Using Datalog for Fast and Easy Program Analysis

Yannis Smaragdakig€ and Martin Bravenboér

1 University of Massachusetts, Amherst, MA 01003, USA,
yannis@cs.umass.edu
2 University of Athens, Athens 15784, Greece,
smaragd@di.uoa.gr
3 LogicBlox Inc., Two Midtown Plaza, Atlanta, GA 30309, USA,
martin.bravenboer@acm.org

Abstract. Our recent work introduced thedor framework for points-to analysis
of Java programs. Although Datalog has been used for ptirdgsalyses before,
Door is the first implementation to express full end-to-end ceirsensitive anal-
yses in Datalog. This includes key elements such as cgbhgcanstruction as
well as the logic dealing with various semantic complegiti¢the Java language
(native methods, reflection, threading, etc.).

The findings from the Bor research &ort have been surprising. We set out to
create a framework that would be highly complete and elegéhbut sacrific-
ing performance “too much”. By the timedor reached maturity, it was a full
order-of-magnitude faster than Lhotak and HendrenissR—the state-of-the-
art framework for context-sensitive points-to analyses.tRe exact same logical
points-to definitions (and, consequently, identical pieci) Doop is more than
15x faster than Boce for a 1-call-site sensitive analysis, with lower but stilbs
stantial speedups for other important analyses. Additipraoor scales to very
precise analyses that are impossible with prior framewatksctly addressing
open problems in past literature. Finally, our implemeotais modular and can
be easily configured to analyses with a wide range of chaistits, largely due
to its declarativeness.

Although this performance fierence is largely attributable to architectural
choices (e.g., the use of an explicit representation vs. 8PWe believe that our
ability to efficiently optimize our implementation was largely due to tleeldr-
ative specifications of analyses. Working at the Dataloglleliminated much
of the artificial complexity of a points-to analysis implemtation, allowing us
to concentrate on indexing optimizations and on the allganic essence of each
analysis.

1 Introduction

Points-to analysiss one of the most fundamental static program analysesnHists of
computing a static approximation of all the data that a inariable or expression can
reference during program run-time. The analysis forms tmasbfor practically every
other program analysis and is closely inter-related witlecima@isms such as call-graph
construction, since the values of a pointer determine ttgetaf dynamically resolved
calls, such as object-oriented dynamically dispatchedhotbtalls or functional lambda
applications.

In recent work [1, 2], we presentecbbr: a versatile points-to analysis framework
for Java programs. &@r is crucially based on the use of Datalog for specifying the pr
gram analyses, and on the aggressive optimization at treédgdevel, by programmer-
assisted indexing of relations so that highly recursiveal2at programs evaluate near-
optimally. The optimization approach accounts for severalers of magnitude of
performance improvement: unoptimized analyses typicallyover 1000 times more
slowly. The result is quite surprising: compared to the phiest-comparable system
Door often achieves speedups of an order-of-magnitude (10x oe)fior several im-
portant analyses, while yielding identical results. Thesfprmance improvementis not
caused by any major algorithmic innovation: we discuss ictiSe 3 how performance
is largely a consequence of the optimization opportunéitsded by using a higher-
level programming language (Datalog). Declarative speatifins admit automatic op-
timizations and at the same time enable the user to identiyagply straightforward
manual optimizations.

An important aspect of Bor is that it is full-featured and “all Datalog”. That is,
Door is a rich framework, containing context insensitive, ile sensitive, and object-
sensitive analyses for fiierent context depths, all specified modularly as variatmns
a common code base. Additionallypbr achieves high levels of completeness, as it
handles complex Java language features (e.g., native findzation, and privileged
actions). As a result, @p emulates and often exceeds the rich feature set ofdive P
pLe framework [7], which is the state-of-the-art in terms of q@eieness for complex,
context-sensitive analyses. All these features are imghted entirely in Datalog, i.e.,
declaratively. Past points-to analysis frameworks (idizlg those using Datalog) typi-
cally combined imperative computation and some decla&@ndling of the core anal-
ysis logic. For instance, the bddbddb system [10, 11] exeiethe core of a points-
to analysis in Datalog, while important parts (such as ndimagon and call-graph
computation—except for simple, context-insensitive lygses) are done in Java code.
It was a surprise to researchers even that a system of sughledaty can be usefully
implemented declaratively. Lhotak [6] write§E]ncoding all the details of a com-
plicated program analysis problem (such as the interrelaa@alyses [on-the-fly call
graph construction, handling of Java features]) purely émns of subset constraints
[i.e., Datalog] may be dficult or impossible”

The more technical aspects ofo@ (including the analysis algorithms and fea-
tures, as well as our optimization methodology) are wetitdnented in prior publica-
tions [1, 2, 9]. Here we only intend to give a brief introdwuctito the framework and to
extrapolate on our lessons learned from thebwork.

2 Background: Points-To Analysisin Datalog

Door’s primary defining feature is the use of Datalog for its anal Architecturally,
however, an important factor indor’s performance discussion is that it employs an
explicit representation of relations (i.e., all tuples of a relatiwa represented as an
explicit table, as in a database), instead of using Binargidsden Diagrams (BDDs),
which have often been considered necessary for scalabiespioianalysis [6,7,10,11].

We use a commercial Datalog engine, developed by LogicBloxThis version of
Datalog allows “stratified negation”, i.e., negated clayses long as the negation is not
part of a recursive cycle. It also allows specifying that saelations are functions, i.e.,
the variable space is partitioned into domain and rangebkes, and there is only one
range value for each unique combination of values in domaiiakles.

Datalog is a great fit for the domain of program analysis asda @onsequence,
has been extensively used both for low-level [5, 8, 11] anchigh-level [3, 4] anal-
yses. The essence of Datalog is its ability to define receirsiations. Mutual re-
cursion is the source of all complexity in program analy§isr a standard exam-
ple, the logic for computing a callgraph depends on havingtpdo information for
pointer expressions, which, in turn, requires a callgrapb.can easily see such re-
cursive definitions in points-to analysis alone. Considi@r,instance, two relations,
AssignHeapAllocation(?heap, ?var) andAssign(?to, ?from). (We follow the Dbop
convention of capitalizing the first letter of relation nasywehile writing variable names
in lower case and prefixing them with a question-mark.) Thenf relation represents
all occurrences in the Java program of an instructior-“new AQ) ;" where a heap ob-
ject is allocated and assigned to a variable. That is, a preegsing step takes a Java
program (in Dor this is in intermediate, bytecode, form) as input and predube re-
lation contents. A static abstraction of the heap objecafgured in variabl@heap—it
can be concretely represented as, e.g., a fully qualifiexs¢lame and the allocation’s
bytecode instruction index. Similarly, relatiassign contains an entry for each assign-
ment between two Java program (reference) variables.

The mapping between the input Java program and the inpuitredas straightfor-
ward and purely syntactic. After this step, a simple poiatealysis can be expressed
entirely in Datalog as a transitive closure computation:

VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).
VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).

The Datalog program consists of a serieguésthat are used to establish facts
about derived relations (such #@srPointsTo, which is the points-to relation, i.e., it
links every program variableyar, with every heap object abstractiotheap, it can
point to) from a conjunction of previously established §aéh our syntax, the left arrow
symbol &-) separates the inferred fact (thead from the previously established facts
(thebody).

The key for a precise points-to analysis is context-seitsitivhich consists of qual-
ifying program variables (and possibly object abstractiein which case the context-
sensitive analysis is said to also haveamtext-sensitive hegpwith context informa-
tion: the analysis collapses information (e.g., “what ot§ehis method argument can
point to”) over all possible executions that result in thmeacontext, while separating
all information for diferent contexts. Object-sensitivity and call-site-sévisjtare the
main flavors of context sensitivity in modern points-to gsak. They dter in the con-
texts of a context, as well as in when contexts are createdipddted. Here we will
not concern ourselves with sucHigrences—it sflices to know that a context-sensitive
analysis qualifies its computed facts with extra informatio

Context-sensitive analysis indor is, to a large extent, similar to the above context-
insensitive logic. The main changes are due to the intragiuaf Datalog variables

© N o g A w N e

representing contexts for variables (and, in the case ohéegbsensitive heap, also
objects) in the analyzed program. For an illustrative exathe following two rules
handle method calls as implicit assignments from the agtasmeters of a method to
the formal parameters, in a 1-context-sensitive analygfsawcontextinsensitiveheap.
(This code is the same for both object-sensitivity and sigdl-sensitivity.)

Assign(?calleeCtx, ?formal, ?callerCtx, ?actual) <-
CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?method),
FormalParam[?index, ?method] = ?formal,

ActualParam[?index, ?7invocation] = ?actual.

VarPointsTo(?heap, ?toCtx, ?to) <-
Assign(?toCtx, ?to, ?fromCtx, ?from),
VarPointsTo(?heap, ?fromCtx, ?from).

(Note that some of the above relations are functions, andfuhetional no-
tation “Relation[?domainvar] = ?val” is used instead of the relational notation,
“Relation(?domainvar, ?val)”. Semantically the two are equivalent, only the exe-
cution engine enforces the functional constraint and predan error if a computation
causes a function to have multiple range values for the sameih value.)

The example shows how a deriveskign relation (unlike the input relatiofssign
in the earlier basic example) is computed, based on thegcatlh information, and then
used in deriving a context-sensitiverPointsTo relation.

For deeper contexts, one needs to add extra variables,gimedDatalog does not
allow constructors and therefore cannot support value anetibn. We have introduced
in Doop @ macro system to hide the number of context elements soubatariations
do not pollute the analysis logic.

Generally, the declarative nature ob& often allows for very concise specifica-
tions of analyses. We show in an earlier publication [2] tlriking example of the
logic for the Java cast checking—i.e., the answer to thetgpre%can type A be cast
to type B?” The Datalog rules are almost an exact transonpif the Java Language
Specification. A small excerpt, with the Java Language Sipation text included in
comments, can be seen in Figure 1.

3 Discussion: Door and L arge-Scale Development in Datalog

Perhaps the main lesson learned from our experience witle Bnd its definition in
Datalog is quite simpleDatalog is not an abstract logic and does not magically yield
automatic programming capabilities, but it is still muclyher-level than current main-
stream programming languages

Recent Datalog research has often concentrated on gamagdlie language (to full
first-order logic and higher-order logics), and on applyingomated reasoning tech-
niques. Although this is certainly a valuable direction, batieve that one should not
lose sight of the fact that Datalog is already a very higleléanguage when compared
to mainstream general purpose languages, such as Java,0€ C#. It is, therefore,
perhaps more interesting to examine Datalog not as a praxg fogic but as an ap-
plication programming language. Many of the benefits thabbtined with dop are

// If S is an ordinary (nonarray) class, then:
// o If T is a class type, then S must be the
// same class as T, or a subclass of T.
CheckCast(?s, ?s) <- ClassType(?s).

CheckCast(?s, ?t) <- Subclass(?t, ?s).

// o If T is an array type TC[], that is, an array of components

// of type TC, then one of the following must be true:
// + TC and SC are the same primitive type

CheckCast(?s, ?t) <-
ArrayType(?s), ArrayType(?t),
ComponentType(?s, ?sc), ComponentType(?t, ?sc), PrimitiveType(?sc).

// + TC and SC are reference types (2.4.6), and type SC can be
// cast to TC by recursive application of these rules.
CheckCast(?s, ?t) <-

ComponentType(?s, ?sc), ComponentType(?t, ?tc),

ReferenceType(?sc), ReferenceType(?tc), CheckCast(?sc, ?tc).

Fig. 1. Excerpt of Datalog code for Java cast checking, togethér Jeiva Language Specification
text in comments. The rules are quite faithful to the spestifoe.

directly due to such an approach. Of course, this raisesubstipn of whether plain

Datalog is expressive enough for general application grogning. As we saw, even
for the domain of points-to analysis, researchers werelhgkeptical of the feasibility

of expressing all elements (including those consistingtipas tedious engineering)
of a complex analysis in Datalog. We believe that this is igedg what is missing at

this point in the evolution of Datalog. The language needsdaleveloped as a real
programming language, with appropriate library suppa, @.g., graphics, communi-
cation, etc., APIs), tool support, a mature engine (for aded automatic optimization
of rule evaluation andficient representation of relations), and possibly expvessi
ness enhancements (e.g., macros, exponential-searcheohigh-order capabilities).
A final element, which we are still debating whether it is esisé or an intermedi-

ate state, is the ability to manually optimize a Datalog paogy by exposition of an

easy-to-understand cost model and appropriate integadith the engine.

Such arguments are easy to see in the contexiob Dl he use of Datalog in &vp
is certainly not as a logic. &r is not written as an abstract specification that a clever
runtime system automatically optimizes and execufiégsiently. We needed to develop
an optimization methodology for highly recursive prograans to introduce indexes
manually, in order to attain optimal performance. Thadence in performance be-
tween optimized and unoptimizecbr rules is enormous. At the same timepdd is
expressed at a much higher level than a similar implememtati a points-to analysis
in Java or G-+. The declarativeness of Datalog and the suitability of tlogitBlox
Datalog platform for application development were cru@alDoor in more than one
way:

e We relied on query optimization (i.e., intra-rule, as opab$o inter-rule, optimiza-
tion) being performed automatically. This was crucial ferformance and, although
a straightforward optimization in the context of databasations, results in far more
automation than programming in a mainstream high-levejuage.

e The declarativeness and modularity afdd specifications contributed directly to per-
formance. The surprisingly high performance afdd compared to past frameworks
is due to combining two factors: simple algorithmic enhaneats, and an explicit
representation instead of BDDs. Eliminating either of ¢éhésctors results in com-
plete lack of scalability in Bop. For instance, an explicit representation alone makes
many standard analyses infeasible ioob even a 1H-object-sensitive analysis (i.e.,
1-object-sensitive with a context-sensitive heap) wowdccbmpletely infeasible for
realistic programs. Nevertheless, we observed that tbisdéscalability was due to
very high redundancy (i.e., large sizes of some relatiotisaui an increase in anal-
ysis precision) in the data that the analysis was compufihg.redundancy was easy
to eliminate with two simple algorithmic enhancemeritswe perform exception
analysis on-the-fly [1], computing contexts that are rebtshbecause of exceptional
control flow while performing the points-to analysis itséfhe on-the-fly exception
analysis significantly improves both precision and perfamoe2) we treat static class
initializers context-insensitively (since points-tou#s are equivalent for all contexts
of static class initializers), thus improving performandeile keeping identical pre-
cision. These enhancements (especially the former, wieishlts in highly recursive
definitions of core relations) would be quite hard to conside non-declarative con-
text. In Doop, such enhancements could be added with minor changes talésear
with just the addition of extra rules. Once redundancy isiglated via our algorith-
mic enhancements, an explicit representation (with thp b&lbur index optimiza-
tions) becomes much faster than using BDDs.

Based on our experience, we believe that Datalog can haviglat future for ap-
plication development. In a programming setting that hagemked for higher-level
programming abstractions, Datalog holds a great promike. lements missing in
order to fulfill this promise are not in the direction of greratieclarativeness and auto-
mated reasoning abilities. Pursuing more complete-ldgevariants of Datalog may
turn out to be an unreachable goal and is certainly not whratdsing in practice: Dat-
alog is already much more declarative than the mainstreagukeges currently used
for application programming. Instead, it is practical etants that are missing and that
can propel actual Datalog implementations to the mainstréa interesting question
is whether it is necessary for a programmer to treat a Dagatlogram as a program
and not as a specification, i.e., whether the programmerdinawe the ability to un-
derstand and manually influence the program’s execution cos

In summary, the Bor framework has raised the bar in the domain of points-to
analysis by introducing fast, modular, and scalable imgletations of precise points-
to analysis algorithms, while yielding important lessobsuat the architecture of such
implementations. At the same time, however, we hope tlab Will be representative
of future successes for Datalog application developmeataisole.

Acknowledgment§ his work was funded by the NSF (CCF-0917774, CCF-0934631)
and by LogicBlox Inc.

References

1. M. Bravenboer and Y. Smaragdakis. Exception analysispaits-to analysis: Better to-
gether. In L. Dillon, editor]SSTA '09: Proceedings of the 2009 International Symposiom
Software Testing and Analysidew York, NY, USA, July 2009.

2. M. Bravenboer and Y. Smaragdakis. Strictly declaratpecgication of sophisticated points-
to analyses. IMOOPSLA '09: 24th annual ACM SIGPLAN conference on Objece@ed
Programming, Systems, Languages, and Applicatibiesv York, NY, USA, 2009. ACM.

3. M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini. Dafmand continuous checking
of structural program dependencies. IGSE '08: Proc. of the 30th int. conf. on Software
engineeringpages 391-400, New York, NY, USA, 2008. ACM.

4. E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Stalsturce code queries with
Datalog. InProc. European Conf. on Object-Oriented Programming (EG)@ages 2—-27.
Spinger, 2006.

5. M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avot#). Carbin, and C. Un-
kel. Context-sensitive program analysis as databaseeguelth PODS '05: Proc. of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium oncifriies of database sys-
tems pages 1-12, New York, NY, USA, 2005. ACM.

6. O. Lhotak.Program Analysis using Binary Decision DiagranizhD thesis, McGill Univer-
sity, Jan. 2006.

7. O. Lhotak and L. Hendren. Evaluating the benefits of cdrgensitive points-to analysis
using a BDD-based implementatioACM Trans. Softw. Eng. Methodol8(1):1-53, 2008.

8. T. Reps. Demand interprocedural program analysis usigig Hatabases. In R. Ramakrish-
nan, editorApplications of Logic Databasepages 163—-196. Kluwer Academic Publishers,
1994.

9. Y. Smaragdakis, M. Bravenboer, and O. Lhotak. Pick yantexts well: Understanding
object-sensitivity (the making of a precise and scalablatpo analysis). INPPOPL '11:
Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposiu Principles of pro-
gramming languagesNew York, NY, USA, 2011. ACM.

10. J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Dagatath binary decision di-
agrams for program analysis. In K. Yi, editéXPLAS volume 3780 ofLecture Notes in
Computer Sciencgages 97-118. Springer, 2005.

11. J.Whaley and M. S. Lam. Cloning-based context-selegidinter alias analysis using binary
decision diagrams. IPLDI '04: Proc. of the ACM SIGPLAN 2004 conf. on Programming
language design and implementatigmges 131-144, New York, NY, USA, 2004. ACM.

