
Model-Based Dependability Analysis of Programmable
Drug Infusion Pumps ?

Sriram Sankaranarayanan, Hadjar Homaei and Clayton Lewis.

University of Colorado, Boulder, CO. Email: first.lastname@colorado.edu

Abstract. Infusion pumps are commonly used in home/hospital care to inject
drugs into a patient at programmable rates over time. However, in practice, a com-
bination of faults including software errors, mechanical failures and human error
can lead to catastrophic situations, causing death or serious harm to the patient.
Dependability analysis techniques such as failure mode effect analysis (FMEA)
can be used to predict the worst case outcomes of such faults and facilitate the
development of remedies against them.
In this paper, we present the use of model-checking to automate the dependability
analysis of programmable, real-time medical devices. Our approach uses timed
and hybrid automata to model the real-time operation of the medical device and
its interactions with the care giver and the patient. Common failure modes arising
from device failures and human error are modeled in our framework. Specifi-
cally, we use “mistake models” derived from human factor studies to model the
effects of mistakes committed by the operator. We present a case-study involving
an infusion pump used to manage pain through the infusion of analgesic drugs.
The dynamics of analgesic drugs are modeled by empirically validated pharma-
cokinetic models. Using model checking, our technique can systematically ex-
plore numerous combinations of failures and characterize the worse case effects
of these failures.

1 Introduction

The delivery of critical medications through “smart” infusion pumps has become quite
commonplace in home/hospital medical care. Yet, there have been numerous fatal or
near-fatal incidents due to errors such as software error, pump malfunctions and human
operator errors [1, 20, 24, 44, 46]. In this paper, we present a framework using formal
verification techniques over timed and hybrid automata models to analyze the worst
case effects of combinations of human and machine errors on the safety of the patient.
Our framework systematically considers combinations of failure modes and provides
quantitative predictions of the worst case outcomes for each combination. The failure
modes considered here include mechanical failures in the pump, air bubbles, occlusions,
empty vials, data entry errors and a failure to respond to alarms in a timely manner.

Our approach models the infusion pump by composing a simple hybrid automaton,
incorporating a model of the pump, along the lines of the generic infusion pump model

? This material is based upon work supported by the National Science Foundation (NSF) under
award no. 1035845.

first.lastname@colorado.edu

Fig. 1. Effect chamber concentration in the patient predicted by a pharmacokinetic
model for (left) originally intended infusion (y-axis range: [0, 1 × 10−3] mg/ml), and
(right) actual infusion as a result of user error (y-axis range: [0, 0.045] mg/ml).

proposed by Arney et al. [2] and the patient using a pharmacokinetic model that de-
scribes the concentration of the drug in various parts of the patient’s body as the infusion
proceeds over time [26, 39, 41]. Mechanical failures are modeled using failure mode
variables and transitions. Our approach incorporates models of pump programming er-
rors based on generic human error models commonly studied in the human factors com-
munity [22, 27, 36] along with the results of studies and reports on the common types of
errors committed by caregivers while programming infusion pumps [3, 4, 28, 37, 47].
The composition of these models yields an affine hybrid automaton. The composed
model is analyzed using bounded model checking (BMC) to compare the concentration
of the drug in the original failure-free (original) model with the concentration in the
failure-enabled model [5]. Specifically, the use of BMC allows us to search for execu-
tions, wherein, the timing of the faults and external disturbances yield the maximum (or
minimum) possible concentration of the drug being infused in the patient’s body. Com-
paring the range of drug concentrations resulting from the original fault-free model with
the range obtained from the fault-enabled models provides a quantitative measure of the
potential effects of the fault on the safety of the patient. Thus, the output of our analysis
can be used as the starting point to help risk analysts construct dependability models in
the form of a fault trees or failure mode effects analysis (FMEA) tables [17].

1.1 Motivation

We consider a brief summary of a fatal overdose incident due to wrong programming
of an infusion pump, revealing some of the key hazards to patient safety due to pro-
grammable infusion pumps [20].

Event: The intended prescription ordered a 50 mcg/ml dose of the opioid (pain-killer)
Fentanyl through a patient controlled analgesic (PCA) pump. A PCA pump allows the
patient to request a preset dose of the drug by pressing a key. PCA pumps also enforce
a set minimum lockout times between two requests. In this case, PCA request dose was
10 mcg with 6 minute lockout between doses. An extra bolus dose of 20 mcg (infused
at maximum possible rate) was prescribed in case the pain level was high.

The device required as input: (a) the concentration of the drug stated in the vial,
which was incorrectly entered as 1 mcg/ml instead of the correct concentration of 50
mcg/ml 1.This error may have resulted, in part, due to a “feature” in the device that
silently reverted back to a previously entered value if an entry was not confirmed within
some time limit; and (b) The demand dose for PCA was incorrectly set to 0.1 mcg
instead of 10 mcg.
Outcome: Upon each PCA request the pump infused 0.1 mcg at 1 mcg/ml = 0.1 ml by
volume. However, the actual drug concentration in the vial was 50 mcg/ml. This meant
that the patient received 50 mcg/ml × .1 ml = 5 mcg upon each PCA demand dose.
Fortunately, this was half the originally intended amount: the error in concentration had
nullified that in the PCA demand dose. However, the pain persisted and a bolus dosage
of 20 mcg was entered without correcting the error in the drug concentration. The pump
infused 20 mcg at 1 mcg/ml = 20 ml of the drug into the patient. However, the patient
actually received a dose of 20 ml × 50 mcg/ml = 1000 mcg of the drug, which resulted
in a 50 × overdose. This overdose proved ultimately fatal.
Approach: Our approach can predict the scenario outlined as follows:

1. We consider the effect of numerous common pump programming errors on the data
entered, as described in Section 4.

2. For each such error, our approach compares the intended vs. actual concentrations
of the drug in the patient’s body. To achieve this, we use hybrid automata models
for the pump (Section 3.1) and pharmacokinetic models (Section 3.2).

3. Finally, we use bounded-model checking (BMC) using SMT solvers on a fixed
time step approximation of the composed hybrid model to compare the possible
range of drug concentrations in the original fault-free execution and the modified
fault-enabled execution.

Figure 1 shows the concentration of the drug in the effect compartment of a phar-
macokinetic model as a function of time both for the originally intended infusion and
the infusion that occurs as a result of the error. The kinetics used for Fentanyl are as
reported in the literature (Cf. Vuyk et al. [48]). Based on a comparison of the original
with the faulty trace, it is seen that the new prescription results in a overdose of roughly
40 times the original concentration.

While the effects of an extreme scenario described above are easy to predict qualita-
tively, our framework provides three key advantages: It systematically explores a large
range of possible operator mistakes and hardware/software failures. Secondly, our ap-
proach can explore the space of timings of the faults and the patient actions such as
requesting a PCA bolus that can cause a worst-case outcome. Finally, our approach can
quantitatively predict the worst-case outcome of a combination of faults on the patient
using empirically validated pharmacokinetic models to predict the drug concentrations.

2 Preliminaries

We briefly recall the hybrid automaton model [21] and describe the use of formal ver-
ification to model faults and analyze dependability properties of dynamic systems [7].

1 Note that recent models use barcode readers to obtain this information from the vial.

Hybrid automata are commonly used to model the composition of a discrete (software-
based) controller interacting with a continuous environment [21].

Definition 1. A hybrid automatonH is a tuple 〈x,d,L, T ,F , I, Θ〉, wherein,

– x ∈ Rn refers to a vector of continuous system variables.
– d ∈ Rm refers to a set of continuous external input (disturbance) variables.
– L refers to a finite set of discrete locations or modes.
– T refers to a set of discrete transitions (or mode changes). Each transition τ ∈ T

is of the form 〈`,m, ρτ [x,d,x′]〉, wherein, `,m ∈ L refer to the pre and post
locations respectively, and ρτ is an assertion, representing the transition relation
relation between the current state (x) and the next state variables (x′).

– D associates each location ` ∈ L with a system of ordinary differential equations
(ODEs) dx

dt = F`(x,d), wherein F` : Rn × Rm → Rn is a Lipschitz continuous
function over x,d.

– I maps each location to a domain I(`) ⊆ Rn.
– Θ ⊆ L× Rn refers to the initial conditions.

The semantics and properties of hybrid automata are discussed elsewhere [21, 43].

2.1 Dependability Analysis

Dependability analysis of a safety critical systems identifies potential faults that may
occur in the system and the worst-case effects of these faults on the safety, reliability
and the performance of the system as a whole [17]. It has played a significant role in
the design of safety critical control systems including avionics, satellites and nuclear
reactors. Traditionally, dependability analysis techniques are static in nature, wherein
the timing of the faults and the evolution of system state are not modeled.
Fault Tree: A fault tree is an enhanced circuit with logic gates (AND/OR/XOR) and
other gates for modeling fault propagation, that computes the possibility of a particular
type of system level failure as a function of the individual failure modes. Fault trees
enable the computation of failure probabilities and expected time to failure as a function
of the probability of the individual faults.
Failure Mode Effects Analysis: A failure mode effects analysis (FMEA) table lists
different failure modes, mapping each failure mode to its causes, detection mecha-
nisms, severity, expected frequency of occurrence and possible mitigations. FMEA is
performed by risk analysts during system or process design.

In many complex systems, however, the timing of the events and the dynamics of the
system are key to understanding the effects of failures. As a result, there has been much
work on dynamic reliability techniques using a combination of continuous, discrete
and stochastic models (including hybrid automata models [35]) in conjunction with
techniques such as Monte-Carlo simulation for predicting failure probabilities [42].
Formal Dependability Analysis There has been much recent progress in the use of
formal verification techniques such as model checking for automating dynamic depend-
ability analyses [7, 8]. We provide a brief description of these approaches to model and
reason about the effect of faults.

Infusion Data

Caregiver Infusion
Pump Patient

Fig. 2. (left) Examples of commercial infusion pumps and (right) major components of
the drug infusion model.

Let H represent the model of the original system over state variables x. The effect
of failure is modeled by a combination of non-deterministic Boolean valued failure
mode variables f1, . . . , fm and extra locations and transitions for modeling the system’s
operation upon failures to obtain a systemHf that can model the effects of failures. The
primary purpose of the failure mode variables is to guard the transition to a subsystem
modeling failure. Let ϕ1, . . . , ϕk represent assertions that signify safety properties of
the systemH. We assume that the original system satisfies these properties.

Symbolic model checking, or any reachability analysis technique, can be used on
the augmented model Hf to search for reachable states that violate some of the safety
properties [12]. Let s ∈ JϕjK be a reachable error state inHf . SinceH itself is assumed
safe, we note that some subset Fs of the failure mode variables were enabled to reach
the error state s. The overall analysis systematically collects such subsets Fs, which are
termed cut-sets. Bozzano et al. also present techniques for finding minimal cut-sets of
failure mode variables. The collection of failure modes that can lead a system to violate
a property can be presented in the form of a fault tree or a FMEA table to help the
panel of risk analysts better understand all the possible threats. This analysis has been
integrated in the tool SLIM [8]. Our work is directly inspired by these efforts.

However, in our work, the modeling of human operator error is a key aspect of
medical device failures. Mistakes such as data entry errors, unit conversion mistakes and
misinterpretation of prescription labels modify the parameters of our model. Secondly,
while it is possible to specify safety properties in terms of limits on how much drug can
be infused, it is more natural in our setting to compare the range of doses that can be
achieved using the original parameters (the intended infusion) vs. the range achieved
by the fault-enabled parameters. Finally, we investigate pharmacokinetic models with
dynamics that can be affine or non-linear.

3 System Models

Drug infusion pumps are commonly used in home/hospital medical care to inject drugs
directly into the blood stream of a patient. Most infusion pumps are “programmable”
by the caregiver, whose role consists of entering vital information from the prescription
to the start of the infusion through a user interface. Infusion pumps support various
delivery modes, as shown in Table 1. Combinations of these modes (eg., Bolus + PCA+

Mode Description Parameters
Continuous Infusion at a continuous rate rate cRate (mcg/min)

concentration c (mcg/ml)
Bolus Fast infusion of drug volume. dosage wb (mcg)

concentration c (mcg/ml)
Patient-Control A bolus administered upon patient request amtPerRequest (mcg)
(PCA) lockout (min)

dose limit (mcg/hr)
concentration (mcg/ml)

Table 1. Basic infusion modes supported by pump models along with the parameters
relevant to each mode.

CONT BOLUS

PCA

ALARMMANAGER

Infusing
V > 0
dV
dt

= − cRate
c

VialEmpty
V = 0
dV
dt

= 0

Fault
V > 0
dV
dt

= 0

flt!rst?

Infusing
V > Vinit −

wb
c

dV
dt

= −maxRate

Stop
V ≤ Vinit −

wb
c

dV
dt

= 0

Fault
V > Vinit −

wb
c

dV
dt

= 0

flt!rst?

EMPTY
V = 0
dV
dt

= 0
dT
dt

= 1

Start
V > 0
dV
dt

= 0
dT
dt

= 1

PCA

V > V0 −
wpca

c
dV
dt

= −maxRate
dT
dt

= 1

FAULT
dV
dt

= 0
dT
dt

= 1

V = 0 → flt!

rst? →
T := lockOut
V := Vinit

pcaReq? ∧ T > lockOut

∧V >
wpca

c
→ V0 := V

T := 0flt!
rst? →
T := 0

flt!

ALRM
Ta ∈ [Ta,min, Ta,max]
dTa
dt

= 1

OK
dTa
dt

= 1

rst!
flt? →
Ta := 0

Fig. 3. Pump model for continuous, bolus, PCA infusion modes and the alarm manager
component.

Cont. or Bolus + Cont.) are supported by many infusion pump models. The interface
to the infusion pump includes protections from tampering such as a physical key to
prevent reprogramming by the patient once the infusion has commenced.

The major components that are universally present in most pump models are: (1)
A user-interface that allows the caregiver to “program” the infusion by entering the
infusion mode and the data pertaining to each mode. (2) A syringe or bag loaded with a
given total volume of the infused drug at some known concentration. (3) Various alarms
that are sounded upon conditions such as airbubbles, blockages, pump failures, empty
vials and so on. It is the responsibility of caregiver to reset the system to resume the
infusion upon an alarm. (4) In Patient Controlled Analgesic (PCA) pumps, the patient
can request a bolus of the drug by pressing a key.

Figure 2 shows some examples of infusion pumps and the three major components
that we model as part of the dependency analysis of a drug infusion pump. We first
discuss how various components are modeled in our approach and then present failure
modes associated with the caregiver and the infusion pump itself. We refer the reader

V1 Ve

V2 V3

input
k10 ke0

k12

k21

k31

k13

Var Remarks
Vi Volume of the ith chamber (ml).
x1,2,3 Concentration in the ith chamber (mcg/ml).
xe Concentration in the effect chamber (mcg/ml).
u instantaneous infused concentration (mcg/min).
kij kinetic diffusion param. from Vi and Vj .
k10 param. for drug leaving chamber V1.

Fig. 4. Three compartment pharmacokinetic model with an effect compartment. The
kinetic parameters associated with each edge is shown.

to the work of Arney et al. as part of the generic infusion pump modeling project for a
classification of existing models into many different types and their proposed generic
(and comprehensive) infusion pump model [2]. In this work, we use a simplified version
inspired by the Arney et al. infusion pump model. Our model is augmented with a
patient model for the purposes of dependability analysis.

3.1 Pump Model

The pump itself is modeled by a hybrid automaton whose discrete modes describe the
infusion mode. The continuous variables describe the rate at which the drug is leaving
the vessel (and entering the patient) and the volume left in the vessel. We recall the three
infusion modes as described in Table 1. The (simplified) hybrid automaton model for
these modes are shown in Figure 3. We note that in each case, the pump component has
a variable V representing the volume of the pump. Parameter Vinit represents the volume
in the syringe at the start of the infusion, wb represents the ordered bolus weight and
c represents the drug concentration, cRate the programmed rate of continuous infusion
and maxRate the maximum possible rate at which the drug can be delivered (for a
bolus/pca infusion). The infusion mode and the parameters wb,c,wpca and lockOut can
be read in through barcode readers or entered through the user interface.

The pump issues internal fault events upon detection of a bubble, an occlusion or
a pump failure. As a result, it transitions to a mode where the dynamics model the
stoppage of the pump. These faults are transient in nature and result in an alarm being
issued to the human operator. The operator then remedies the situation causing the fault
and resets the operation back to the point in the infusion where the fault occurred.
We assume in our model that all faults end up stopping the infusion. However, in many
models, the infusion can often continue during some faults like low charge in the battery.
Alarm Manager: The alarm management model is shown in Fig. 3. We model a single
alarm type that can be issued for various reasons. Our model assumes that alarms are
handled within some fixed time interval by resetting the system to some fixed state. Our
model uses timers to track the amount of time the current state is in a given mode. This
allows us to model delays in the reset transition due to inattention to alarms.

3.2 Patient Model

The model of the patient is intended to capture the effect of the infusion in the patient’s
body. Since infusion pumps are able to deliver drugs at various pre-programmed con-

Enter Mode

Enter PCA
Dose (mcg)

Enter Cont.
Dose (mcg/min)

Enter lockout
Time (min)

Enter Cont.
Dose (mcg/min)

Dose
Limit?

Enter
Lim (mcg/hr)

Final
Confirm

PCA

PCA+CONT

CONT

Y

N

Prompt Value
Enter Mode PCA + Cont.
Enter Cont. Dose 0.1 mcg/min
Enter PCA Dose 1 mcg
Enter Lockout 5 min
Dose Limit? Y
Enter Limit 10 mcg/hr

Fig. 5. (Left) Schematic interaction diagram for a medical infusion pump. Diagram
is based roughly on the abbott PCA3 infusion pump. (Right) An example prescription
entered through the interface.

centrations over time, we require a dynamical model of the drug as it is absorbed (and
possibly metabolized) by the various cells in the patient’s body and removed from the
blood stream. We therefore use pharmacokinetic models to capture such effects over
time [26, 39, 41].

A pharmacokinetic model uses multiple compartments, representing the various
systems such as the vascular system, organs such as the liver, kidneys and the skin.
The number of compartments used in a model depends on the specific drug whose ki-
netics are being modeled. The model is described by an ordinary differential equation
whose variables represent the concentration of the drug in the various compartments.
The dynamics of the model are given by

ẋ1
ẋ2
ẋ3
ẋe

 =


−(k10 + k12 + k13) k21

V2

V1
k31

V3

V1
0

k12
V1

V2
−k21 0 0

k13
V1

V3
0 −k31 0

ke0 0 0 −ke0



x1
x2
x3
xe

+


1
V1
u

0
0
0

 .

The values of the parameters may vary, depending on the drug whose dynamics is
under investigation. Representative values are obtained as a result of studies conducted
on a group of patients (Cf. [18, 30], for instance).

4 Human Interaction Models

In this section, we present a methodology for modeling human operator actions and
the mistakes committed in the course of their interactions. In the setting of the infusion
pump study, a human operator of the infusion pump is the care giver who is responsible
for programming the infusion parameters at the start of the infusion and responding to
alarms raised by faults such as air bubbles and occlusions in a timely manner.

Table 2. Major pump programming errors found in the literature.

Error Description References
1 Fields in the prescription are misinterpreted [37, 40, 47]
2 Dosage Data Entry Error [20, 37]
3 Unit Conversion Calculation Errors [1, 4, 24, 28]
4 Pump mode selection errors [3]

User Interface: Infusion pumps communicate with human operators by means of an
user interface that displays messages to prompt the human operator and allows the user
to enter values. Due to a lack of standardization of such interfaces, different devices
offering the same set of basic functionalities may present a variety of interfaces for the
same task [2]. Figure 5 shows an example interaction flowchart for an infusion pump
based on an existing commercial model.

Prescriptions: Infusions of analgesics such as Fentanyl or morphine are tightly regu-
lated, often requiring a prescription that carefully specifies the allowed dosage and the
recommended mode of infusion. The details of a how a given infusion is prescribed can
vary significantly, in general [4].

Example 1. An example prescription may call for a basal continuous dosage of 6 mcg/hr
(=.1 mcg/min) of 50 mcg/ml of morphine and a PCA delivery of 1 mcg per request with
a lockout interval of 5 minutes with an overall limit of 10 mcg each hour. It is the role
of a care giver (often a registered nurse) to program this prescription using the infusion
pump interface as shown in Figure 5. The data entered by the user is also shown.

4.1 Modeling Operator Mistakes

We discuss common mistakes that are committed by the operator during the course of
an interaction and present a generic modeling system for these interaction errors. In
theory, any unintentional deviation from a correct sequence of actions needed to deliver
a given prescription of a drug to a patient can be classified as a mistake. There have been
extensive studies by human factors experts and psychologists on the cognitive factors
underlying human error [22, 23, 36]. Furthermore, the specific types of mistakes that
operators commit while operating an infusion pump have also been well-studied and
documented [3, 9, 20, 24, 28, 37, 40, 47]. Table 2 lists some of the common pump
programming errors as reported in the literature. A comprehensive list of many types
of hazards (including human error) for a generic infusion pump model has been put
together by Arney et al. [3].

Data Entry Errors: In general, data entry errors depend on the type of interface used
by the pump. For instance, empirical studies have shown that for pumps with keypads,
the most harmful keypad entry errors include decimal point errors. Therein, a decimal
point may either be inserted or deleted from the number entered due to the proximity
of the decimal point key or variations in its placement across different interfaces [44].
Quirks in the interface such as reverting to a default value or a previously entered pre-
scription also contribute to data entry errors (Cf. Section 1.1).

Mode: PCA+Cont.
ContDose: 5.2 mg/hr
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Mode: PCA+Cont.
ContDose: 21 mg/hr
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Unit Error
21 mg/4 hr
entered as
21 mg/hr

Mode: PCA+Cont.
ContDose: 52 mg/hr
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Decimal Error
5.2 mg/hr
entered as
52 mg/hr

Mode: PCA+Cont.
ContDose: 5.2 mg/hr
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: None

PCALim not set.

Mode: PCA
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Wrong PCA mode

Mode: PCA+Cont.
ContDose: 5.2 mg/hr
PCABolus: 10 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Unit Error
0.1 ml @ 10 mg/ml
entered as
10 mg

Mode: PCA+Cont.
ContDose: 5.2 mg/hr
PCABolus: 1.0 mg
PCALockout: 25 min
PCALim: 10 mg/hr

Data Entry Error

Fig. 6. Transformation of a prescription (shown center) through various mistakes.

Unit Conversion Errors: Prescriptions may be provided in units that differ from those
required by the interface, requiring a calculation to be carried out for unit conversion.
As a common example, an interface may require inputs in mg/hrwhile the prescription
orders a dosage in mcg / kg/min. The conversion from the latter requires multiply-
ing by the patient weight in kg and multiplying by 60 to convert from min to hr and
finally dividing by 1000 to convert from mcg to mg [1, 4]. Some “calculator pumps”
enable caregivers to carry out this calculation using the interface. Other types of pumps
can accept inputs in one of many different choice of units. Yet, these models are not
without hazards. A common error occurs when the difference between the originally
prescribed units and the entered units is simply ignored, or the wrong units are ascribed
to a dose. For example, a prescription that calls for X mg over Y days can be entered
as X mg/hr, leading to a 24 fold overdose [24].

This leads to three types of errors: (a) the wrong calculation may be carried out (eg.,
divide by 60 instead of multiplying), (b) the right calculation may be carried out to yield
a wrong result nevertheless or (c) the difference in units may be ignored and the original
value entered as is. Unit conversion errors have been well documented especially in the
context of infusion pump programming errors. Bates et al. presents a detailed study of
the variability in the units used to prescribe dosages [4]. Furthermore, Lesar reports on
a study of such unit conversion calculations to characterize the types of errors, their
rates and effects [28].

Mode Selection Errors: It is often possible that pump can be misprogrammed by
choosing the wrong delivery mode in the first place. A common example in PCA pumps
is the choice of a “PCA only” mode where a “PCA+Cont.” mode was ordered in the
first place. Often, a wrong mode selection error can be detected during data entry if the
pump prompts the user for data that is not part of the original prescription. The presence
of too much redundant data in the prescription label is often a factor. This phenomenon
is discussed in the context of infusion pumps by Thimbleby [46].

4.2 Mistake Models

We now describe a simple framework to model the effect of operator mistakes that
will be used later in our overall analysis framework to predict worst case outcomes of
human operator error. We may view the effects of a mistake simply as a transforma-
tion between the intended prescription and the actual prescription that results due to
the mistake being committed [19, 22, 36]. Therefore, we simulate pump programming
mistakes through set of transformations, wherein each transformation takes the original
prescription as input and yields a set of possible “mistaken prescriptions” that could
result, as if the mistake were actually committed. We illustrate this through an example.

Example 2. Figure 6 shows various transformations of an original prescription due to
the errors such as mode selection error, data entry errors, calculation errors and other
pump programming errors. For convenience, we have shown transformations due to
single mistakes. However, it is possible to consider multiple mistakes as part of our
mistake model by composing transformations.

5 Analysis Framework

We will now describe the framework used to explore possible worst case scenarios that
may occur due to the presence of faults due to mechanical failures and human error.

The inputs to the analysis include the model of the pump, the patient and the data
for the original prescription. The overall analysis has two parts: (a) Identify all failure
modes. Machine/human errors in the model are identified by analyzing the process of
prescribing the drug and the interface used to enter the data into the infusion pump;
and (b) For each combination of k or less failure modes, we use model checking to
search for runs of the model that exhibit the maximum values of the drug concentrations.
Specifically, the model checker searches in the space of possible failure times for the
various enabled failure modes and the timing of the PCA requests by the patient.

Analysis of Failure Mode Combinations: The overall idea behind our analysis frame-
work is to compare the range of drug concentrations possible for the reference model,
assuming the absence of faults and a fault-enabled model, wherein some pre-defined
combination of faults are enabled. The focus of the comparison in our infusion pump
case-study is the variable xe in the patient model that represents the concentration of
the drug in the effect compartment.

Fixed Time Step Approximation: Our analysis uses bounded model checking (BMC) [5]
using SMT solvers [13, 31] on a fixed time step approximation of the model to find
worst-case scenarios that can potentially maximize or minimize the value of x4 at some
time instant. We now briefly define the notion of a ∆ time step approximation. We use
some basic results for affine ODEs to discretize fixed time step approximations.

Definition 2 (Fixed Time step Runs). Let H be an affine hybrid automaton. A run σ
ofH is said to conform to a fixed time step of∆ iff all discrete transitions in σ are taken
at time instants that are integral multiples of ∆.

Input:
Original Prescription Data.
Set of enabled failure modes.

Output:
Worst-case execution traces

1: Compute range of effect chamber concentrations over original prescription: [xmin, xmax].
2: Simulate pump programming errors to create faulty prescription.
3: Create BMC encoding ΨM using faulty prescription parameters
4: Compute range [ymin, ymax] for effect chamber concentration (using an SMT solver).
5: Compare [xmin, xmax] with [ymin, ymax] to compute worst-case deviations.

Fig. 7. Overview of Analysis Algorithm

A ∆ time step approximation of a hybrid automaton for some time step ∆ > 0
considers only those runs σ that conform to a fixed time step of ∆.

It is easy to see that a fixed time step leads to an under approximation of the orig-
inal event-triggered semantics. I.e, any (finite or infinite) run under the fixed time step
approximation is also a run of the original system. On the other hand, there may be
transitions that cannot be taken at integral multiples of ∆. Therefore, the choice of ∆
needs to be small enough to retain most of the behaviors of the original system.

Assuming that the dynamics are of the form dx
dt = Ax + u, where A is invertible

and the value of u remains constant during any time step interval, we conclude that

x(t+∆) =Mx(t) +Nu, wherein M = e∆A, and N = A−1(e∆A − I) .

Note that the pharmacokinetic models considered here satisfy the conditions required
for the discretization.
Bounded Model Checking: Using a fixed time step∆ allows us to under approximate
the original model in terms of a purely discrete model. Such a model is amenable to
many verification techniques for discrete transition systems without the need to deal
with the effects of ODEs, directly. For our study, we chose to use Bounded Model
Checking (BMC) [5]. Using BMC, we encode the set of all runs of the model up to some
fixed depth limit k by means of a logical formula in linear arithmetic. This formula is
then solved by powerful SMT solvers such as Yices and Z3 [13, 16, 31].

6 Experiments

We report on an experimental evaluation of the ideas in this paper. The experimental
evaluation focuses on the study of the infusion of the opioid Remifentanil through an
infusion pump interface based roughly on existing commercial model — the Abbott
PCA III infusion pump. Figure 8 shows the data fields entered through the pump inter-
face and some of the calculations performed by the pump based on the entered data to
derive model parameters.

The pump and the human patient models are as discussed in Section 3. We consider
a set of human mistakes based on the interface used for data-entry as shown in Figure 9.

Data Range Value Used Entry Method
DrugConc 50 mcg/ml 50 Barcode
Weight [30-120] kg 60 Caregiver
PCAMode {PCA-CONT, PCA-ONLY } PCA-CONT Caregiver
ContDose [0 - 0.5] mcg/kg/min 0.1 Caregiver
PCABolus [0.01 - 1] mcg/kg 0.5 Caregiver
Lockout [5-20] min 10 Caregiver
DoseLimit [3-10] req/hr or no lim 4 Caregiver

Field Equation

CRate(ml/min)

{ ContDose∗Weight
DrugConc if PCAMode = PCA-CONT

0 if PCAMode = PCA-ONLY

PCABolusVol(ml) PCABolus∗Weight
DrugConc

Lockout As input
DoseLim As input

Fig. 8. Data fields entered in a PCA infusion pump along with limits on the data values
used in our simulations and (bottom) calculations performed to derive infusion pump
parameters from entered data.

Mistake Effect
Mode selection error (PCA-CONT vs. PCA-ONLY) CRate’ = 0
Weight entry error CRate’ = 2.2 * CRate
(weight in lb entered as kg) PCABolusVol’ = 2.2 * PCABolusVol
Weight entry error CRate’ = CRate/2.2
(weight kg entered as lb) PCABolusVol’ = PCABolusVol/2.2
Unit Error CRate’ = 60 * CRate
(mcg/kg/hr entered as mcg/kg/min)

Fig. 9. Possible data entry mistakes.

Implementation: We have implemented our analysis on top of a hierarchical, guarded
command modeling language similar to existing tools such as SLIM that allows us
to model the various components, faults and their interactions [8]. We compile and
discretize our model and generate constraints to represent bounded depth executions.
These constraints were solved using the solver Yices [16]. The maximization of the
variable x4 was performed by simulating a binary search over an interval. The minimum
value achieved in our model is trivially 0 at the starting state. This procedure currently
requires numerous calls to the solver. Our implementation along with the models used
here are available upon request.

Model: The composed model of PCA pump with faults has roughly 6 modes, 11 pa-
rameters, 12 real-valued variables and 4 finite domain variables. Since machine faults
are assumed to be transient, a counter nFaults is used in the model to store the num-
ber of machine faults to be considered in any execution. The initial value of this counter
is varied from 0 (no fault) to 4 (four faults happen at non-deterministic time instances).

Table 3. Analysis results showing the influence of user error and machine faults on the
predicted maximum drug effect chamber concentration. nFaults: Number of transient
faults in a trace, Conc: maximum concentration achieved in ng/mL and Time: model
checker time (seconds).

Mistake nFaults = 0 nFaults = 1 nFaults=2 nFaults=4
Conc. Time Conc. Time Conc. Time Conc. Time

None 6.1 64 5.4 447 5.1 1219 4.8 1218
Mode Selection Err. 3.1 16 3.1 213 2.9 500 2.8 459
Unit Selection Err. 150 78 149 210 132 182 101.2 1474
Weight (lbs as kgs) 13.4 73 12.6 1011 11.5 1306 10.5 2250
Weight (kgs as lbs) 2.7 41 2.6 534 2.4 1492 2.2 1617

Table 4. Analysis over 10 randomly selected prescriptions over the range described
in Figure 8. The maximum concentration of reference model is normalized to 1. All
figures rounded to one significant digit after decimal point.

Mistake nFaults = 0 nFaults = 1 nFaults=2 nFaults=4
Avg Min Max Avg Min Max Avg Min Max Avg Min Max

None 1 1 1 1 1 1.1 1 1 1.1 0.9 0.8 1.0
Mode Selection Err. 0.2 .1 4 0.3 0.1 0.4 0.3 .2 .4 .2 .1 .4
Unit Selection Err. 23 14 36 22 10 35 23.4 10 33 14.2 14.2 14.2
Weight (lbs as kgs) 2.0 1.8 2.3 2.2 2.1 2.5 2.2 2.1 2.4 2 1.8 2.3
Weight (kgs as lbs) .4 .3 .4 .4 .4 .4 .4 .4 .5 .4 .4 .4

Table 3 shows the results of the analysis of various fault combinations in terms of
the maximum concentration of drug achieved and the time taken by the model checker
to complete the analysis. Comparing the maximum drug concentration of 6.1ng/mL
predicted for the reference model (no human/machine faults) against the maximum val-
ues for other fault combinations yields insights into the effects of various faults. For
instance, it is clear that mode selection errors roughly halve the maximum concentra-
tion achievable. The presence or absence of machine faults has little or no impact on
the maximum. On the other hand, unit errors cause a 23 fold increase in the maximum
effect chamber concentration achievable.

Overall, the results predicted by model checking agree well with our qualitative
predictions of the outcome of the faults. However, the results are more useful since
they can provide quantitative predictions and allow us to compare/rank faults based on
the severity of their effects. For instance, the under dosage caused by machine faults is
predicted to be less significant than that caused by a mode selection error or a unit error
wherein the weight in kgs is treated as if it were in lbs. Note that under doses as well as
over doses can have serious consequences, since restoring control of pain after an under
dose can be difficult.

Finally, we investigate how the overall trends vary with the prescription data. Table 4
summarizes the results of repeating the experiment with 10 different randomly chosen
prescriptions. The range of values for various parameters is described in Figure 8. In
each case, the maximum value found for the reference execution is normalized to 1,
thus allowing us to compare the results from different prescriptions. Table 4 shows the
result of this comparison on 10 different randomly generated prescriptions. We note that

the overall direction of the effect of error seems independent of the actual prescription
data themselves. Furthermore, in many cases, the magnitudes are quite similar.

7 Related Work & Conclusions

A vast body of work has focused on modeling and verification of functional correctness
properties for user interfaces (Cf. [14, 33, 34], for instance). Much of this work has
focused on the search for specific topologies in the state diagram of the interface that
can indicate the presence of serious faults such as mode confusion [25, 29, 38]. The
problem of characterizing various forms of human error has been studied in detail by
cognitive scientists and human factors experts [15, 36]. In this regard, the use of generic
mistake models to transform a given ideal interaction into a faulty interactions has been
proposed in the past, notably by Hollnagel [22]. Fields presents an integration of this
approach with formal verification tools to model and reason about operator error [19].

Formal and Semi-formal techniques have been applied to analyze infusion pumps
for the presence of hidden modes and inconsistencies in the interface transitions [44,
45]. Bolton and Bass present a detailed model of the user interaction with an infusion
pump by extending the operator function model framework. Their model lends itself
to analysis using formal verification tools [6]. Bolton et al. apply their approach to
provide a detailed model of the interface and various user actions required to program an
infusion. However, in this paper, we consider a detailed model of the pump’s operation
and the dynamics of the drug concentration in the patient while summarizing the effect
of user’s mistakes using a mistake model. A combination of the two approaches seems
quite desirable. However, it is quite likely that the analysis of such a detailed combined
model may be intractable.

Model-based techniques remain popular in many domains including the develop-
ment of reliable and safe user interfaces [10, 11, 32]. A common approach to the model-
based testing of UI applications requires the construction of mental models of the user
to characterize ways in which the interface can be used [10, 11]. However, these ap-
proaches seek to test the functional correctness of the interface itself, while operator
errors are usually ignored.

In conclusion, we present a framework for dependability analysis of infusion pumps.
In the future, we wish to extend this framework to study other types of programming
errors in devices such as implantable pace-makers and total intravenous anesthesia. The
model results also support exploration of user interface modifications that could guard
against likely errors. One approach could be to incorporate logic into the pump con-
troller to recognize possible user mistakes that may result in underdoses or overdoses.
Since the appropriate dose depends on patient weight, so that the doses appropriate for
adults are quite different from those for children, for example, it is not possible to spec-
ify definitely what the allowable range of doses is, within wide limits. Another sugges-
tion could be to build closed loops to prevent mishaps by estimating drug concentrations
using pharmacokinetic models and observable signals such as the respiration rate and
blood oxygen content.

Bibliography

[1] Anonymous (Alberta, R.N.). Lack of standard dosing methods contributes to i.v.
infusion errors. Institute for Safe Medication Practices (ISMP) Medication Alert,
64(4), April 2008.

[2] D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky. Formal methods based
development of a PCA infusion pump reference model: Generic infusion pump
(GIP) project. In Proc. High Confidence Medical Devices, Software Systems and
Medical Device Plug and Play Interoperability, 2007.

[3] D. E. Arney, R. Jetley, P. Jones, I. Lee, A. Ray, O. Sokolsky, and Y. Zhang.
Generic infusion pump hazard analysis and safety requirements: Version 1.0,
2009. CIS Technical Report, University of Pennsylvania. Available on-line:
http://repository.upenn.edu/cis_reports/893, Accessed May
2011.

[4] D. W. Bates, T. Vandervreen, D. Seger, C. Yamaga, and J. Rothschild. Variabil-
ity in intravenous medical practices: Implications for medication safety. J. Joint
Commission on Accredication of Healthcare Organizations, 31(4):203–210, April
2005.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS, volume 1579 of LNCS, pages 193–207, 1999.

[6] M. L. Bolton and E. J. Bass. Formally verifying human-automation interaction as
part of a system model: limitations and tradeoffs. Innovations Syst. Softw. Eng., 6:
219–231, 2010.

[7] M. Bozzano, A. Cimatti, and F. Tapparo. Symbolic fault tree analysis for reactive
systems. In ATVA, volume 4762 of LNCS, pages 162–176. Springer, 2007.

[8] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri. The
COMPASS approach: Correctness, modelling and performability of aerospace
systems. In SAFECOMP 2009, volume 5775 of Lecture Notes in Comp. Sci.,
pages 173–186. Springer, 2009.

[9] J. L. Brady. First, do no harm: Making infusion pumps safer. Biomedical Instru-
mentation & Technology, 44(5):372–380, September 2010.

[10] P. A. Brooks and A. M. Memon. Automated GUI testing guided by usage profiles.
In Prof. ASE’07, pages 333–342. IEEE Press, 2007.

[11] V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, and P. Jones. Model-based testing
of GUI-driven applications. In Prof. SEUS’09, volume 5860 of LNCS, pages 203–
214. Springer, 2009.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
[13] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume

4963 of LNCS, pages 337–340. Springer, 2008.
[14] A. Degani and M. Heymann. Formal Verification of Human-Automation Interac-

tion. Human Factors, 44(1):28–43, 2002.
[15] S. Dekker. The Field Guide to Understanding Human-Error. Ashgate Publishing,

2006.

http://repository.upenn.edu/cis_reports/893

[16] B. Dutertre and L. de Moura. The YICES SMT solver. Cf. http://yices.
csl.sri.com/tool-paper.pdf, last viewed Jan. 2009.

[17] C. E. Ebeling. Introduction to Reliability and Maintainability Engineering. Wave-
land Inc., 2005.

[18] T. Egan, H. Lemmens, P. Fiset, D. Hermann, K. Muir, D. Stanski, and S. Shafer.
The pharamcokinetics of the new short acting opioid remifentanil (G187084B) in
healthy adult male volunteers. Anesthesiology, 74:881–892, 1996.

[19] R. Fields. Analysis of erroneous actions in the design of critical systems. PhD
thesis, University of York, January 2001.

[20] M. Grissinger. Misprogram a PCA pump? it’s easy!, July 2004. ISMP Medication
Safety Alert., Accessed May 2011.

[21] T. A. Henzinger. The theory of hybrid automata. In LICS’96, pages 278–292.
IEEE, 1996.

[22] E. Hollnagel. Human Reliability Analysis Context and Control. Computer And
People Series. Academic Press Inc., San Diego, CA, 1993.

[23] E. Hollnagel. Cognitive Reliability and Error Analysis Method. Elsevier, Institutt
for Energiteknikk, Halden, Norway, 1998.

[24] Institute for Safe Medication Practices Canada. Fluorocil incident root-cause anal-
ysis, 2007. Available on-line from http://www.cancerboard.ab.ca/
NR/....

[25] A. Joshi, S. P. Miller, and M. P. Heimdahl. Mode confusion analysis of a flight
guidance system using formal methods. In 22nd IEEE Digital Avionics Systems
Conference (DASC’2003), October 2003.

[26] A. Kallen. Computational Pharmacokinetics. Chapman & Hall, 2007.
[27] B. Kirwan. A Guide to Practical Human Reliability Assessment. Taylor & Francis,

1994.
[28] T. S. Lesar. Errors in the useof medication dosage equations. Archives of Pediatric

Adoloscent Medicine, 152:340–344, 1998.
[29] N. G. Leveson and E. Palmer. Designing automation to reduce operator errors. In

IEEE Trans. on Systems, Man, and Cybernetics, page 7, October 1997.
[30] D. A. McClain and C. C. Hug. Intravenous fentanyl kinetics. Clinical Pharma-

cology & Therapeutics, 28(1):106–114, july 1980.
[31] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theo-

ries: From an abstract davis–putnam–logemann–loveland procedure to DPLL(T).
J. ACM, 53(6):937–977, 2006.

[32] A. Paiva, J. C. P. Faria, N. Tillmann, and R. F. A. M. Vidal. A model-to-
implementation mapping tool for automated model-based GUI testing. In ICFEM,
volume 3785 of LNCS, pages 450–464. Springer, 2005.

[33] P. Palanque. Formal Methods in Human-Computer Interaction. Springer-Verlag
New York, Inc., 1997. ISBN 3540761586.

[34] F. Paternó and C. Santoro. Integrating model checking and HCI tools to help
designers verify user interface properties. In DSV-IS’00, volume 1946 of LNCS,
pages 135–150. Springer, 2001.

[35] G. Pérez-Castañeda, J.-F. Aubry, and N. Brinzei. Stochastic hybrid automata
model for dynamic reliability assessment. Journal of Risk and Reliability, 225
(1):28–41, 2011.

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
http://www.cancerboard.ab.ca/NR/...
http://www.cancerboard.ab.ca/NR/...

[36] J. T. Reason. Human Error. Cambridge, UK: Cambridge University Press, 1990.
[37] J. Rothschild, C. Keohane, E. Cook, E. Orav, E. Burdick, S. Thompson, J. Hayes,

and D. Bates. A controlled trial of smart infusion pumps to improve medication
safety in critically ill patients. Critical care medicine, 33(3), 2005.

[38] J. Rushby. Using model checking to help discover mode confusions and other
automation surprises. In Proc. HESSD’99, June 1999.

[39] V. Sartori, P. M. Schumacher, T. Bouillon, M. Luginbuehl, and M. Morari. On-
line estimation of propofol pharamacodynamic parameters. In Proc. Conference
on Engineering in Medicine and Biology, pages 74–77. IEEE Press, 2005.

[40] J. Schein, R. Hicks, W. Nelson, V. Sikirica, and D. Doyle. Errors in the postoper-
ative period: Causes and prevention. Drug Safety, 32(7):549–559, July 2009.

[41] S. L. Shafer, L. C. Siegel, J. E. Cooke, and J. C. Scott. Testing computer-controlled
infusion pumps by simulation. Anesthesiology, 68:261–266, 1988.

[42] N. Siu. Risk assessment for dynamic systems: An overview. Reliability Engineer-
ing & System Safety, 43(1):43 – 73, 1994.

[43] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, 2009.

[44] H. Thimbleby. Ignorance of interaction programming is killing people. ACM
Interactions, pages 52–57, 2008.

[45] H. Thimbleby. Contributing to safety and due diligence in safety-critical interac-
tive systems development. In ACM SIGCHI, EICS’09, pages 221–230, 2009.

[46] H. Thimbleby. Is it a dangerous prescription? BCS Interfaces, 84:5–10, 2010.
[47] P. L. Trbovich, S. Pinkney, J. A. Cafazzo, and A. Easty. The impact of traditional

and smart pump infusion technology on nurse medication administration perfor-
mance in a simulated inpatient unit. Qual. Saf. Health Care, 19:430–434, 2010.

[48] J. Vuyk, M. J. Mertens, E. Olofsen, A. G. Burm, and J. G. Bovill. Propofol anes-
thesia and rational opioid selection. Anesthesiology, 87(6):1549–2562, 1997.

	Model-Based Dependability Analysis of Programmable Drug Infusion Pumps
	Sriram Sankaranarayanan, Hadjar Homaei and Clayton Lewis.

