
Using Datalog for Fast and Easy Program Analysis

Yannis Smaragdakis1,2 and Martin Bravenboer3

1 University of Massachusetts, Amherst, MA 01003, USA,
yannis@cs.umass.edu

2 University of Athens, Athens 15784, Greece,
smaragd@di.uoa.gr

3 LogicBlox Inc., Two Midtown Plaza, Atlanta, GA 30309, USA,
martin.bravenboer@acm.org

Abstract. Our recent work introduced the D framework for points-to analysis
of Java programs. Although Datalog has been used for points-to analyses before,
D is the first implementation to express full end-to-end context-sensitive anal-
yses in Datalog. This includes key elements such as call-graph construction as
well as the logic dealing with various semantic complexities of the Java language
(native methods, reflection, threading, etc.).
The findings from the D research effort have been surprising. We set out to
create a framework that would be highly complete and elegantwithout sacrific-
ing performance “too much”. By the time D reached maturity, it was a full
order-of-magnitude faster than Lhoták and Hendren’s P—the state-of-the-
art framework for context-sensitive points-to analyses. For the exact same logical
points-to definitions (and, consequently, identical precision) D is more than
15x faster than P for a 1-call-site sensitive analysis, with lower but still sub-
stantial speedups for other important analyses. Additionally, D scales to very
precise analyses that are impossible with prior frameworks, directly addressing
open problems in past literature. Finally, our implementation is modular and can
be easily configured to analyses with a wide range of characteristics, largely due
to its declarativeness.
Although this performance difference is largely attributable to architectural
choices (e.g., the use of an explicit representation vs. BDDs), we believe that our
ability to efficiently optimize our implementation was largely due to the declar-
ative specifications of analyses. Working at the Datalog level eliminated much
of the artificial complexity of a points-to analysis implementation, allowing us
to concentrate on indexing optimizations and on the algorithmic essence of each
analysis.

1 Introduction

Points-to analysisis one of the most fundamental static program analyses. It consists of
computing a static approximation of all the data that a pointer variable or expression can
reference during program run-time. The analysis forms the basis for practically every
other program analysis and is closely inter-related with mechanisms such as call-graph
construction, since the values of a pointer determine the target of dynamically resolved
calls, such as object-oriented dynamically dispatched method calls or functional lambda
applications.



In recent work [1, 2], we presented D: a versatile points-to analysis framework
for Java programs. D is crucially based on the use of Datalog for specifying the pro-
gram analyses, and on the aggressive optimization at the Datalog level, by programmer-
assisted indexing of relations so that highly recursive Datalog programs evaluate near-
optimally. The optimization approach accounts for severalorders of magnitude of
performance improvement: unoptimized analyses typicallyrun over 1000 times more
slowly. The result is quite surprising: compared to the prior best-comparable system
D often achieves speedups of an order-of-magnitude (10x or more) for several im-
portant analyses, while yielding identical results. This performance improvement is not
caused by any major algorithmic innovation: we discuss in Section 3 how performance
is largely a consequence of the optimization opportunitiesafforded by using a higher-
level programming language (Datalog). Declarative specifications admit automatic op-
timizations and at the same time enable the user to identify and apply straightforward
manual optimizations.

An important aspect of D is that it is full-featured and “all Datalog”. That is,
D is a rich framework, containing context insensitive, call-site sensitive, and object-
sensitive analyses for different context depths, all specified modularly as variationson
a common code base. Additionally, D achieves high levels of completeness, as it
handles complex Java language features (e.g., native code,finalization, and privileged
actions). As a result, D emulates and often exceeds the rich feature set of the P-
 framework [7], which is the state-of-the-art in terms of completeness for complex,
context-sensitive analyses. All these features are implemented entirely in Datalog, i.e.,
declaratively. Past points-to analysis frameworks (including those using Datalog) typi-
cally combined imperative computation and some declarative handling of the core anal-
ysis logic. For instance, the bddbddb system [10, 11] expresses the core of a points-
to analysis in Datalog, while important parts (such as normalization and call-graph
computation—except for simple, context-insensitive, analyses) are done in Java code.
It was a surprise to researchers even that a system of such complexity can be usefully
implemented declaratively. Lhoták [6] writes:“[E]ncoding all the details of a com-
plicated program analysis problem (such as the interrelated analyses [on-the-fly call
graph construction, handling of Java features]) purely in terms of subset constraints
[i.e., Datalog] may be difficult or impossible.”

The more technical aspects of D (including the analysis algorithms and fea-
tures, as well as our optimization methodology) are well-documented in prior publica-
tions [1,2,9]. Here we only intend to give a brief introduction to the framework and to
extrapolate on our lessons learned from the D work.

2 Background: Points-To Analysis in Datalog

D’s primary defining feature is the use of Datalog for its analyses. Architecturally,
however, an important factor in D’s performance discussion is that it employs an
explicit representation of relations (i.e., all tuples of a relationare represented as an
explicit table, as in a database), instead of using Binary Decision Diagrams (BDDs),
which have often been considered necessary for scalable points-to analysis [6,7,10,11].



We use a commercial Datalog engine, developed by LogicBlox Inc. This version of
Datalog allows “stratified negation”, i.e., negated clauses, as long as the negation is not
part of a recursive cycle. It also allows specifying that some relations are functions, i.e.,
the variable space is partitioned into domain and range variables, and there is only one
range value for each unique combination of values in domain variables.

Datalog is a great fit for the domain of program analysis and, as a consequence,
has been extensively used both for low-level [5, 8, 11] and for high-level [3, 4] anal-
yses. The essence of Datalog is its ability to define recursive relations. Mutual re-
cursion is the source of all complexity in program analysis.For a standard exam-
ple, the logic for computing a callgraph depends on having points-to information for
pointer expressions, which, in turn, requires a callgraph.We can easily see such re-
cursive definitions in points-to analysis alone. Consider,for instance, two relations,
AssignHeapAllocation(?heap, ?var) andAssign(?to, ?from). (We follow the D
convention of capitalizing the first letter of relation names, while writing variable names
in lower case and prefixing them with a question-mark.) The former relation represents
all occurrences in the Java program of an instruction “a = new A();” where a heap ob-
ject is allocated and assigned to a variable. That is, a pre-processing step takes a Java
program (in D this is in intermediate, bytecode, form) as input and produces the re-
lation contents. A static abstraction of the heap object is captured in variable?heap—it
can be concretely represented as, e.g., a fully qualified class name and the allocation’s
bytecode instruction index. Similarly, relationAssign contains an entry for each assign-
ment between two Java program (reference) variables.

The mapping between the input Java program and the input relations is straightfor-
ward and purely syntactic. After this step, a simple pointeranalysis can be expressed
entirely in Datalog as a transitive closure computation:

VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).1

VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).2

The Datalog program consists of a series ofrules that are used to establish facts
about derived relations (such asVarPointsTo, which is the points-to relation, i.e., it
links every program variable,?var, with every heap object abstraction,?heap, it can
point to) from a conjunction of previously established facts. In our syntax, the left arrow
symbol (<-) separates the inferred fact (thehead) from the previously established facts
(thebody).

The key for a precise points-to analysis is context-sensitivity, which consists of qual-
ifying program variables (and possibly object abstractions—in which case the context-
sensitive analysis is said to also have acontext-sensitive heap), with context informa-
tion: the analysis collapses information (e.g., “what objects this method argument can
point to”) over all possible executions that result in the same context, while separating
all information for different contexts. Object-sensitivity and call-site-sensitivity are the
main flavors of context sensitivity in modern points-to analyses. They differ in the con-
texts of a context, as well as in when contexts are created andupdated. Here we will
not concern ourselves with such differences—it suffices to know that a context-sensitive
analysis qualifies its computed facts with extra information.

Context-sensitive analysis in D is, to a large extent, similar to the above context-
insensitive logic. The main changes are due to the introduction of Datalog variables



representing contexts for variables (and, in the case of a context-sensitive heap, also
objects) in the analyzed program. For an illustrative example, the following two rules
handle method calls as implicit assignments from the actualparameters of a method to
the formal parameters, in a 1-context-sensitive analysis with a context-insensitiveheap.
(This code is the same for both object-sensitivity and call-site-sensitivity.)

Assign(?calleeCtx, ?formal, ?callerCtx, ?actual) <-1

CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?method),2

FormalParam[?index, ?method] = ?formal,3

ActualParam[?index, ?invocation] = ?actual.4

5

VarPointsTo(?heap, ?toCtx, ?to) <-6

Assign(?toCtx, ?to, ?fromCtx, ?from),7

VarPointsTo(?heap, ?fromCtx, ?from).8

(Note that some of the above relations are functions, and thefunctional no-
tation “Relation[?domainvar] = ?val” is used instead of the relational notation,
“Relation(?domainvar, ?val)”. Semantically the two are equivalent, only the exe-
cution engine enforces the functional constraint and produces an error if a computation
causes a function to have multiple range values for the same domain value.)

The example shows how a derivedAssign relation (unlike the input relationAssign
in the earlier basic example) is computed, based on the call-graph information, and then
used in deriving a context-sensitiveVarPointsTo relation.

For deeper contexts, one needs to add extra variables, sincepure Datalog does not
allow constructors and therefore cannot support value combination. We have introduced
in D a macro system to hide the number of context elements so that such variations
do not pollute the analysis logic.

Generally, the declarative nature of D often allows for very concise specifica-
tions of analyses. We show in an earlier publication [2] the striking example of the
logic for the Java cast checking—i.e., the answer to the question “can type A be cast
to type B?” The Datalog rules are almost an exact transcription of the Java Language
Specification. A small excerpt, with the Java Language Specification text included in
comments, can be seen in Figure 1.

3 Discussion: D and Large-Scale Development in Datalog

Perhaps the main lesson learned from our experience with D and its definition in
Datalog is quite simple:Datalog is not an abstract logic and does not magically yield
automatic programming capabilities, but it is still much higher-level than current main-
stream programming languages.

Recent Datalog research has often concentrated on generalizing the language (to full
first-order logic and higher-order logics), and on applyingautomated reasoning tech-
niques. Although this is certainly a valuable direction, webelieve that one should not
lose sight of the fact that Datalog is already a very high-level language when compared
to mainstream general purpose languages, such as Java, C++, or C#. It is, therefore,
perhaps more interesting to examine Datalog not as a proxy for a logic but as an ap-
plication programming language. Many of the benefits that weobtained with D are



// If S is an ordinary (nonarray) class, then:

// o If T is a class type, then S must be the

// same class as T, or a subclass of T.

CheckCast(?s, ?s) <- ClassType(?s).

CheckCast(?s, ?t) <- Subclass(?t, ?s).

...

// o If T is an array type TC[], that is, an array of components

// of type TC, then one of the following must be true:

// + TC and SC are the same primitive type

CheckCast(?s, ?t) <-

ArrayType(?s), ArrayType(?t),

ComponentType(?s, ?sc), ComponentType(?t, ?sc), PrimitiveType(?sc).

// + TC and SC are reference types (2.4.6), and type SC can be

// cast to TC by recursive application of these rules.

CheckCast(?s, ?t) <-

ComponentType(?s, ?sc), ComponentType(?t, ?tc),

ReferenceType(?sc), ReferenceType(?tc), CheckCast(?sc, ?tc).

Fig. 1. Excerpt of Datalog code for Java cast checking, together with Java Language Specification
text in comments. The rules are quite faithful to the specification.

directly due to such an approach. Of course, this raises the question of whether plain
Datalog is expressive enough for general application programming. As we saw, even
for the domain of points-to analysis, researchers were highly skeptical of the feasibility
of expressing all elements (including those consisting mostly of tedious engineering)
of a complex analysis in Datalog. We believe that this is precisely what is missing at
this point in the evolution of Datalog. The language needs tobe developed as a real
programming language, with appropriate library support (for, e.g., graphics, communi-
cation, etc., APIs), tool support, a mature engine (for advanced automatic optimization
of rule evaluation and efficient representation of relations), and possibly expressive-
ness enhancements (e.g., macros, exponential-search, or other high-order capabilities).
A final element, which we are still debating whether it is essential or an intermedi-
ate state, is the ability to manually optimize a Datalog program, by exposition of an
easy-to-understand cost model and appropriate interfacing with the engine.

Such arguments are easy to see in the context of D. The use of Datalog in D
is certainly not as a logic. D is not written as an abstract specification that a clever
runtime system automatically optimizes and executes efficiently. We needed to develop
an optimization methodology for highly recursive programsand to introduce indexes
manually, in order to attain optimal performance. The difference in performance be-
tween optimized and unoptimized D rules is enormous. At the same time, D is
expressed at a much higher level than a similar implementation of a points-to analysis
in Java or C++. The declarativeness of Datalog and the suitability of the LogicBlox
Datalog platform for application development were crucialfor D in more than one
way:



• We relied on query optimization (i.e., intra-rule, as opposed to inter-rule, optimiza-
tion) being performed automatically. This was crucial for performance and, although
a straightforward optimization in the context of database relations, results in far more
automation than programming in a mainstream high-level language.

• The declarativeness and modularity of D specifications contributed directly to per-
formance. The surprisingly high performance of D compared to past frameworks
is due to combining two factors: simple algorithmic enhancements, and an explicit
representation instead of BDDs. Eliminating either of these factors results in com-
plete lack of scalability in D. For instance, an explicit representation alone makes
many standard analyses infeasible in D: even a 1H-object-sensitive analysis (i.e.,
1-object-sensitive with a context-sensitive heap) would be completely infeasible for
realistic programs. Nevertheless, we observed that this lack of scalability was due to
very high redundancy (i.e., large sizes of some relations without an increase in anal-
ysis precision) in the data that the analysis was computing.The redundancy was easy
to eliminate with two simple algorithmic enhancements:1) we perform exception
analysis on-the-fly [1], computing contexts that are reachable because of exceptional
control flow while performing the points-to analysis itself. The on-the-fly exception
analysis significantly improves both precision and performance;2)we treat static class
initializers context-insensitively (since points-to results are equivalent for all contexts
of static class initializers), thus improving performancewhile keeping identical pre-
cision. These enhancements (especially the former, which results in highly recursive
definitions of core relations) would be quite hard to consider in a non-declarative con-
text. In D, such enhancements could be added with minor changes to the rules or
with just the addition of extra rules. Once redundancy is eliminated via our algorith-
mic enhancements, an explicit representation (with the help of our index optimiza-
tions) becomes much faster than using BDDs.

Based on our experience, we believe that Datalog can have a bright future for ap-
plication development. In a programming setting that has a dire need for higher-level
programming abstractions, Datalog holds a great promise. The elements missing in
order to fulfill this promise are not in the direction of greater declarativeness and auto-
mated reasoning abilities. Pursuing more complete-logic-like variants of Datalog may
turn out to be an unreachable goal and is certainly not what ismissing in practice: Dat-
alog is already much more declarative than the mainstream languages currently used
for application programming. Instead, it is practical elements that are missing and that
can propel actual Datalog implementations to the mainstream. An interesting question
is whether it is necessary for a programmer to treat a Datalogprogram as a program
and not as a specification, i.e., whether the programmer should have the ability to un-
derstand and manually influence the program’s execution cost.

In summary, the D framework has raised the bar in the domain of points-to
analysis by introducing fast, modular, and scalable implementations of precise points-
to analysis algorithms, while yielding important lessons about the architecture of such
implementations. At the same time, however, we hope that D will be representative
of future successes for Datalog application development asa whole.



AcknowledgmentsThis work was funded by the NSF (CCF-0917774, CCF-0934631)
and by LogicBlox Inc.

References

1. M. Bravenboer and Y. Smaragdakis. Exception analysis andpoints-to analysis: Better to-
gether. In L. Dillon, editor,ISSTA ’09: Proceedings of the 2009 International Symposiumon
Software Testing and Analysis, New York, NY, USA, July 2009.

2. M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisticated points-
to analyses. InOOPSLA ’09: 24th annual ACM SIGPLAN conference on Object Oriented
Programming, Systems, Languages, and Applications, New York, NY, USA, 2009. ACM.

3. M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini. Defining and continuous checking
of structural program dependencies. InICSE ’08: Proc. of the 30th int. conf. on Software
engineering, pages 391–400, New York, NY, USA, 2008. ACM.

4. E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scalable source code queries with
Datalog. InProc. European Conf. on Object-Oriented Programming (ECOOP), pages 2–27.
Spinger, 2006.

5. M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,M. Carbin, and C. Un-
kel. Context-sensitive program analysis as database queries. InPODS ’05: Proc. of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, pages 1–12, New York, NY, USA, 2005. ACM.

6. O. Lhoták.Program Analysis using Binary Decision Diagrams. PhD thesis, McGill Univer-
sity, Jan. 2006.

7. O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive points-to analysis
using a BDD-based implementation.ACM Trans. Softw. Eng. Methodol., 18(1):1–53, 2008.

8. T. Reps. Demand interprocedural program analysis using logic databases. In R. Ramakrish-
nan, editor,Applications of Logic Databases, pages 163–196. Kluwer Academic Publishers,
1994.

9. Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts well: Understanding
object-sensitivity (the making of a precise and scalable pointer analysis). InPOPL ’11:
Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, New York, NY, USA, 2011. ACM.

10. J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog with binary decision di-
agrams for program analysis. In K. Yi, editor,APLAS, volume 3780 ofLecture Notes in
Computer Science, pages 97–118. Springer, 2005.

11. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. InPLDI ’04: Proc. of the ACM SIGPLAN 2004 conf. on Programming
language design and implementation, pages 131–144, New York, NY, USA, 2004. ACM.


