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Abstract. Ramsey’s test for conditionals seems to be in conflict with
the so-called Thomason conditionals. A Thomason conditional is a con-
ditional in which either the antecedent or the consequent is a statement
about the reasoning agent’s own beliefs. Several authors have pointed
out that resolving the apparent conflict is to be sought by abandon-
ing the belief revision interpretation of the Ramsey test in favor of a
suppositional interpretation. We formalize an AGM-style notion of sup-
position, showing that it is identical to revision for agents who are not
autodoxastic—agents who do not reason about their beliefs. We present
particular realizations of supposition in terms of revision and identify
the relations between the conditionals supposition and revision give rise
to.

1 Ramsey, Thomason, and Moore

In this paper, we attempt to consolidate two issues that, apparently, are in ten-
sion: the Ramsey test for conditionals and the so-called Thomason conditionals.
The Ramsey test grounds the plausibility of conditionals (roughly, sentences of
the form “If P then Q") in a process of belief change. In an often quoted excerpt
from [1], Robert Stalnaker gives a procedural interpretation of the Ramsey test:

First, add the antecedent (hypothetically) to your stock of beliefs; sec-
ond, make whatever adjustments are required to maintain consistency
(without modifying the hypothetical belief in the antecedent); finally,
consider whether or not the consequent is then true.

Researchers in artificial intelligence (AI) and philosophical logic will imme-
diately recognize the process Stalnaker is referring to as one of belief revision
[2]. This is certainly a welcome interpretation of the Ramsey test, since belief
revision has been thoroughly investigated both in AI (for example [3,4]) and
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philosophy. Unfortunately, interpreting the Ramsey test as implying a process
of belief revision has been dealt at least two blows.

First, Peter Gérdenfors [5] proved that the belief revision interpretation of
the Ramsey test is inconsistent with a minimal set of harmless demands on
a logical theory. We do not address this problem here; but see [6]. Second, a
number of authors, since 1980 [7] till the turn of the decade [8-11], have pointed
out that the Ramsey test, a la Stalnaker, provides counter-intuitive judgments
of some conditionals—the so-called Thomason conditionals [7].

Thomason conditionals are conditionals in which either the antecedent or the
consequent are statements about the reasoning agent’s own beliefs. In particular,
they come in four main forms:!

TC1. If ¢, then I believe ¢.
TC2. If I believe ¢, then ¢.
TC3. If ¢, then I do not believe ¢.
TC4. If I do not believe ¢, then ¢.

Given the Stalnaker (belief-revision) interpretation of the Ramsey test, one
should accept TC1 and TC2, and reject TC3 and TC4; otherwise, one would
succumb to accepting a Moore-paradoxical sentence:

M1. ¢ and I do not believe ¢.
M2. Not ¢ and I believe ¢.

But these judgments are not always correct, as several examples attest.
(1) ? If Sally is a spy, then I believe that Sally is a spy.
(2) 7 If I believe that Sally is a spy, then Sally is a spy.

(3) If Sally were deceiving me, I would believe that she was not deceiving me
(because she is so clever).?

(4) Even if I were not to believe that Sally is a spy, she would be a spy (my
misconceptions do not change the facts).

A number of authors have attempted to reconcile the Ramsey test with such
data [8-11]. The main idea is that Stalnaker’s interpretation of the Ramsey test
is not exactly faithful to Ramsey’s real proposal. However, except for Willer
[10] who presents a theory within the framework of update semantics, these
proposals are largely informal. In this short report, we propose to stay as close
as possible to the AGM belief revision tradition [2]. We introduce an AGM-
style belief change operator—supposition—that, we claim, adequately accounts

! Strictly speaking, the agent’s own beliefs need not explicitly appear in a conditional
to make the same “Thomason-effect”, but even in such cases, beliefs of the agents
are assumed to establish the relevance of the antecedent to the consequent.

2 This is a classical example attributed to Richmond Thomason (hence, “Thomason
conditionals”), but appears in print in [7].
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for Thomason conditionals if taken to be the belief change operator implicit in
Ramsey’s test. Unlike [10], however, we retain the common epistemic reading of
the Ramsey test side by side with the suppositional one. Hence, we distinguish
two classes of conditionals, based on these two readings.

2 Autodoxastic Agents

We call an agent that can reason about its beliefs an autodoxastic agent. Why
is it paradoxical for an autodoxastic agent to hold beliefs such as M1 and M27?
Intuitively, in normal situations (which we assume throughout), an agent cannot
hold that ¢ is true and simultaneously fail to believe it; or hold that ¢ is not
true and, nevertheless, believe it. But things are not that simple, or otherwise
how would one reply to Chalmers and H4jek’s remarks [8] about the oddity of
unconditionally accepting TC1 and TC2?

The two pairs (M1, M2) and (TC1, TC2) both make sense in some contexts
of reasoning, and make no sense in others. In some contexts of reasoning—regular
contexts—the contexts within which the agent normally and usually reasons,
what the agent takes to be true is identical to what it believes. In such contexts,
TC1 and TC2 are totally acceptable, while M1 and M2 are impossible. In
non-regular contexts, the opposite is true: M1 and M2 are possible while TC1
and T'C2 are usually not acceptable.

What are these non-regular contexts? These are hypothetical contexts of
reasoning, in which the agent entertains what the world would be like under
one or more suppositions. But once the agent is endowed with the capacity for
hypothetical reasoning, it may suppose anything about the world, even things
about its own beliefs and their incompatibility with how the (hypothetical) world
is. Certainly, the agent may entertain worlds in which ¢ is true, but it does not
believe it. Hence, in non-regular contexts M1 and M2 are not paradoxical at
all. In addition, TC1 and TC2 are clearly irrational, in general. Thus, unlike in
TC1 and TC2, the “if” in TC3 and T4 does not mean “if I accommodate ¢
(respectively, —¢) in my regular context” (the belief revision, epistemic reading);
rather, it means “if I suppose ¢ (respectively, =¢) in a non-regular context” (the
suppositional reading).

This being said, our task then is to formalize the distinctions between (i)
regular and non-regular contexts, (ii) revision and supposition, and (iii) epistemic
and suppositional conditionals.?

3 We use “autodoxastic” rather than “autoepistemic” not just to be different from
Moore [12]. In Moore’s autoepistemic logic, only what correspond to our regular
contexts are considered. Thus, for an autoepistemic agent, knowledge and belief are
equivalent. In our case, since we consider non-regular contexts of reasoning, using
the term “autoepistemic” is at least misleading; we stand by “autodoxastic” then.
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3 Truth is in the “I” of the “B” Holder

Suppose we have a logical language with an operator B for belief and a constant
I that denotes the reasoning agent; the agent whose beliefs are represented by
sentences of the language. What characterizes a regular context of reasoning?
According to our discussion so far, regular contexts of reasoning should admit
TC1 and TC2. Thus, we may label a context “regular” if it admits the following
B-schema (after Tarski’s T-schema).

¢ =B(L¢)

But on closer examination, this formula is too strong. For example, the fol-
lowing line of reasoning is possible.

-B(L ¢) = —~¢ = B(I,~¢)

Hence, the following would be derivable:

ﬁB(L ¢) ) B(I, ﬁ(b)

The agent, thus, holds an opinion about every proposition. Now, we may try
to avoid this by abandoning the B-schema and sticking to Moore’s notion of au-
toepistemic models [12], in which regularity is enforced through non-monotonic
rules of inference. This, however, will not be our favorite route in this paper.
First, we believe that (a variant of) the B-schema would still be derivable. Sec-
ond, we will be forced to adopt a non-monotonic logic. In this first report on
autodoxastic conditional reasoning, we would like to focus on properties of revi-
sion and supposition in the monotonic case, without getting entangled into the
complications that a non-monotonic treatment is bound to get us into.

Hence, we shall adopt a weakened version of B-schema. In particular, the
problematic direction (viz ¢ D B(I, ¢)) will be replaced by the weaker formula

¢ > B(L¢)

where ﬁ(I, ¢) is B(I, ¢) with B pushed inside till the outermost positive disjunc-
tion or existential quantifier.* To make this notion precise, we need to introduce
a particular language for reasoning about belief.

4 LogaB

The language we use in the representation of and reasoning about belief is Log4 B
[14, 15], an algebraic logic of belief, consisting only of sorted terms and no formu-
las. Instead, a special sort of terms is taken to denote propositions. Semantically,
the domain of propositions is a complete, non-degenerate, Boolean algebra [16].

4 A similar manoeuver was made by Perlis [13] with the T-schema in order to avoid
paradoxes of self-reference.
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Thus reifying propositions provides us with high expressivity compared to stan-
dard modal approaches to belief ([17,18], for instance), while avoiding the com-
plications and susceptibility to self-reference paradoxes that plague syntactical
approaches [19,13].

For example, the sentence “John believes that Sally is a spy” may be repre-
sented in Log4B by the term

B(J, Spy(S))
where Spy(M) is a functional term denoting the proposition that Mary is a spy,
while B(J, Spy(M)) is a functional term denoting the proposition that John
believes that Mary is a spy. Thus, the belief operator is neither a modal opera-
tor nor a predicate symbol, but a function symbol B denoting a function from
pairs of agents and propositions to propositions. The sentence “John believes
everything that Sally believes” may be easily expressed in Log4B:

Vz[B(S,z) D B(J, )]

For limitations of space, we only give a brief presentation of LogsB syntax;
for more details about the syntax and semantics, see [14,15]. A Log 4B language
is a set of terms partitioned into two base syntactic sorts, op and o;. Intuitively,
op is the set of terms denoting propositions and oy is the set of terms denoting
anything else. A distinguished subset o4 of o; comprises agent-denoting terms.
Standard propositional connectives in B are function symbols on op; quantifiers
are treated as punctuation symbols that, together with variables and op terms,
construct op terms. The belief operator B is a dyadic function symbol that
forms a op term when combined with, respectively, a 04 and a op term.

For the purpose of this paper, we introduce to LogaB a function symbol B
akin to B, and is interpreted in such a way that it forms terms which are loglcally
equivalent to op terms with occurrences of B distributed and pushed inwards
to the outermost occurrences of positive disjunctive terms. More precisely, if [-]
is the semantic interpretation function, then the following restrictions on the
interpretation of B apply; a € o4, {¢,¢} C op, and 7 is an atomic op term.

~ [B(a,m)] = [B(a,m)]
[B(a,~¢)] = [-B(a, )]
— [B(a, ¢ V)] = [Bla, ¢ V)]

[B (o, 32(6])] = [B(a, 3[g))]

A, D, =, and V are defined in the usual way in terms of -, Vv, and 3.

In the rest of the paper, we assume a LogaB language Ly. If £ C L, then L7
denotes the set of terms of sort 7 in £. Such a set L is propositionally closed if it
is the closure of some subset of Ly under Boolean connectives and quantification.

5 Revision

For the purpose of this paper, we assume contexts to be sets of £F terms, where
L is a propositionally-closed subset of Ly3. An L context system is a set C of
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L-contexts satisfying certain closure properties; for example, deductive closure.
However, nothing much hangs on what these properties exactly are; some of
them will be pointed out as we proceed with the discussion.

For an £ context system C, revision is a mapping ® : C x L — C. The
six basic AGM postulates for revising a context I with a £ term ¢, denoted
K & ¢, are [2]:

(A®1)

(A4%2)

(A®3) Consistency: If Cn(K ® ¢) = LT then Cn({¢}) =

(A®4) Expansion 1: Cn(K ® ¢) C Cn(K U {¢}).

(A®5) Expansion 2: If =¢ € Cn(K), then Cn(K U {¢}) C Cn(K ® ¢).
(A®6) Extensionality: If ¢ =) € Cn(@), then Cn(K ® ¢) = Cn(K ® v).

Closure: K ® ¢ € C.°
Success: ¢ € K ® ¢.

In the above postulates, where I" C £F, Cn(I') is the set of consequences of
I'—the closure of I" under a set of LogaB rules of inference. In particular, we
envision a set of natural deduction rules as in [6]. Throughout the discussion,
Cn is taken to be monotonic.

In the rest of the current section, unless otherwise stated, we consider only
the case when £ = Lj. The fundamental distinction we make in autodoxastic
context systems is that between regular and non-regular contexts.

Definition 1 For every o € o4, a context K € C is a-reqular if the following
reflection principles are in Cn(K).

(R1) ¥p [p O B(a,p)] and
(R 1) ¥p [B(a,p) D p

The ability to quantify over propositions allows us to succinctly represent
the reflection principles. Otherwise, in a modal setting for instance, each of (RY)
and (RJ) would correspond to an infinite conjunction of instances. In particular,
within LogsB, we can revise with [(R]) A (R])], whereas a modal approach will
require an infinitary logical treatment.

The following results immediately follow.”

Observation 1 Let K be an a-regular context.

1. K is a-consistent: Vp [B(a, —p) D -B(a, p)] € Cn(K)
2. K is a-positively-faithful: Vp [B(a, B(a,p)) D B(a, p)] € Cn(K)

3. For allmn € N, ¢ D _m(a,qb) € Cn(K), where E)l( ,P) = ﬁ(a,qﬁ) and

=44 -1

B'(0.0) = B(a. B' (a6, for i > 1

5 Thus, C is closed under revision with terms in £F.
5 All proofs are mostly straightforward, and are deferred, for completeness, to an
appendix. For limitations of space, proofs of observations are omitted.
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Thus, regularity entails consistency, faithfulness, and a kind of positive in-
trospection with respect to B. Most importantly, however, such a context has
the property that ¢ and B(a, ¢) are almost synonymous. This is the essence of
subjective belief as discussed in Section 2.

It should be noted that some anomalous inferences are not possible. For
example, Vp [-B(a,p) D B(a,—p)] is generally not derivable in an a-regular
context, whereas it would have been had we decided to replace B in (R 1) with
B. (See the discussion of Section 2.)

In addition to the standard AGM postulates, the following postulate con-
strains the effect of revision on the regularity of the revised context. In essence,
it requires the adopted revision strategies to protect (R 1) and (R |) as much
as possible.

(A®7) Regularity: If K is a-regular and K & ¢ is not a-regular, then
[(RT) v ~(R])] € Cn({¢}).

From (A®2), (A®3), (A®7), and monotonicity of Cn, (T®1) immediately
follows:

(T®1) Regularity preservation: If K is a-regular, then K ® ¢ is not a-regular if
and only if [-(R 1) V(R |)] € Cn({¢}).

Ezample 1. Let K be an a-regular context. Clearly,  ® [p A =B(«, p)] is not
regular. Intuitively, if one is to revise their beliefs with an atomic proposition
and the fact that they do not believe that very proposition, then one is implicitly
abandoning (R 1). Similarly, K ® [-p A B(a, p)] is not regular. But, this time,
the new information is in direct contradiction with (R [). O

6 Supposition

Corresponding to the basic revision postulates, the following is a set of postulates
for idealized supposition. There is one supposition operator @, : C x LF — C
for every a € LA, where C is an £ context system.

(A®21) Closure: K &, ¢ € C.

( 2) Success: ¢ € K @, ¢.

(A®=3) Consistency: If Cn(K @4 ¢) = L7, then Cn({¢}) = L.

(A®=4) Extensionality: If ¢ =1 € Cn(@), then Cn(K @&, ¢) = Cn(K &4 ¢).

The above postulates are identical to their revision counterparts. Only the
expansion postulate are missing. In general, supposition causes more damage to
a context than revision; it may add more than the supposed proposition to the
context and, even when the supposed proposition is consistent with the context,
preservation of the old information is not guaranteed.

In case L = Ly, the following regularity-related postulates constrain the
behavior of @,,.
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(A®=5) Expansion 1: If KU{¢} is not a-regular, then Cn(K&,¢) C Cn(KU{p}).

(A®=6) Expansion 2: If =¢ € Cn(K) and K U {¢} is not a-regular, then
Cn(KU{¢}) C Cn(K @4 ¢).

(A%=7) Regularity: If K @&, ¢ is a-regular, then [(R 1) A (R |)] € Cn({¢}).

From (A®=2) and (A%>7), the following immediately follows.
(T%1) K @4 ¢ is a-regular if and only if [(R 1) A (R |)] € Cn({¢}).

The intuition behind (A®=6) is that consistent supposition in a non-regular
context should adhere as much as possible to the revision postulates. (4%=7)
guarantees that, unless forced, supposition always yields a non-regular context.
In fact, we can prove the following.

Observation 2 If C is an L context system, such that every K € C is not a-
reqular, an operator ® : C x op — C is a revision operator if and only if it is
an a-supposition operator.

Ezample 2. The condition requiring all contexts in C to be not a-regular is
satisfiable by placing restrictions on the underlying language L. Following are
examples of such restrictions.

1. £ = {¢|¢ does not contain the symbol B}: In this case, we restrict reasoning
to objective sentences only. Neither ( Rg nor (R |) can be in any context.
2. L = {¢|¢ does not contain the symbol B}: Here, the function symbol Bis
not part of the language. Thus, (R 1) cannot be in any context.
3. L = {¢|¢ does not contain B(a, ) as a sub-term for any term }: Since
B(, ) is not mentionable in the language, then so are (R 1) and (R |).
O

Thus, for an autodoxastic agent «, the above example shows that revision
and a-supposition are indistinguishable under at least the following conditions:
(i) « cannot reason about belief, (ii) o can reason about belief but not about
introspection, and (iii) « can reason about beliefs and introspection but not
about its own beliefs.

7 Varieties of Supposition

The postulates of supposition are general enough to admit a number of different
supposition operators, each with a different intuitive flavor. Before defining these
operators, however, one notion is needed.

Definition 2 For a context K and an L' term ¢, the set of a-deregulation
subsets of IC with respect to ¢, is the set

Au(K,¢) = {K'|K' C K and K' U {¢} is not a—regular}

The set of a-deregulation closures of K with respect to ¢ is the set

8a(0,K) = {K" € An(K, ®)| there is no K" € A, (K, ¢) such that K’ c K"}
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The following observations about deregulation subsets immediately follow.

Observation 3 Let K be an L context, ¢ € LT, and o € LA.

1. If K' € AL (K, ¢), then K' is not a-regular.

2. If K € AL(K, @), then §,(0,K) = {K}.

3. Aa(¢,K) = @ if and only if [(RT) A (R])] € Cn({¢}).

4. If ¢ € K, then Cn(K'®¢) = Cn(K'U{¢}) = Cu(K'), for every K' € §,(¢, K).

Using the notion of deregulation closures, we may now define particular sup-
position operators. Two of these are especially interesting, we call them con-
servative post-deregulation and conservative pre-deregulation operators. These
operators are conservative in the sense that they preserve as much of the original
context as possible.

Definition 3 Let @, : C x L — C.
1. ®4 1s a conservative post-derequlation operator if

Kono_ |80 i ba0.K) =0
7T\ K ® ¢ otherwise, for some K’ € 6,(¢,K)

2. ®q s a conservative pre-derequlation operator if

Koo [KE0 i 6(0.K) =2
7T I K ® ¢ otherwise, for some K’ € 6,(4, K ® ¢)

In what follows, a conservative deregulation operator is either a conservative
post-deregulation or a conservative pre-deregulation operator.

Theorem 1. A conservative derequlation operator is a supposition operator.

A corresponding pair of deregulation operators are more aggressive than the
conservative ones in the method they employ for deregulation.

Definition 4 Let ®, : C x L — C.

1. ®4 1s an aggressive post-deregulation operator if

o [K90 5,06, = 5 or 5(6.) = K}
©a =K @ ¢ otherwise, for some K € 6a (e, K ® ~[(R]) A (R1)])

2. ®q s an aggressive pre-deregulation operator if
K®a¢= K®¢ if 0,(0,K) =2 or §,(0,K) = {K}
T K ® ¢ otherwise, for some K’ € 6,(¢, (K® ¢) ®-[(RT)A (R ])])

In what follows, an aggressive deregulation operator is either an aggressive
post-deregulation or an aggressive pre-deregulation operator.

Theorem 2. An aggressive derequlation operator is a supposition operator.
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The four supposition operators presented above are deregulation operators
varying along two orthogonal dimensions. Conservative deregulation eliminates
a-regularity with as minimal perturbation to the context as possible (where
minimality is determined by ®). Thus, by conservatively supposing ¢, an agent
assumes ¢ to be true, but makes no assumption about the completeness or falli-
bility of its beliefs. As far as such an agent is concerned, the suppositional context
admits the possibility of omniscience and infallibility. By aggressive supposition,
on the other hand, the agent consciously adopts that it is either ignorant or
fallible.

The second factor distinguishing deregulation operators is whether the first
revision precedes or follows the deregulation step. The difference is the following:
in post-deregulation, the agent supposes only the truth of ¢, but not that it
believes ¢; pre-deregulation supposes both that ¢ is true and the agent believes
it.

8 Conditionals

With a number of belief change operators at our disposal, we now introduce a
class of conditional connectives. Let £; be the closure of Ly under the set of
binary P-operators {&—}U {&—a}qaca. For every operator ©— in this set, we
add the following two rules to our inference cannon.

PO— P
(O B etk o9

e Cn(K o )
¢C— Y

(&= E) and (&— I) are bridge rules [20] constituting the two directions of
the Ramsey test, where the underlying operation of belief change is interpreted
as ©.

The following is a simple corollary of Observation 2.

(©= 1)

Observation 4 If C is an L context system, such that every K € C is not -
reqular, then there is an a-supposition operator, @, such that, for every ¢, €
LY [p®— 1 = ¢B—4 Y] € Cn(K), for every K € C.

Of course, the particular a-supposition operator referred to is nothing but ®
itself. Hence, the equivalence of ®&— and &—,,.

Strong connections between ®— and &—,, may be established, if we consider
only deregulation operators. First of all, it might be tempting to declare that
®— and &—,, are equivalent in contexts which are not a-regular. This, however,
is not true; our first result is a negative result.

Non-Theorem 1 Let ®, be a deregulation operator on an L context system C.
For every ¢,v € LY and K € C, if K is not a-regular, then [¢p&— 1 = ¢B—,
Y] € Cn(K).
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Counterexample 1. Let £ = {(R1),p}. Clearly, K is not a-regular. Also,
clearly, (p D (R]))®— [(RT) A (R])] € Cn(K). Nevertheless, whatever the
deregulation operator we assume, (p O (R]))®—q [(RT) A (R])] & Cn(K), since
K @®a (p 2 (R])) is not a-regular, given (T%=1). O

On the background of Observation 4, the above non-theorem shows that,
once a language is expressive enough to represent regularity, supposition and
revision are not generally equivalent in non-regular contexts. We may, however,
achieve positive results by strengthening the conditions of non-regularity.

Theorem 3. Let B, be a deregulation operator on an L context system C. For
every ¢, € LY and K € C, if KU {¢} is not a-regular, then [(¢p®— ) =
(¢@—a ¢)] € Cn(K).

In other words, deregulation and revision with ¢ are equivalent whenever the
mere expansion with ¢ will not result in a-regularity. Here, we rely on a strength-
ening of the conditions of non-regularity. On the other hand, by weakening the
relation between &— and ®—, we get a strong positive result for conservative
pre-deregulation.

Theorem 4. Let &, be a conservative pre-deregulation operator on an L context
system C. For every ¢, € LY and K € C, [(¢®—4 ¥) D (¢®— )] € Cn(K).

A similar pervasive result cannot be derived, however, for conservative post-
deregulation.

Non-Theorem 2 Let @, be a conservative post-deregulation operator on an L
context system C. For every ¢,v € LY and K € C, [(¢F—q ¥) D (¢®— )] €
Cn(K).

Counterexample 2. Let £ = {(R1), (R]), " B(a,p)}. From (A®7), it follows
that Cn(K ® p) = Cu({(R1),(R|),p}). On the other hand, Cn(K @, p) =

Cn({pv _'B(aap)})' o

Similar to conservative post-deregulation, no assumption weaker than the
non-regularity of I U {¢} may guarantee any implications between ®— and
aggressive &—. Basically, since aggressive supposition involves an initial revision
with =[(RT) A (R])], Cn(K @4 ¢) C Cn(K ® ¢) is, in general, not true. On
the other hand, since K ® ¢ may be a-regular while K &, ¢ is usually not,
Cn(K ® ¢) C Cn(K @, ¢) is not guaranteed either.

9 Conclusions

Despite the apparent tension between the Ramsey test and Thomason condi-
tionals, a suppositional interpretation of the Ramsey test resolves the conflict.
We have presented two classes of conditionals, the epistemic conditionals based
on belief revision, and the suppositional conditionals based on supposition. Four
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supposition operators where defined in terms of revision. These operators give
rise to different classes of suppositional conditionals, each with its own features.
Relations between these conditionals and the corresponding epistemic condi-
tional, we believe, conform with our intuitions. In particular, we have shown
that, in the absence of regular contexts, revision and supposition are identical.
This explains the elusiveness of the distinction between the epistemic and the
suppositional readings of the Ramsey test, which is only revealed in autodoxastic
contexts where non-regular contexts are admitted.

The work presented here is in no way complete: formal semantics for Log,4B
expanded with conditionals is yet to be elucidated; the relation between revi-
sion, supposition, and update [21] awaits investigation; and a non-monotonic
treatment of autodoxastic logic seems to be the next natural step.
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A Proofs

A.1 Proof of Theorem 1

Let ®, be a conservative post-deregulation operator. Since K ®,, ¢ is basically
the result of revising some context with ¢, then ©, satisfies (A®=1) through
(A®4).

(A®a5). If KU{¢} is not a-regular, then by the second clause of Observation 3,
3o (K, ¢) = K. Hence, K ©®q ¢ = K ® ¢. Thus, by (A®4), ®,, satisfies (A%=5).

(A®26). If 6,(K,p) = @, then K U {¢} is a-regular, and (A®=6) is trivially
true of ®,. Otherwise, let K’ € 6, (K, ). If KU {¢} is not a-regular, then
K" € 6.(K, @), and, by the second clause of Observation 3, K’ = K. Hence,
K ®a ¢ =K® ¢ and, by (A%4), Cn(K U {¢} C Cn(K ©q ¢)).

(A®7). If §,(K,9) = @, then K ©p ¢ = K ® ¢. Moreover, A,(K,¢) = @
and, by the third clause of Observation 3, [(RT) A (R])] € Cn({¢}). Hence,
(A®=7). On the other hand, if §,(K,$) # &, then K ©, ¢ = K' & ¢, for
some K’ € §,(K, ¢). Since K' U{¢} is not a-regular, then, by (A®4) and the
monotonicity of Cn, it follows that K ®, ¢ = K’ ® ¢ is not a-regular either.
Thus, (A%=7) trivially follows.

Now, let ®, be a conservative post-deregulation operator. Similar to the
post-regulation case, @, satisfies (A%>1) through (A%=4).

(A®a5). If 6,(K,¢) = @, then K Oy ¢ = K ® ¢, which, by (A®4), satisfies
(A®=5). Otherwise, K On ¢ = K’ ® ¢, for some K' € 6,(K ® ¢, ¢). Since
¢ € K® ¢ (by (A®2)), then, from the fourth clause of Observation 3, it
follows that Cn(K©q¢) = Cn(K'®¢) = Cn(K'U{¢}). But by (4%2), (4®4),
and monotonicity of Cn, Cn(K' U{¢}) C Cn((K® ¢) U{s}) = Cn(K @ ¢) C
Cn(K U {¢}). Hence, (A%=5).7

" In this proof, we did not make use of the assumption that U {a} is not a-regular.
An alternative proof goes along the lines of the corresponding proof for conservative
post-deregulation.
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(A®P26). If 0,(K,9) = @, then K U {¢} is a-regular, and (A®=6) is trivially
true of ®,. Otherwise, let K' € §,(K ® ¢,¢). If KU {¢} is not a-regular,
then, by (A®4) and monotonicity of Cn, so is K® ¢. But by (A®2), K® ¢ =
(K®¢)U{g}. Thus, L® ¢ € §,(K ® ¢, ¢), and, by the second clause of
Observation 3, K' = K ® ¢. Hence, K ©n ¢ = (K ® ¢) ® ¢ and, by (A®2)
through (A®5), Cn(K @4 ¢) = Cn((K ® ¢) ® ¢) = Cn(K ® ¢). Thus, by
(A®5), (A%=6) follows.

(A®=7). The proof is similar, mutatis mutandis, to the proof in the case of a
conservative post-deregulation operator. O

A.2 Proof of Theorem 2

For limitations of space, we only prove the case of aggressive post-deregulation
operators. (A®=1) through (A%®=6) are obviously satisfied.

To prove (A®=7), consider three cases. First, if §, (K, ¢) = &, then, by the
third clause of Observation 3, [(RT) A (R])] € Cn(¢), which implies (A®=7).
Second, if §, (K, ¢) = {K}, then K U {¢} is not a-regular. By the monotonicity
of Cn, K®u¢ = K®¢ is also not a-regular. Thus, (A®=7) is trivially true. Third,
K©oad =K & ¢ for some K' € 6,(p, K ® —=[(RT) A (R])]). But, by definition
of 6, K'U{¢} is not a-regular. Thus, by monotonicity of Cn, so is ' ® ¢, from
which (A®=7) trivially follows.

A.3 Proof of Theorem 3

The proof is straightforward for the two cases of aggressive deregulation opera-
tors, since the a-non-regularity of K U {¢} implies that §,(K, ¢) = {K}, which
in turn implies that K &, ¢ = K ® ¢.

The case of a conservative post-deregulation operator is also straightforward:
If KU {a} is not a-regular, then d, (K, ¢) = {K}, which implies that K @, ¢ =
K ® ¢. For a conservative pre-deregulation operator, note that K U {a} being
not a-regular implies, by monotonicity of Cn, that IC ® ¢ is also not a-regular.
But, given (4%2), (K® ¢) U{a} = K® ¢. Thus, 6,(¢, L® ¢) = {K ® ¢}. Hence,
K®adp=(K®¢)®¢=K®ap, by (A92) through (A®5).

In all cases, given (&— E), (& I), (&—4 E), and (&—4 I), it follows that
[(p@®— ) = (¢D—0a ¥)] € Cn(K).

A.4 Proof of Theorem 4

If 6o(KC,¢) = @, then K &, ¢ = K ® ¢. Otherwise, by the third clause of
Observation 3, [(RT) A (R])] € Cn({#}). Thus, there is a K’ € d,(¢, K ® ¢) such
that K @, ¢ = K’ ® ¢. By the fourth clause of Observation 3, Cn(K @, ¢) =
Cn(K' ® ¢) = Cn(K') C Cn(K ® ¢). Thus, given (&— E), (®— I), (-4 E),
and (&— I), it follows that [(¢B—4 V) = (p&— )] € Cn(K).



