOA)
assumption (e.g. the adversary only owns watermarked contents) and for i.i.d.
embedded message. In this context the watermarking system can achieve perfect
secrecy [14] aka stego-security [4] which means that the distributions of originals
and watermarked contents are identical and that there is no information leakage
about the secret key.

The goal of this paper is design a new robust watermarking scheme for uni-
form host which can be secure under the WOA setup. Section 2 presents SCS, its
robust implementations (e.g. enabling to maximize the transmission rate) and
its secure implementations (guarantying perfect secrecy). The maximum achiev-
able rate for secure implementations is also analyzed for different Watermark to
Noise Ratios (WNRs).

Section 3 proposes and extension of SCS called the Soft-Scalar-Costa-Scheme
(Soft-SCS) and the embedding and computation of the distortion are detailed.
Finally section 4 compares the achievable rates of SCS and Soft-SCS for both
their secure and robust versions.

2 Scalar Costa Scheme

2.1 Notations
WCR and WNR denote respectively the Watermark to Content Ratio and the
Watermark to Noise Ratio and are expressed in dB. y represents a sample of the
watermarked signal, x of the host sample and w of the watermark sample with
y = x + w. d is the symbol to embed over an alphabet D and D = |D|. Sample
y suffers a AWGN n to produce to attacked sample z = y + n.

The subscript .r denotes a robust implementation or parameter, e.g. the one
maximizing the achievable rates and the subscript .s denotes the secure imple-
mentation or parameter, e.g. satisfying the constraint of perfect secrecy. Hence
SCSr and SCSs denote respectively robust and secure implementations of SCS
which use respectively parameters αr and αs.

2.2 SCS embedding and decoding
SCS [9] is built under the hypothesis called the flat host assumption. In this
setting the distribution of the host signal x is considered as piecewise uniform,



additionally the embedding distortion is very small regarding the host signal, e.g.
σ2

w � σ2
x. The method uses uniform quantizers of step ∆ during the embedding,

this means that the distribution of the watermarked contents can be considered
as periodical. As in the seminal paper, we will restrict our analysis on one period,
e.g for x ∈ (−∆/2;∆/2] . We denote by px(x), py(y) and pz(z) the PDFs of
respectively x, y and z, ⊗ represents the circular convolution.

To embed a symbol d ∈ D, SCS extracts the quantization noise q obtained
by applying one scalar uniform quantizer Q∆ of width ∆ translated according
to d:

q(d) = Q∆

�
x−∆

�
d

D
+ k

��
−

�
x−∆

�
d

D
+ k

��
, (1)

where k denotes the secret key. The watermark signal is given by:

w = αq(d), (2)
where α is a parameter that is used to maximize the achievable rate. In the

sequel, we will assume that we are in the WOA setup and consequently that the
secret key is constant. Without loss of generality, we set k = 0 . The distortion
of the embedding is given by

σ2
w =

α2∆2

12
, (3)

and the authors have derived an approximation of the embedding parameter
maximizing the achievable rate R for a given WNR. The approximation is given
by:

αr =
�

1
1 + 2.71.10−WNR/10

. (4)

Using the flat host assumption, the rate R is given by the mutual information
between the attacked signal and the embedded symbol:

R = I(z, d) = −
ˆ

∆
pz(z) log2 pz(z)dz +

1
D

�

d∈D

ˆ
∆

pz(z|d) log2 pz(z|d)dz. (5)

Since the expressions of pz(z) = py(y) ⊗ pn(n) and pz(z|d) = py(y|d) ⊗
pn(n) have no closed-form solutions due to the periodicity of the PDF, they are
computed as in [8] by working in Fourier domain using the convolution theorem1.
The integral term are also thereafter numerically computed.

The decoding is performed by computing the distance |z − c(d)| where c(d)
is the closest quantization cell for each of the D quantizers:

d̂ = arg min
d

|z − c(d)|. (6)

This tantamount to performing a maximum likelihood decoding:

d̂ = arg max
d

p(z|d). (7)

1 In [13] authors have considered a similar approach in order to compute the achievable
rate for Gaussian hosts.



2.3 SCS secure modes

As it is mentioned in [14,10], SCS achieves perfect secrecy under the WOA setup
for an embedding parameter

αs =
D − 1

D
. (8)

Indeed in this case we have py(y) = px(x) and there is no information leakage
about the location of the quantization cells. Additionally, the adversary is unable
to distinguish watermarked samples from original ones. Two examples for D = 2
and D = 3 are illustrated on Fig. 1.
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Fig. 1: Distributions of the watermarked contents for the two first secure modes
of SCS.

Eq. (8) and (4) imply that one can maximize robustness while assuring perfect
secrecy only if αs = αr, e.g. for a set of “secure” WNRs equal to

WNRs = −10 log10

�
1

2.71

��
D

D − 1

�2

− 1

��
. (9)

The range of WNRs starts at −0.44dB for D = 2 and αs = 1/2, consequently
one way to perform both secure and robust watermarking is to select the alphabet
size D which gives a WNRs which is the closest to the targeted WNR. However
SCS doesn’t offer efficient solutions for low WNR (e.g. < −1dB).

In order to compare the performance of SCSs and SCSr we have computed
the achievable rates using respectively αr and αs for a wide range of WNR
and different alphabet size. The comparison is depicted on Fig. 2. All the rates
are upper bounded by the Capacity of the Ideal Costa Scheme (ICS) CICS =
0.5 log2(1+10WNR/10) [6,9]. We can notice (Fig. 2(a)) that the performance gap
between SCSr and SCSs is important for low WNR and it becomes negligible for
high WNR (Fig. 2(b)), provided that the adequate alphabet size is selected. Note
also that for a given D the gap between the secure and robust implementations
grows with respect with the distance between the used WNR and WNRs.



The inability of SCSs to achieve efficient embedding for low WNR is due
to the fact that SCSr select a small embedding parameter αr whereas SCSs is
lower bounded by α = 0.5. The goal of the scheme presented in the next section
is to modify SCS in such a way that the secure embedding provide better rates
for low WNR.
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Fig. 2: Achievable rates for secure and robust SCS. The capacity of the Ideal
Costa Scheme is also represented.

3 Soft Scalar-Costa-Scheme

Contrary to classical watermarking embedding schemes, Soft-SCS is based on
the principle of optimal distribution matching. In this context, the computation



of the embedding can be seen as a two stages process. Firstly we set-up the
distribution pY (y|d) of the watermarked contents, this first step is mandatory
if one wants to create an embedding that achieves perfect secrecy. Secondly we
compute the embedding that enables to match pY (y|d) from the host signal of
distribution pX(x) while minimizing the average distortion. This second step is
performed using optimal transport theory (see 3.2).

Because the performances of SCSs for low WNR are maximized for D = 2,
the proposed scheme will be studied for binary embedding but could without
loss of generality be extended rato D-ary versions.

3.1 Shaping the distributions of the watermarked contents

The rationale of Soft SCS is to mimic the behavior of SCS for α < 0.5 while
still granting the possibility to have perfect secrecy. This is done by keeping the
α parameter (we call it α̃ in order to avoid confusion with the parameter used
in SCS) and by adding a second parameter, called β, that will enable to have
linear portions in the PDF of watermarked contents. β (respectively −β) are
defined as the slope of the first (respectively the second) linear portions. The
cases β = +∞ is equivalent to SCS embedding. The differences between the
distributions of watermarked contents for SCS and Soft-SCS are depicted on
Fig. 3.
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Fig. 3: Comparison between the distributions of SCS and Soft-SCS.

In order to fulfill the constraint that
´

∆ pY (y|d, y ∈ [0;∆])dy = 1, the equa-
tion of the first affine portion on [0;∆] is given by:

pY (y|d = 1, y ∈ [0;∆]) = βy +
1− α̃(1− α̃)β∆2

2(1− α̃)∆
= βy + A, (10)

with A = (1− α̃(1− α̃)β∆2)/(2(1− α̃)∆) and by symmetry the second affine
portion is gives pY (y|d) = β(∆− y) + A.



Depending of the values of α̃ and β the distributions of pY (y|d = 1, y ∈ [0;∆])
for Soft-SCS can have three different shapes and the distributions will either look
like a big-top, a canyon or a plateau. For illustration purpose, the 3 configurations
are depicted on Fig. 4.

The intervals of the first linear portion (the second being computed by sym-
metry) and the type of shape are summarized on Table 1, they depend on a limit
value of β called βl which is different for α̃ < 1/2 or for α̃ ≥ 1/2. For canyon
and plateau shapes, the uniform portion of the PDF is equal to the one of SCS:

pY (y|d, y ∈ [0;∆]) = 1/((1− α̃)∆). (11)

α̃ < 1/2, βl = 1
α̃(1−α̃)∆2 α̃ ≥ 1/2, βl = 1

(1−α̃2)∆2

β ≤ βl Canyon shape Big Top shape
Domain of the affine portion [0; α̃∆] [(2α̃− 1)∆/2; ∆/2]

β > βl Plateau shape
Domain of the affine portion

h
α̃∆
2 − 1

2(1−α̃)β∆ ; α̃∆
2 + 1

2(1−α̃)β∆

i

Table 1: The different shapes of the distributions according to α̃ and β.
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Fig. 4: Distributions of the watermarked contents for the 3 different configura-
tions of Soft-SCS.

3.2 Embedding computation and decoding

The optimal way for computing the embedding that match the distribution of
watermarked contents while minimizing the average distortion is to use the trans-
portation theory [15,11]. Given FY (y|d) the CDF associated with pY (y|d) and
FX(x) the CDF associated with pX(x), the optimal transport minimizing the
average L2 distance is given by:



T (x) = F−1
Y ◦ FX(x), (12)

and the distortion by:

σ2
w =
ˆ 1

0
(F−1

Y (x|d)− F−1
X (x))2dx. (13)

The embedding function T (.) for the different configurations and d = 1 are
given in Appendix A. Depending of the value of x, the transport is either non-
linear affine:

T (x) =
ν1 +

�
ν2 + 2β(x− ν3)

β
, (14)

or affine:

T (x) = (1− α)x +
α∆

2
, (15)

where ν1, ν2 and ν3 are constants formulated in Table 2 of appendix A.
For visualization and parametrization purposes, since β ranges on R+and

depends on ∆, we prefer to use β
�
such that:

β = 4 tan
�
πβ

�
/2

�
/∆2, (16)

where β
� ∈ [0, 1(. The shape of the distribution becomes independent of

∆ and the couple β
�

= 0.5 and α̃ = 0.5 corresponds to the case where the
distribution pY (y|d) is at the junction between the big-top and the plateau. The
cases β

�
= 0 and β

� → 1 correspond respectively to β = 0 and β → +∞.
Figure 5 illustrates different embeddings for d = 0 and different configura-

tions of (α̃, β
�
). Note that the embedding for d �= 0 can be easily computed by

translating both the host signal and the watermarked one by ∆/2.
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Fig. 5: Optimal transport for different configurations of Soft-SCS (d = 0).

The embedding distortion is computed using eq. (13) and contains 2 terms
related respectively to the affine and non-linear portions of the embedding. Its
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Fig. 6: Empirical distortions (σ̂2
w) computed by Monte-Carlo simulations with

106 trials, and closed-form distortions (σ2
w) for ∆ = 1024, and 1024 bins used to

compute the distributions.

close-form is detailed in appendix B. Fig. 6 illustrates the fit between the closed-
form formulae and Monte-Carlo simulations.

As for SCS, the decoding is performed using maximum likelihood decoding
(7).

4 Performance analysis

4.1 Secure Embedding

It is easy to show that for α̃ = α̃s = 0.5 and D = 2, Soft-SCS achieves perfect
secrecy, the distributions can only have two shapes in this case which are the
big-top and the plateau illustrated on Fig. 4(a) and Fig. 4(b) respectively. Using
numerical optimization, we compute for a given WNR the value of β

�
which

enables to maximize the achievable rate (5) and obtain β
�

s. The result of this
optimization, and its approximation using least square regression is given on
Fig. 7. The approximation gives

�
(β

�

s) = 0.9× 1.1WNR , WNR < 0 dB

(β
�

s) = 1 , WNR ≥ 0 dB.
(17)

which means that Soft-SCSs and SCSs differ only for WNR < 0 dB.
The achievable rates of Soft-SCSs are depicted on Fig. 8and are compared

with SCSr and SCSs. We notice that Soft-SCSs not only outperforms the secure
version of SCS but also the robust one. The gap between Soft-SCSs and SCS
increases with respect to the noise power and is null for WNR = −0.44 dB. The
figure shows also that the gap between the implementation for the optimal value
of β

�

s and the approximation given in (17) is negligible.

4.2 Robust Embedding

The same methodology is applied without the security constraint in order to
obtain the robust configuration of Soft-SCS. This time the rate has to be max-
imized according to α̃ and β

�
and their values after the numerical optimization
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are depicted on Fig. 9. For WNR > −0 dB, the values of β
�

r oscillate between
β

�
= 0 and β

�
= 1 which are two variations of SCS (the slope being null with a

big top configuration or the slope being infinite plateau configuration.
Surprisingly we notice that there is no difference between Soft-SCSr and

Soft-SCSs for WNR < −9 dB, the common optimal value being α̃ = 0.5 and
the difference between the two schemes is negligible for WNR < −0 dB. For
high WNR however, the approximation is identical to SCSr with (α̃r) = αr (eq
. 4) and (β

�

r) = 1. We can conclude that the implementation Soft-SCSr behaves
as Soft-SCSw for low WNR and as SCSr for high WNR.

5 Conclusion and perspectives

We have proposed in this paper an adaptation of the Scalar Costa Scheme based
on the principle of optimal distribution matching. The computation of the em-
bedding needs (1) to choose the distribution of the watermarked contents and
(2) to compute the optimal mapping from the host to the watermarked con-
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tents. This method enables to outperform SCS both for its secure and robust
implementations for WNR ≤ 0 dB.

Contrary to a spread idea that robustness and security are antagonist con-
straints in watermarking, we have shown in this study that there exists wa-
termarking schemes that can guaranty perfect secrecy while maximizing the
achievable rate. SCSs can be used for high WNR with appropriate dictionary
size, αs = (D− 1)/D; and Soft-SCSs can be used for low WNR , α̃s and βs and
provide negligible loss of rate.

However, one can argue that for low WNR regimes the rates is rather small
and that one system involving redundancy or error correction should be used in
order to increase the reliability of the decoded symbols. This solution has to be
employed in a very cautious way since the redundancy might compromise the
security of the whole system [12]. Future works will investigate this direction if
there is a way to perform secure coding.

A Embedding formulas for Soft-SCS

Here, for the shake of simplicity the α̃ parameter of Soft-SCS is written α.

A.1 Plateau shape (β ≥ βl),

The CDF is given by, for
�

α∆
2 − 1

2(1−α)β∆ ; α∆
2 + 1

2(1−α)β∆

�
by:

FY (x) =
β

2

�
x +

A

β

�2

,

and the inverse function on [0; y1] is given by:

F−1
Y (x) =

−A +
√

2βx

β
.

with
FY

�
α∆

2
+

1
2(1− α)β∆

�
=

1
2(1− α)2β∆2

= y1.
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- The optimal transport on [0; y1∆] is given by (y1∆ corresponds to the point
were FX(x) = y1):

T (x) = F−1
Y ◦ FX(x) =

−A +
�

2βx/∆

β
.

On x ∈
�

α∆
2 + 1

2(1−α)β∆ , ∆
2

�
, we now have:

FY (x) =
1

(1− α)∆
x− α

2(1− α)
,

The optimal transport on [y1∆, ∆
2 ] is given by:



T (x) = F−1
Y ◦ FX(x) = (1− α)x +

α∆

2
.

A.2 Canyon shape (α < 1/2, β < βl)

for x ∈ [0;α∆] and α < 0.5, the CDF is given by:

FY (x) =
β

2
x2 + Ax

The inverse function is given by for x ∈ [0; y2], with y2 = FY (α∆) =
βα2∆2/2 + α∆A:

F−1
Y (x) =

−A +
�

A2 + 2βx

β
.

- The optimal transport is given on [0; y2∆] by (y2∆ corresponds to the point
were FX(x) = y2):

T (x) = F−1
Y ◦ FX(x) =

−A +
�

A2 + 2βx/∆

β
.

On [α∆;∆/2] , we now have:

FY (x) =
1

(1− α)∆
x− α

2(1− α)
,

The optimal transport on [y2∆, ∆
2 ] is given by:

T (x) = F−1
Y ◦ FX(x) = (1− α)x +

α∆

2
.

A.3 Big Top shape (α > 1/2, β < βl)

for x ∈ [(2α− 1)∆/2;∆/2] and α > 0.5, the CDF is given by:

FY (x) =
β

2
x2 + Ax− (2α− 1)2β∆2/8−A(2α− 1)∆/2 =

β

2
x2 + Ax + C,

with C = −(2α − 1)2β∆2/8 − A(2α − 1)∆/2. The inverse function is given
by for x ∈ [0; 1/2]:

F−1
Y (x) =

−A +
�

A2 + 2β(x− C)
β

.

The optimal transport is given on [0;∆/2] by:

T (x) = F−1
Y ◦ FX(x) =

−A +
�

A2 + 2β(x/∆− C)
β

.



B Distortions formulas for Soft-SCS

σ2
w = 2

ˆ 1/2

0
(F−1

Y (x)− F−1
X (x))2dx

σ2
w = 2

ˆ x1

x0

�
ν1 +

�
ν2 + 2β(x− ν3)

β
−∆x

�2

dx

+2
ˆ x2

x1

�
(1− α)∆x +

α∆

2
−∆x

�2

dx

= I1 + I2.

The values of x1 and x2 depend of the configuration of the PDF and their
closed-form are given in Table 2.

α < 1/2 α ≥ 1/2

β < βl Canyon shape Big Top shape
(x0, x1, x2) (0 ; βα2∆2/2 + α∆A ; 1/2) (0 ; 1/2 ; 1/2)
(ν1, ν2, ν3) (−A, A2, 0) (−A, A2, ν3)

β > βl Plateau shape Plateau shape
(x0, x1, x2) (0 ; 1/

`
2(1− α)2β∆2

´
; 1/2) (0 ; 1/

`
2(1− α)2β∆2

´
; 1/2)

(ν1, ν2, ν3) (−A, 0, 0) (−A, 0, 0)
βl

1
α(1−α)∆2

1
(1−α2)∆2

Table 2: The different configurations for the computation of the distortion.

I1 and I2 are given by:

I1 = 2(∆2

�
x3

3

�x1

x0

+
2− 2∆ν1

β

�
x2

2

�x1

x0

+
2ν1

3β3

�
(ν2 − 2βν3 + 2βx)3/2

�x1

x0

+I3 +
ν2
1 + ν2 − 2βν3

β2
(x1 − x0))

with

I3 = − 2∆

3β2

�
x (ν2 − 2βν3 + 2βx)3/2

�x1

x0

+
2∆

15β3

�
(ν2 − 2βν3 + 2βx)5/2

�x1

x0

,

and

I2 =
2α2∆2

3

��
x2 −

1
2

�3

−
�

x1 −
1
2

�3
�

.
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