
HAL Id: halshs-00592118
https://shs.hal.science/halshs-00592118v2

Submitted on 11 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A cross entropy multiagent learning algorithm for
solving vehicle routing problems with time windows

Tai-Yu Ma

To cite this version:
Tai-Yu Ma. A cross entropy multiagent learning algorithm for solving vehicle routing problems with
time windows. J.W. Böse et al. ICCL 2011, Lecture Notes in Computer Science (LNCS) 6971,
Springer-Verlag Berlin Heidelberg, pp.59-73, 2011. �halshs-00592118v2�

https://shs.hal.science/halshs-00592118v2
https://hal.archives-ouvertes.fr


A cross entropy multiagent learning algorithm for 
solving vehicle routing problems with time windows  

Tai-Yu Ma 

 

LET-ISH, 14, Avenue Berthelot 
 F-69363 Lyon Cedex 07 

 
tai-yu.ma@let.ish-lyon.cnrs.fr 

Abstract. The vehicle routing problem with time windows (VRPTW) has been 
the subject of intensive study because of its importance in real applications. In 
this paper, we propose a cross entropy multiagent learning algorithm, which 
considers an optimum solution as a rare event to be learned. The routing policy 
is node-distributed, controlled by a set of parameterized probability distribution 
functions. Based on the performance of experienced tours of vehicle agents, 
these parameters are updated iteratively by minimizing Kullback-Leibler cross 
entropy in order to generate better solutions in next iterations. When applying 
the proposed algorithm on Solomon's 100-customer problem set, it shows  
outperforming results in comparison with the classical cross entropy approach. 
Moreover, this method needs only very small number of parameter settings. Its 
implementation is also relatively simple and flexible to solve other vehicle 
routing problems under various dynamic scenarios.  

Keywords: Vehicle routing problem, heuristic, cross entropy 

1   Introduction 

The vehicle routing problem with time windows (VRPTW) has been known as one of 
the NP-hard problems in combinatorial optimization. The problem consists of 
delivering goods to a set of customers, which must be visited within given time 
windows, at a minimum cost under available capacitated vehicle constraints. The 
standard VRPTW has been the subject of intensive study because of its importance in 
real applications, such as pickup and delivery problems in transportation of goods and 
fleet operation management. The exact and heuristic algorithms have been proposed 
and applied to Solomon's test instances and many real-life situations. Recent reviews 
in these solution techniques for the VRPTW can be found in [1][2][3].  

The state of the art of exact methods has successfully solved most of Solomon's 
100-customer benchmark instances. However, only very limited large instances have 
been solved to optimality [4]. Hence, an intensive effort has been engaged in 
proposing efficient heuristics for solving the VRPTW and related vehicle routing 
problems. The state of the art of heuristics includes: local search [5][6], adaptive large 
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neighborhood search [7] and evolutionary mechanism [8][9]. Basically, these 
heuristics apply two main procedures to construct and improve the solutions: the route 
construction procedure and the route improving procedure. The former consists of 
generating a set of feasible routes based on deterministic or stochastic route-building 
heuristics. This procedure provides initial points in order to apply some improving 
local search algorithms for finding high-quality solutions on the neighborhoods. In 
general, the neighborhood search space is very large; one needs to develop efficient 
searching strategies to find local optima. To this end, the local search algorithms are 
widely used, which consist of replacing a subset of initial solutions such that better 
solutions can be found. Numerous variants based on the local search framework have 
been proposed such as iterative local search [10][11], multistart local search [12][13] 
and adaptive multistart local search [5]. Basically, these local search algorithms 
generate initial solutions by the route construction heuristics or some random 
mechanisms, and then apply the local search heuristics such as k-opt, i.e. replacing k 
edges on a route traveled by a vehicle with k edges not on this route, or swap move, 
exchanging the position of two nodes on the same route, to improve solution quality. 
To avoid being trapped into local optima, related perturbation or randomization 
procedures need to be applied. The performance of the local search heuristics depends 
not only on the interaction between the route construction and the improvement 
procedures but also on the strength of the perturbation or randomization of the two 
procedures. To this issue, an adaptive large neighborhood search method has been 
proposed [7]. The authors proposed a flexible framework aiming to adaptively choose 
a set of local search techniques. This method provided an auto-adjusted mechanism to 
intensify or diversify searching neighborhood according to the performance of the set 
of heuristics. However, it needs to implement a set of heuristics, which is more time-
consuming and complicated than single-heuristic-based algorithm. 

Different from the aforementioned heuristics, the agent-based distributed solution 
techniques have been proposed recently. Vokrinek et al. [17] proposed a vehicle 
routing problem solver based on multiagent framework. The solver is composed of 
three types of agents in order to collect demand (task agent), allocate demand 
(allocation agent) and find routes (vehicle agent). The route construction algorithm is 
based on greedy search heuristics. The experiments were conducted for capacitated 
vehicle routing problem. The average solution quality within 91.3% optimality was 
reported. Barbucha and Jedrzejowicz [16] developed a multiagent platform for 
simulating dynamic vehicle routing system, i.e. customer requests arrive when the 
vehicles are running. The system is composed of a set of agents with different 
functionalities for executing different tasks such as initialization, customer request 
generation and route assignments for requests. Simple insertion rules are applied for 
customer request assignment to the vehicles. Other applications based on the 
multiagent framework in logistics can be found in [18]. In summary, these studies 
have developed simulation tools based on the multiagent approach to static or 
dynamic vehicle routing problems. However, the solutions found by these multiagent 
approaches are still far from the optima.  

In this work, a multiagent learning algorithm based on cross entropy (CE) method 
[14] is proposed. We associate a set of routing probabilities with nodes (customers) 
on the network, iteratively guiding the vehicles to find optimal routes, which 
minimize total cost, and satisfying capacity and time window constraints. Based on 
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the performance of the routes traveled by the vehicles in each iteration, the choice 
probability distributions of next outgoing nodes are iteratively updated. We consider 
the optimum solution as a rare event to be estimated based on the importance 
sampling theory. More precisely, we specify a random mechanism to generate 
feasible solutions (samples), controlled by a set of parameterized probability 
distribution functions (pdf). Based on the performance of the samples, the parameters 
are updated iteratively by minimizing Kullback-Leibler cross-entropy in order to 
generate better solutions in next iterations. A set of vehicle-specific transition 
matrices is associated with the nodes of the network to construct subsequently a 
feasible route for each vehicle. As the capacity and time window constraints need to 
be satisfied during the route construction process, a sequential importance sampling 
technique is utilized by constructing the solution sequentially, conditional on 
vehicle’s capacity and customer’s time windows constraints. The stochastic route 
construction procedure is repeated until all customers are serviced. As the classical 
CE method may be trapped on the local optima at its early stages, some local search 
techniques are combined with the CE method to avoid this problem and to improve 
significantly the convergence speed of the classical CE method. 

The rest of this paper is organized as follows. In section 2, we define the VRPTW 
problem and provide its mathematical formulation. Section 3 introduces the concept 
of the classical CE method and the proposed multiagent system for the VRPTW 
problem. Based on the performance of routes travelled by the vehicles, a hybrid 
scheme combining the agent-based CE algorithm and the local search procedure is 
proposed. This scheme enables local search performed only on a small subset of good 
solutions. Section 4 provides the computational results for Solomon's 100-customer 
VRPTW instances. Finally, the conclusions and future extensions are discussed. 

2   Problem formulation 

The mathematical formulation of the VRPTW problem can be stated as follows. Let 
),( EVG  be a directed graph with a vertex set V and an arc set E. The vertex set is 

composed of one depot (node 0) and n customers 1 to n, denoted as { }nV ,...,1,0= . The 
arc set is { }VjijijiE ∈∀≠= ,,),( . Each customer is associated with an amount of 
goods id  to be delivered. Let { }MM ,...,2,1=  be a set of homogeneous/heterogeneous 
vehicles with M  being the total number of vehicles. Each vehicle m has a fixed 
capacity mq . Each customer is associated with a time window ],[ ii ba , for which the 
customer cannot be serviced before ia  and after ib . Let is  be the arrival time for 
customer i. The service time for customer i is denoted as iu  with 0>iu , but no 
service time at the depot, i.e. 00 =u . Let the depot be associated with a scheduling 
time window ],[ 00 ba , for which any vehicle cannot depart the depot before 0a  and 
return to it after 0b . Each arc jiji ≠∀),,(  has an asymmetric travel time ijt  and an 
operation cost ijc .  
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The problem is to determine a set of routes, originating and terminating at the 
depot, such that total cost is minimal by satisfying: (1) each customer is serviced 
exactly once; (2) vehicle capacity cannot be violated; (3) all customers must be 
serviced within the service time windows. Let mr  denote a route, starting and 
terminating at the depot, composed of a sequence of customers visited by the vehicle 
m. The k-th visited customer of vehicle m is denoted as )(krm . Let 

{ }1,,...,2,1,0 += mmm nnδ  be a sequence of visiting order of the customers in mr  with 
0)1()0( =+= mmm nrr . We define an indicator imy  as 1 if customer i is serviced by 

vehicle m, and 0 otherwise. The set of routes for all vehicles is denoted as { }Mrrr ,...,, 21=r . We formulate the VRPTW problem mathematically as follows: 
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The objective function Eq. (1) minimizes the total travel cost. The constraints (2) 
mean that each vehicle cannot load goods exceeding its capacity restriction. The 
constraints Eq. (3) ensure that each customer is serviced exactly once. The constraints 
Eq. (4) ensure the consistency of service time for next visiting customer. The time 
windows are imposed by Eq. (5). The constraints Eq. (6) are the integrality 
constraints. Note that the above formulation is route-based, convenient for 
constructing routes for each vehicle based on the multiagent framework. 

3. Cross entropy learning algorithm 

The main concept of the CE method is to associate the optimization problem with an 
estimation problem throughout the route-searching process. The search process is 
characterized by a set of density functions associated with the nodes of the network. 
These density functions are iteratively updated based on the minimization of the 
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Kullback-Leibler distance (cross entropy) between density functions and optimal 
density functions. In the following, we present first the multiagent model for general 
vehicle routing problem simulation. Then we describe the cross entropy multiagent 
learning algorithm to solve the VRPTW problem. 

3.1 Multiagent model for vehicle routing problems with time windows 

The multiagent simulation framework is very convenient for modeling and simulating 
the general vehicle routing problems since it captures the system behavior dynamics 
resulting from the interactions of supply and demand. Basically, the system is 
composed of a set of heterogeneous agents with predefined behavior. The advantage 
of the multiagent approach resides on its flexibility in capturing complex interactions 
between different components of the system. 

The simulation of the VRPTW problem by the multiagent approach describes 
vehicle’s optimal route search process under its capacity and service time windows 
constraints. In current application, the system is specified as: 

 
• Customer agent: a set of customers with fixed demand is known a priori. Each 

customer agent needs to be visited exactly once. 
• Vehicle agent: a set of vehicle agents with fixed capacity is available in the 

system. Vehicle agents depart from and return to the depot by picking up 
customer requests under its capacity and service time windows constraints. The 
violation of these constraints is not allowed. 

• Environment (network): it is represented by a directed graph on which a set of 
vehicles operate on it. The network is characterized by a set of nodes representing 
the customers and a set of links associated with related characteristics. In static 
case, the travel time of link is fixed. In dynamic case, one can replace it with 
time-dependent travel cost function.  

 
The present multiagent framework is convenient in dynamic situations with time-

dependent travel cost or stochastic customer demand. 

3.2 Cross entropy learning algorithm 

The main idea of the proposed cross entropy learning algorithm is that we specify a 
parameterized random mechanism for vehicle agents to generate feasible routes. 
Based on the performance of these "samples" (a sample is a feasible solution of the 
VRPTW), the parameters of the random mechanism are updated towards the optimal 
solutions. This stochastic search algorithm is originated from the importance sampling 
techniques aiming to increase the accuracy of rare-event probability estimation. 
Basically, the CE learning algorithm is composed of two steps [14][19]: (1) generate a 
set of samples according to some stochastic mechanism; (2) update the parameters of 
stochastic mechanism based on the performance of the samples in order to generate 
better solutions at next iteration. As the classical CE method may be trapped in local 
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optima, we propose a hybrid scheme by combining local search algorithms in order to 
overcome this problem and increase the solution quality. 

The random feasible route generation mechanism moves vehicle agents from 
current customer/depot to next unvisited customers, one at each step, based on 
Markov chain on graph G(V,E), starting and ending at the depot. A set of vehicle-
specific transition matrix (a routing probability matrix), P={ Mppp ,...,, 21 } are 

associated with each node of the graph to construct subsequently a feasible route for 
one vehicle agent. The stochastic route construction procedure is repeated until all 
customers are serviced. Different from the classical CE method, the idea of the 
proposed method is based on the sequential importance sampling techniques [21], i.e. 
to construct a solution sequentially, conditional on capacity, while time windows 
constraints and partial solutions are already constructed before the current state. Note 
that the proposed CE learning algorithm is quite intuitive. It needs only to rescale the 
transition probabilities at current visiting node by eliminating infeasible candidates 
(next infeasible not yet visiting customers) in order to generate a feasible route at each 
step. If there is no feasible candidate to visit, the vehicle agent returns to the depot 
and next vehicle starts its route construction.  

Let the transition matrix of vehicle m be Mmpm
ijm ∈∀= ),(p  with m

ijp  being the 
transition probability for the vehicle m moving from node i to node j. Note that mp  is 

a VV ×  matrix with the first column and row being the depot. We set 0>m
ijp  if 

ji ≠ , and 0 otherwise. Each vehicle constructs a route sequentially based on its 
transition matrix and a prohibition list (infeasible candidates) until current state.  

As mentioned above, we cast the original optimization problem to an estimation 
problem of rare event probability. To increase the sampling performance at each 
iteration, a sequence of new sampling densities, called importance sampling densities, 
need to be chosen. The optimal importance sampling density *P  can be iteratively 
derived by minimizing the Kullback-Leibler cross-entropy distance [14][19]. First, a 
criterion of rare event (an approximate to optimal solution) γ  is associated with each 
iteration and updated according to the performance of independent and identically 
distributed (i.i.d.) samples. We associate γ  with an indicator { }γ≤)(rSI   being 1 if the 
performance of solution is better than γ , i.e. γ≤)(rS , and 0 otherwise. Let );( Prf  
denote the probability distribution function (pdf) of r (defined around Eq. (1)), 
parameterized by P. The probability of a global tour r is the multiplication of 
outgoing node choice probabilities in vehicle's route constructing process. Its 
logarithm can be written as: 

                               { }∑ ∑∑
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where )(rM  is the set of vehicles utilized for the solution r. )(kijR  denotes the set of 
feasible routes such that the k-th transition (move) is from node i to node j. The 
optimal important sampling distribution based on the minimization of the CE distance 
can then be obtained as: 
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Note that the above equation derives the optimal important sampling pdf based on 
known 1−wP . It is equivalent to the following optimization problem: 
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where )(i+Λ  denotes the successors of node i.  
 
By applying Karush-Kuhn-Tucker optimality conditions, the optimal solution of the 
above optimization problem can be obtained by differentiating with respect to m

ijp  as: 
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where )(kijR  is the set of routes, for which the k-th transition is from node i to node j. 
)(kiR  is the set of routes for which its k-th transition is starting from node i. N is the 

sample size.  
Note that the above updating rule states that m

ijp  is updated based on the transition 
proportion from node i to node j of the vehicle m, conditional on the global tour 
performance satisfying γ≤)(rS . As the above important sampling pdf could generate 
some infeasible tours in the sequential route construction process, a rescaling 
procedure is conducted at each step such that next node to be visited is drawn from 
the feasible node set. The CE learning algorithm is stated as follows. 

 
Algorithm 1: The CE learning algorithm 

 
Step 1: Initialize 0P  as a uniform pdf over the node set V. Order the endings of the 

time windows Vibi ∈∀,  from the smallest to the biggest. Set the iteration index 
w = 1. 

 
Step 2: Generate N i.i.d. samples according to the feasible route generation algorithm 

(described later). 
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Step 3: Order the solution performance )(rS  as a sequence )(...)()( 21 NSSS rrr ≤≤≤ . 
Apply the local search procedure (described later) for the samples in the λN  
best solutions. We set 3.01.0 ≤≤ λ .  

 
Step 4: Order the solution performance after the local search. The ρ -quantile of the 

performances )~(rS , i.e. ⎡ ⎤Nρ th lowest cost ( ⎡ ⎤x denotes the smallest integer 
greater than or equal to x), is denoted as a new “rare-event” criteria: 

                                                     ⎡ ⎤)( Nw S ρ=γ                                                    (13) 

As for the value of ρ  and the sample size N, it is recommended that as the 

sampling number increases, the ρ  value decreases. We set ρ  as 
V
c1   and 

2
2 VcN =  with 101 1 ≤≤ c  and 15.0 2 ≤≤ c , where the sample size N is smaller 

than in the classic CE method, reducing considerably the computational times.   

Step 5: Calculate wP  by Eq. (12) and apply the smoothed updating rule as follows: 

                                                www αα PPP )1(: 1 −+= − ,                                       (14) 

            It is recommended that α  takes a value in the range of 9.04.0 ≤≤ α  (see [19]).  
 
Step 6: To avoid being trapped into local optimum, the following dynamic parameter 

adjustment process is applied. If θ≤− −−− )(/)()( *
1

*
1

*
2 www SSS rrr , 

where 03.002.0 ≤θ≤ , multiply λ  by 1k  and ρ  by 2k  with 1.5< 1k <3, 1< 2k <2, 
where )( *

1−wS r  is the cheapest travel distance obtained in iteration w-1.   
            If for some iteration w , the value of wγ  stabilizes, i.e. cwww −− === γγγ ...1  , 

where c is a constant, or maxww =  then stops; otherwise set w = w + 1 and go 
to step 2. 

 
 
Algorithm 2: Feasible route generation algorithm 
 

This procedure rescales the transition matrix mp  (eq. 12) for each vehicle in a 
sequential way such that each customer (node) is visited exactly once and satisfies 
vehicle’s capacity and time windows constraints. The complexity of the rescaling 
procedure is )( 2nO . 
Step 1: Initialization. Set all customers as unvisited and vehicles depart from the             

depot. Set position index k=0 for each vehicle.   
Step 2: Rescaling choice probability of next visiting customers. For vehicle m 

currently located at its node i (customer), rescale the choice probability m
ijp  for 

next visiting node j as follows. First, set the choice probability of infeasible 
nodes (not satisfying capacity and time windows constraints, eq. (2)-(4)) as 0 
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and then normalize choice probabilities over all feasible outgoing nodes j to 
sum up to 1, i.e.  

,:
∑

Λ∈′
′

=

j

m
ji

m
ijm

ij p

p
p where Λ  is the set of feasible nodes for vehicle m at node i. 

Step 3: If next visiting node is the depot, stop for vehicle m and set m: = m + 1, 
otherwise repeat step 2. 

3.3 Local search procedure 

To improve the solution quality for the samples in the ρ -quantile of the best 
solutions in main algorithm 1, we apply the local search procedure. The procedure 
contains two phases. First, a greedy local search is applied. Then a route-exchange 
local search procedure is applied. 

• Greedy search: this procedure aims to reduce the number of utilized vehicles 
and exchanges some nodes to get the largest travel cost reduction. It contains two 
steps as follows:  
a. Remove the route with the least customers,  
b. Insert all nodes of the removed route, one node at a time, at the cheapest 

position of other routes. 
• Route exchange search: this procedure applies randomly one of the following 

two local search methods:   
c. Reverse move: reverse current ordering two nodes of the same route, 
d. K-Or-opt [15][22]: remove k nodes of current route and insert them in 

another position of the same route so that a feasible set of routes is 
preserved. This local search is implemented in the order of 1-Or-opt, 2-Or-
opt and 3-Or-opt. 

 
Note that one can also apply some more efficient local search techniques such as 

LKH local search [12] or sequential search procedures [15] to obtain an improved 
solution quality. 

4 Computational experiments 

The algorithm is tested on three datasets C1, R1 and RC1 of Solomon's 100-customer 
benchmark instances [20]. These datasets reflect different characteristics of 
customers’ positions, tight or loose time windows constraints and vehicles’ capacity. 
The algorithm is programmed in C++. 

The results are shown in Table 1. The best known or optimal solutions are listed in 
the left part of Table 1. The results show that the proposed algorithm finds near-
optimal solutions with an average error of 6.24% (N=10000) in comparison with 
optimal solutions. As the reported results are based on only 1 to 3 tests, better 
solutions can be found if trying more tests and modifying related parameter settings. 
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The comparison of running times and solution quality based on different sample size 
shows that the running time is basically proportional to the sample size. Fig. 1 reports 
the outperforming results of the proposed hybrid scheme compared with the classical 
cross entropy method. Note that the hybrid scheme utilizes fewer samples ( 27.0 n ) 
than the cross entropy method ( 210n≈ ) to achieve better solution quality. Fig. 2 
presents the average performance of different sample size on 12 instances of C1, R1 
and RC1 classes. Fig. 3-5 presents the impact of different parameter settings on 
solution quality. These tests are performed on the R102 dataset of Solomon's 100 
customer instances. Fig. 3 presents the smooth parameter α  on the convergence 
speed. The test experiences suggest that α  may be taken between 0.6 and 0.9 to 
obtain better solution quality. The impact of the size of the elite sample, 
parameterized by ρ , on solution quality is shown in Fig. 4. It suggests a range of 
[0.05, 0.1] for ρ . If ρ  is too small, say 0.01, the algorithm converges quickly to local 
optima. The influence of the sample size of local search on the solution quality is not 
very significant (Fig. 5). However, more efficient local search techniques play an 
important role in increasing the performance of the proposed algorithm.      

Table 1. Application of CE multiagent learning algorithm to Solomon's VRPTW 100 customer 
instances  

CE multiagent learning algorithm   Optimum/best 
known 

solution4 
N=7000 N=10000  

 Instance 

Distance Distance1 Relative 
error (%)

Time1  
(sec.) 

Time2 

(sec.) 
Distance1 Relative 

error (%) 
Time1 
(sec.) 

Time2 

(sec.) 

C101 827.3 840.1 1.55% 1105 2509 898.7 8.63% 1930 4384
C103 826.3 890.6 7.78% 1479 3359 896.3 8.47% 1942 4411
C105 827.3 867.1 4.82% 1366 3104 869.3 5.08% 2250 5111
C107 827.3 843.1 1.91% 1407 3196 841.1 1.67% 2157 4900
R102 1466.6 1551.0 5.75% 1325 3010 1539.1 4.94% 2151 4886
R104 971.5 1061.0 8.04% 1876 4263 1077.8 9.76% 2643 6003
R106 1234.6 1334.0 8.05% 1292 2936 1323.1 7.17% 2074 4712
R108 932.1 1040.3 8.26% 1557 3537 1044.2 8.67% 2367 5378

RC102 1457.4 1571.8 7.85% 1285 2918 1584.4 8.71% 2354 5347
RC104 1132.3 1248.8 9.98% 1721 3909 1226.6 8.02% 2242 5092
RC106 1372.7 1477.6 3.71% 1311 2978 1465.6 2.87% 2045 4647
RC108 1114.2 1242.0 8.97% 1427 3242 1241.2 8.90% 2126 4829

Average error  6.39% 6.24% 
Remark: 1.The parameter settings are  
                  2.1,0.2,02.0,2.0,05.0,7.0 21 ===θ=λ=ρ=α kk   
                  for all instances, except C103 with 15.0,07.0 =λ=ρ . 
              2. The above mentioned result is based on 1 to 3 runs for each instance. 
              3. Time1 is the total time executed on Dell Latitude E6400 with 2.53GHz  
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              and 3.48G memory. Time2 is based on the execution of the same program  
              on Asus Intel Pentium M processor 740 with 512MB memory. The  
              speedup ratio between the two laptops is about 2.27.   
          4. The best know solution is based on [23].    
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Fig. 1. Performance of CE multiagent learning algorithm compared with the 
classical CE method (without applying local search and dynamic parameter 
adjustment of Algorithm 1) (Solomon’s 50-customer C101 instance, ρ =0.05, 
α =0.7, optimum= 362.4) 
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Fig. 2. Influence of sample size on the average performance of the algorithm 
over 12 instances of C1, R1 and RC1 classes of Solomon’s 100-customer 
instances. The average optimum is 1082.47.  
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Fig. 3. Influence of the smooth parameter α  on the algorithm performance 
(Solomon’s 100-customer R102 instance, 2.1,0.2,02.0,2.0,05.0 21 ===θ=λ=ρ kk  
N=7000, optimum is 1466.6) 
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Fig. 4. Influence of the elite sample size on the algorithm performance (Solomon’s 
100-customer R102 instance, N=7000, 2.1,0.2,02.0,2.0,7.0 21 ===θ=λ=α kk ) 

 



 13

0 5 10 15 20 25 30 35 40
1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

Iteration

To
ta

l d
is

ta
nc

e

λ = 0.1

λ = 0.2
λ = 0.4

 
Fig. 5. Influence of the size of local search on the algorithm performance (Solomon’s 
100-customer R102 instance, N=7000, 2.1,0.2,02.0,05.0 21 ===θ=ρ kk ) 

5 Conclusions 

 
In this paper, a cross entropy learning algorithm is proposed for solving vehicle 
routing problems with time windows. The advantage of the proposed approach is that 
the optimal routing probability is iterative learned based on importance sampling and 
rare event simulation theory. By combing the local search procedure and introducing 
the dynamic parameter adjustment procedure, the proposed method can avoid being 
trapped in the local optimum and find quickly near-optimal solutions. The numerical 
tests show also that the hybridization of the local search technique and the CE method 
can improve efficiently the solution quality. As the proposed method is based on an 
adaptive learning procedure, it provides a general method for solving vehicle routing 
problems under stochastic environment. Moreover, the proposed method needs only 
very small number of parameters settings. Its implementation is also relatively simple 
and flexible for various vehicle routing problems. Currently, the numerical study 
based on some Solomon's 100-customer VRPTW instances is implemented.  

Future extension concerns the application of multiagent framework on general 
dynamic vehicle routing problems solving. It is also interesting to apply an 
appropriate data structure and more efficient implementation techniques for large 
scale instance (200 to 1000 customers). Moreover, other efficient local search 
techniques can be implemented to improve local search performance. 
 
 
 
 



 14

Acknowledgements 
 
This research has benefited from a grant of ANR (the French Agency for Research) 
project, Mutualisation et Optimisation de la Distribution Urbaine de Marchandises 
(MODUM). 

References 

1. Cordeau, J.F., Desaulniers, G, Desrosiers, J. Solomon, M. M., Soumis, F: The VRP with 
time windows. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem. SIAM 
Monographs on Discrete Mathematics and Applications. pp. 157--194 (2002) 

2. Braysy, O., Gendreau, M.: Vehicle routing problem with time windows. part I: Route 
construction and local search algorithms. Transportation Science. 39, 104--118 (2005) 

3. Braysy, O., Gendreau, M.: Vehicle routing problem with time windows. part II: 
Metaheuristics. Transportation Science. 39, 119--139 (2005) 

4. Golden B, Raghavan S, Wasil E, (eds). The vehicle routing problem, latest advances and 
new challenges. In: Operations research/computer science interfaces series, vol. 43. Berlin: 
Springer; (2008) 

5. Ibaraki, T., Imahori, S., Kubo, M., Masuda, T., Uno, T., Yagiura, M: Effective local search 
algorithms for routing and scheduling problems with general time window constraints. 
Transportation Science. 39(2), 206--232 (2005) 

6. Hashimoto, H., Ibaraki, T., Imahori, S., Yagiura, M.: The vehicle routing problem with 
exible time windows and traveling times. Discrete Applied Mathematics. 154, 2271--2290 
(2006) 

7. Pisinger, D., Ropke, S. A general heuristic for vehicle routing problems. Computers & 
Operations Research. 34, 2403--2435 (2007) 

8. Braysy, O., Dullaert, W. Gendreau, M.: Evolutionary algorithms for the vehicle routing 
problem with time windows. Journal of Heuristics. 10, 587--611 (2004)  

9. Homberger, J., Gehring, H.: A two-phase hybrid metaheuristic for the vehicle routing 
problem with time windows. European Journal of Operational Research. 162, 220--238 
(2005) 

10. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating 
local search heuristic. Operation Research Letters. 11, 219--224 (1992) 

11. Hashimoto, H., Yagiura, M., Ibaraki, T.: An iterated local search algorithm for the time-
dependent vehicle routing problem with time windows. Discrete Optimization. 5, 434--456 
(2008) 

12. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman 
heuristic. Datalogiske skrifter (Writings on Computer Science) no. 81. Roskilde University 
(1999) 

13. Braysy, O., Hasle, G., Dullaert, W.: A multi-start local search algorithm for the vehicle 
routing problem with time windows. European Journal of Operational Research. 159, 586--
605 (2004) 

14. Rubinstein, R. Y.: The Cross-Entropy Method for Combinatorial and Continuous 
Optimization. Methodology and Computing in Applied Probability. 2, 127--190 (1999) 

15. Irnich, S., Funke, B., Grunert, T.: Sequential search and its application to vehicle-routing 
problems. Computers & Operations Research. 33, 2405--2429 (2006) 

16. Barbucha, D., Jedrzejowicz, P. Multi-agent platform for solving the dynamic vehicle 
routing problem. In: Proc.of 11th Int. IEEE Conf. on Intelligent Transportation Systems, 
pp.517-522. (2008) 



 15

17. Vokrinek, J., Komenda, A., Pechoucek, M.: Agents Towards Vehicle Routing Problems. In: 
Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Systems, pp.773-780 (2010) 

18. Davidson, P., Henesey, L., Ramstedt, L., Tornquist, J., Wernstedt, F.: An analysis of agent-
based approaches to transport logistics, Trans. Res. Part C. 13, 255--271 (2005) 

19. De Boer, P.T., Kroese, D. P., Mannor, S., Rubinstein, R.Y.: A Tutorial on the Cross-
Entropy Method. Annals of operations research. 134(1), 19--67 (2005) 

20. Solomon, M. M.: Algorithms for the vehicle routing and scheduling problems with time 
window constraints. Operations Research. 35, 254-265 (1987) 

21. Rubinstein, R.Y., Kroese, D.K.: Simulation and the Monte Carlo Method. Wiley Series in 
Probability and Statistics (2008) 

22. Croes G.: A method for solving traveling-salesman problems. Operations Research. 6, 791-
-812 (1958). 

23. Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D. : Subset-Row Inequalities Applied 
to the Vehicle-Routing Problem with Time Windows. Operations Research. 56(2), 497--
511 (2008) 


