Time-Bounded Verification of CTMCs against
Real-Time Specifications *

Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre

Department of Computer Science, Oxford University,
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

Abstract. In this paper we study time-bounded verification of a finite continuous-
time Markov chain (CTMC) C against a real-time specification, provided either
as a metric temporal logic (MTL) property ¢, or as a timed automaton (TA) A.
The key question is: what is the probability of the set of timed paths of C that
satisfy ¢ (or are accepted by .A) over a time interval of fixed, bounded length?
We provide approximation algorithms to solve these problems. We first derive a
bound NV such that timed paths of C with at most IV discrete jumps are sufficient
to approximate the desired probability up to €. Then, for each discrete (untimed)
path o of length at most IV, we generate timed constraints over variables de-
termining the residence time of each state along o, depending on the real-time
specification under consideration. The probability of the set of timed paths, de-
termined by the discrete path and the associated timed constraints, can thus be
formulated as a multidimensional integral. Summing up all such probabilities
yields the result. For MTL, we consider both the continuous and the pointwise
semantics. The approximation algorithms differ mainly in constraints generation
for the two types of specifications.

1 Introduction

Verification of continuous-time Markov chains (CTMCs) has received much attention
in recent years [8]. Thanks to considerable improvements of algorithms, (symbolic)
data structures and abstraction techniques, CTMC model checking has emerged as a
valuable analysis technique. Aided by powerful software tools, it has been adopted by
researchers from, e.g., systems biology, queuing networks and dependability.

The focus of CTMC model checking has primarily been on checking stochastic
versions of the branching-time temporal logic CTL, such as CSL [7]. The verification
of LTL properties reduces to applying well-known algorithms [33,18] to embedded
discrete-time Markov chains (DTMCs). Linear-time properties equipped with timing
constraints have only recently been considered. In particular, [16,17] treat linear real-
time specifications that are given as deterministic timed automata (DTA). These include
properties of the form, “what is the probability to reach a given target state within the
deadline, while avoiding unsafe states and not staying too long in any of the danger-
ous states on the way?”. Such properties cannot be expressed in CSL nor in its dialects
[6,19]. Model checking DTA properties can be done by a reduction to computing the

* This work is supported by the ERC Advanced Grant VERIWARE.

reachability probability in a piecewise deterministic Markov process, based on the prod-
uct construction between the CTMC and DTA [17,11]. It remains a challenge to tackle
more general real-time specifications like Metric Temporal Logics ([4,24], MTL), or
nondeterministic Timed Automata (TA, [1]). The main difficulty lies in the fact that one
cannot easily define a stochastic process out of the CTMC and the MTL formula (or
TA), due to the inherent nondeterminism arising from these specifications. The obstacle
is somehow fundamental, as it is known that deterministic TA are lacking expressive-
ness compared to their nondeterministic variants or MTL.

Recently, we have seen increasing emphasis on timed-bounded verification [27].
Here, “time-bounded” means restricting the modeling and verification efforts to some
bounded interval of time, which itself can be taken as a parameter. In verification,
queries are phrased over time intervals of fixed, bounded duration. Note that, differently
from bounded model checking, which restricts the total number of allowable events
(called discrete jumps in this paper), time-bounded verification restricts the total dura-
tion under consideration, but not the number of events, which can still be unboundedly
large owing to the density of time.! Instances of time-bounded verification have been
considered in the context of stochastic and/or real-time systems [30,9,23,20] and re-
cently studied systematically [27,22]; see [29] for an introduction, where it is argued
that the restriction on total duration is very natural for real-time systems.

Inspired by this recent progress, we study the time-bounded verification problem of
a CTMC C, against a real-time specification provided as either an MTL formula ¢, or
as a TA A. The key question is: what is the probability of the set of timed paths of C that
satisfy ¢ (or are accepted by .A) over a fixed time interval [0, 7] where T' € R+ o? We
provide approximation algorithms to solve these problems. Given any € > 0 a priori,
we first derive a bound N such that it is sufficient only to consider timed paths of C
with at most [V discrete jumps to approximate the desired probability up to €. Then,
for each discrete (untimed) path o of C of length at most IV, we generate a family of
linear constraints, S, over variables determining the residence time of each state in o.
The discrete path o, together with the associated timing constraints S, determines a
set of timed paths of C, each of which satisfies ¢ (or is accepted by .A). The probabil-
ity of this set of timed paths can be formulated as a multidimensional integral, which
can be calculated by Laplace transforms, together with an application of the inclusion-
exclusion principle. Summing up all such probabilities yields the desired result. Notice
that, in the current paper, we consider both the continuous and the pointwise seman-
tics of MTL (see, e.g. [14]). The approximation algorithms differ mainly in constraints
generation for different types of specifications. The family of linear constraints are de-
sirable, since we can apply the efficient algorithm for computing the volumes of convex
polyhedra [25]. For MTL under the pointwise semantics and TA specifications, con-
straint generation is relatively easy, while for MTL under the continuous semantics it is
more involved. To this end, we first derive constraints in terms of first-order theory of
(R,+, —,0, 1, <), then the Fourier-Motzkin elimination procedure [31, pp.155-156] is

! Readers should note that we later bound the number of discrete jumps as an approximation
technique. This owes to the definition of CTMCs and is irrelevant to the original definition of
time-bounded verification.

applied to obtain desired linear constraints. We believe these results are of independent
interest, as they have potential usage in domains such as runtime verification.

The approach we take in this paper is quite different from existing results in the
literature. Known results can only deal with simpler real-time properties, or are based
on deterministic property specifications (e.g. DTA). Our technique is based on path ex-
ploration of CTMCs, together with a novel analytic methodology to reduce computing
the probabilities to a multi-dimensional integral over convex polyhedra. To the best of
our knowledge, this is the first work addressing verification of CTMCs against MTL
formulas or non-deterministic timed automata.

Related work. Model checking CTMCs against linear real-time specifications has re-
ceived scant attention so far. To our knowledge, this issue has only been (partially)
addressed in [16,6,19]. Baier et al. [6] define the logic asCSL where path properties are
characterized by (time-bounded) regular expressions over actions and state formulas.
The truth value of path formulas depends not only on the available actions in a given
time interval, but also on the validity of certain state formulas in intermediate states.
asCSL is strictly more expressive than CSL [6]. Model checking asCSL is performed
by representing the regular expressions as finite-state automata, followed by computing
time-bounded reachability probabilities in the product of CTMC C and this automa-
ton. In CSL™ [19], time constraints of until modalities are specified by a single-clock
DTA; the resulting logic is at least as expressive as asCSL [19]. The combined be-
havior of C and the DTA A is interpreted as a Markov renewal process, and model
checking CSL™ is reduced to computing the reachability probabilities in a DTMC
whose transition probabilities are given by subordinate CTMCs.

Due to space restriction, all the proofs are omitted in the current paper. We refer the
readers to [15] for the full proofs, more explanation, and examples.

2 Preliminaries

2.1 Continuous-time Markov chains

Given a set H, let Pr: F(H) — [0, 1] be a probability measure on the measurable
space (H, F(H)), where F(H) is a o-algebra over H. Let Distr(H) denote the set of
probability measures on this measurable space.

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
C = (S,AP,L,«, P, E) where S is a finite set of states; AP is a finite set of atomic
propositions; L : S — 24P is the labeling function; o € Distr(S) is the initial distri-
bution; P : S x S — [0,1] is a stochastic matrix; and E : S — R is the exit rate
function.

In a CTMC C, state residence times are exponentially distributed. More precisely,
the residence time X of a state s € S is a random variable governed by a nonnegative
exponential distribution with parameter E(s) (written as X ~ Exp(E(s))). Hence, the
probability to exit state s in ¢ time units (t.u. for short) is given by fot E(s)-e FG)dr,
Furthermore, the probability to take the transition from s to s in ¢ t.u. equals P(s, s) -

fot E(s) - e EG)qr,

Definition 2. Given a CTMC C = (S,AP, L, «, P, E), we define the following no-
tions.

— A (finite) discrete path ¢ = sg — s1 — So — ... is a (finite) sequence of states;
we define o; to be the state s;, and o° to be the prefix of length i of o.

— A (finite) timed path p = sg —% 51 —% sy —2» ..., where x; € Ry for each
i > 0, is a sequence starting in state so; we define |p| to be the length of a finite
timed path p; p[n] := s, is the n-th state of p and p(n) := x,, is the time spent
in state sy; let pQt be the state occupied in p at time t € R, i.e. pQt := p[n|,

n
where n is the smallest index such that »_, p{i) > t.

=0
— Given a finite discrete path 0 = sy — S$1 — -+ — Snp_1 of length n and

Zoy.. .y Tn_1 € Rsog, define olxg,...,x,-1] to be the finite timed path p such
that pli] := s; and p{i) := x; for each 0 < i < n.

— Let I' be the set of n-tuples (g, ..., xn—1) € RY, then o[I'| = {o[xo, ..., Tn_1]
| (mo,...,xn,l) S F}

— Given a finite (resp. infinite) discrete path o and a finite (resp. infinite) timed path
p, we say o is the skeleton of p if for each i > 0, o; = pli]. We write S(p) for the
skeleton of p, and for a set of (finite or infinite) timed paths =, we write S(Z) =
{S(p) [p€ =}

— Given a finite discrete path o, we define Cy(o) = {00’ | o' is an infinite discrete path}
to be the set of all infinite discrete paths with the same common prefix o.

Intuitively, a timed path p suggests that the CTMC C starts in state s and stays in

this state for x¢ t.u., and then jumps to state s, staying there for x; t.u., and then jumps

. . 3 2 1.5 3.4
to so and so on. An example timed pathis p = s9 — $1 — S9g — S§1 — S3...

with p[2] = sg and p@Q4 = p[1] = s7.

Let Paths® denote the set of infinite timed paths in the CTMC C, and Paths® (s)
the set of infinite timed paths in C that start in s. Given a time bound 7' € R and
N € NU {oo}, we define Paths%<N(s) ={pe Paths®(s) | 3k.0 < k < N —1
and Zf:o p(i) > T}, to be the set of all timed paths with at most N —1 discrete jumps
in time interval [0,7]; and Paths > y(s) = {p € Paths®(s) | Ik.0 < k < N —1,
and Zf:o p(i) < T}, to be the set of all timed paths with af least N jumps in [0, T].

For notational simplicity we will omit the superscript C when appropriate and also
we write Paths% instead of Paths%<oo for the set of all timed paths with an arbi-
trary number of jumps in [0, T'). The definition of a Borel space on timed paths through
CTMC:s follows [7]. A CTMC C yields a probability measure Pr€ on Paths® as fol-
lows. Let sq,...,s; € S with P(s;,8;41) > 0for0 < i < kand Iy,...,I;_1 be
nonempty intervals in R>. Let C(so, Io, ..., Ix—1, k) denote the cylinder set con-
sisting of all p € Paths(sp) such that p[i] = s; (i < k), and p(i) € I; (i < k).
F(Paths(so)) is the smallest o-algebra on Paths(sg) which contains all sets C/(sg, lo,
..., Iy_1, s1,) for all state sequences (s, .. .,s,) € ST with P(s;,s;.1) > 0 for
(0 < i < k) where Iy, ..., I;_; range over all sequences of nonempty intervals in
R. The probability measure Pr¢ on F(Paths(so)) is the unique measure defined by

induction on k by Pr°(C(sg)) = a(so) and for k > 0:
PIC(C(SQ, I(), N >Ik717 Sk)> = PI‘C(C<807 IQ, e ,kag, Skfl))
X / P(sg—1,sk)E(sk-1) e Ele-1)T gy
Ix—1

In general, computing the probability of a cylinder set with k intervals I ... [(i.e.
k discrete jumps) reduces to calculating k integrals over Iy ... [_1.

2.2 Metric Temporal Logic

Definition 3 (Syntax of MTL). Let AP be an arbitrary nonempty, finite set of atomic
propositions. Let I = [a,b] be an interval such that a,b € N U {oco}. The Metric
Temporal Logic is inductively defined as: ¢ ::= p | =@ | o1 A pa | 1Urps , where
p € AP and 1, po are MTL formulas.

We introduce two time-bounded semantics for MTL, as follows.

Definition 4 (Continuous Semantics). Given an MTL formula o, a time bound T, a
timed path p and a variable t € R, the satisfaction relation (p, t) |=5. ¢ is inductively
defined as follows:

(p,t) E5 p speL(pQ) At<T

(p:t) EG ~o1 & (pt) 5 ¢

(0:t) BT w1 A2 & (p,t) BES 01 A (p,t) BT @2

(p,t) =G pildrpy & .t <t/ <Tstt' —telA(pt)ES oA

vt t <t'<t' = (p,t") =5 ¢1
where p € AP and @1, po are MTL formulas.

Definition 5 (Pointwise Semantics). Given an MTL formula ¢, a time bound T, a
timed path p and i € N, the satisfaction relation (p,i) =4 ¢ is inductively defined as
follows:

(ps) & p € L(plil) A Vi p(k) < T
(p,1) |=T wl < (p,1) Fr 1

(p,0) B o1 N o2 (psd) = 1 A psi) B 2
(p,1)

Pyt ':TSOIUISO2 < Wi <d ”Zk cp(k)y € TN (p,i") B w2 A
Vi i < TS (")

where p € AP, 1, @ are MTL formulas and i’ ,i" € N.

2.3 Timed Automata

Let X = {x1,...,x,} be a set of nonnegative real-valued variables called clocks. An
X-valuation is a function n) : X — R assigning to each variable € X’ a nonnegative
real value 7(z). Let V(X') denote the set of all valuations over X. A clock constraint
on X, denoted by g, is a conjunction of expressions of the form z > ¢ for z € X,

€ {<,<,>,>} and ¢ € N. Let B(X) denote the set of clock constraints over X'. An
X-valuation 7 satisfies constraint = > ¢, denoted 7 |= = < ¢, if and only if n(z) X ¢;
it satisfies a conjunction of such expressions if and only if 7 satisfies all of them. Let
0 denote the valuation that assigns 0 to all clocks. For a subset X C X, the reset of
X, denoted n[X := 0], is the valuation ' such that Vo € X. #'(z) := 0 and Vz ¢ X.
n'(z) := n(z). For 6 € R>(and X-valuation 7, 7 + ¢ is the X'-valuation 7" such that
Vo € X.n"(x) := n(z) + J, which implies that all clocks proceed at the same speed.

Definition 6 (TA). A timed automaton is a tuple A = (X, X, Q, qo, QF, —) where X
is a finite alphabet; X is a finite set of clocks; @ is a non empty finite set of locations
with initial location qy € Q; QF is a set of final locations; the relation —C Q) x X X
B(X) x 2% x Q is an edge relation.

b'e . .
We refer to ¢ iy ¢ as an edge, where a € X is an input symbol, the guard g
is a clock constraint on the clocks of A, X is the set of clocks that must be reset and

¢’ is the successor location. Intu1t1vely, the edge ¢ i q' asserts that the TA A can
move from location ¢ to location ¢’ when the input symbol is a and the guard g holds,
while the clocks in X should be reset when entering ¢’. In case no guard is satisfied in
a location for a given clock valuation, time can progress. For the sake of simplicity we
omit invariants from the definition of TAs. However, the results presented here can be
easily extended to TAs enhanced with invariants.

Definition 7. Given a timed automaton A, we define the following notions.
— A discrete path of A is a sequence of states w = qy — q1 ... — qy - - - where each
7 € Q.
— A timed path of A is of the form 0 = qq 20,10 q1 iy Q1 ntilp— Gn -
such thatny = 0, and for all i > 0, a; € X and it holdst >0, m; +t; = g; where
gi 1s the guard on the i-th transition, 1,11 = (n; + t;)[X; := 0], where n; is the

clock evaluation when entering q;. We say that 0 is accepting if there exists some
n > 0s.t. ¢, € Q.

Definition 8 (Time-bounded Acceptance). Assume a CTMCC = (S, AP, L, 59, P, E)

anda TA A = (227, X, Q, q0, Qr, —). A CTMC timed path p = s LN I

is accepted by A if there exists n € Nsg and a corresponding TA finite path: § =

L(so),t L(s1),t L(sn_1),tn_ _
Qo Moql gl...qn_l (S;)> 1qn,suchthatqneQFana’zzbzoltiST.

We write p =1 A to denote that the CTMC timed path p is accepted by A.

Remark 1. Tt is possible that a single CTMC timed path corresponds to multiple TA
accepting paths due to the nondeterminism of TA.

3 A Bound on the Number of Discrete Jumps

In this section, we give a bound on discrete jumps of paths of CTMCs such that, when
verifying an MTL formula or TA, one only needs to consider those paths whose discrete
jumps number at most N. The intuition is that, for a given time interval [0, 7], the

probability of the set of timed paths which “jump” very frequently is actually very
small. Throughout this section we assume a CTMC C = (S, AP, L, o, P, E).
For any n € N, we define V"(s,) : S x R>¢ — [0, 1] as follows: V(s,2)=1 and

V(s x) = / E(s)e PG Z P(s,s') - V"(s',x —1)dr .
0 s'eS
Lemma 1. Forall N € N, Pr¢(Paths$,» 5 (s)) = V¥ (s,T).
We then show how to bound V¥ (s, T) analytically. Given a CTMC C, let A =

maXses E(S) and G(T, N) = e_AT . (i (AT)7>

1!
i=N

Lemma 2. ¢(T,N +1) = fOT Ae™ 7 (T —1,N)dr .
Combining Lem. 1 and Lem. 2, we obtain the following.

Theorem 1. Given a CTMC C, a time bound T and N € N, PrC(Paths%ZN) <
e(T,N).

Proposition 1. Let e € Ry and T € Rx. For any N > ATe? + In(L) we have that
e(T,N) < e.

For instance, given a CTMC C with 10 states, greatest rate A = 100, error bound
e =10"2and T = 1000, we get that N > 738911. The maximum number of paths to
consider would be 107V,

Remark 2. Readers who are familiar with Poisson distributions will immediately notice
that the bound we obtained is actually the probability that there are at least N Poisson
arrivals in an interval of time [0, T'], with rate A. If the CTMC C is uniform (i.e., each
state of C has the same exit rate), then one could obtain the bound in a straightforward
way. However, for the general case, this cannot be achieved directly. Moreover, we
point out here that, in order to verify an MTL formula ¢ or a TA A, one cannot apply
the unformization technique, which is used only for transient probability computation.

4 MTL Specifications

In this section we study the problem of model checking CTMCs against MTL prop-
erties. Let Pr&.(¢) := Pr¢({p € Paths$. | (p,0) =5 ¢}) denote the probability that
the CTMC C satisfies the MTL formula ¢, for a given time bound 7'. Notice that, here
the definition of Pr%(@) is for the continuous semantics of MTL. However, we present
algorithms to deal with both continuous and pointwise semantics. Instead of comput-
ing Pr%.(¢), we give a procedure to compute Pr%<N(<p) = Prc(Paths%<N(<p)) for
sufficiently large N which ensures that Pr§.(p) — Pr% <~ () < ¢ for arbitrarily small
€ € Ryg. This yields an approximation algorithm. The measurability of the set of
Paths%<N(<p) ={p¢€ Paths%<N | (p,0) =5 ¢} can be shown as in [32]. Below
we present an algorithm to compute Pr% <~ (). We first give a sketch, and provide the
crucial sub-procedures in Sec. 4.1 and Sec. 4.2.

Choose N to get the desired error bound €. The first step of the algorithm is to choose
the smallest NV from Prop. 1 such that we get the desired error bound ¢.

Compute the product C @ Ag. The basic idea of this step is to exclude those CTMC
timed paths which definitely fail ¢ in order to reduce the number of paths to be analyzed.
To this end, we define an LTL formula ¢ such that, if a discrete path of C fails ¢, then
any timed path with the discrete path as the skeleton (see Def. 2) must fail (. This is
formally stated in Lem. 3. Notice that since we consider the time-bounded semantics
of MTL, we need a variant of acceptance for an infinite discrete word and an LTL
formula @, which is given in Def. 9. We then construct an NFA out of ¢ such that only
those finite discrete CTMC paths which are accepted by the NFA are the prefixes of
the potential skeletons of timed paths satisfying . Then we apply the standard product
construction, which suffices to identify those CTMC finite discrete paths analyzed in
the next step.

Any MTL formula ¢ can be transformed into a positive normal form containing
only two temporal operators: Ujqp) and O, 5y, Where (p,t) =7 Oy iff vt €
[a,b] = (p,t +1') =5 o

Definition 9 (Bounded Semantics of LTL). Given an LTL formula (, a finite discrete
path o and i € N, the satisfaction relation (c,1) = @ is inductively defined as follows:

Ep < pe L(o;)andi < |o]

)
§|=wl & (0,4) = o1
)

Vil i <i' <i = (0,i") E o1

where p € AP, 1, w2 are LTL formulas and i',i" € N. For an infinite discrete
path o, we define o = ¢ if there exists some k > 0 such that the finite discrete path

(c*,0) = .

Given any MTL ¢ in positive normal form, we define an (untimed) LTL formula ¢
as follows:

p=p = ¢=p
p="p = @="p
e=p1Vps=>0=01V P
p=p1ANp2 =P =01 NP2
¢ =pilrps = ¢ = p1lUps
p=05p1 = @=TRUEUp;

where 1 and @9 are MTL formulas and ¢ and @» are LTL formulas.

Remark 3. In the transformation from the MTL formula ¢ to LTL formula ¢ we only
define the — operator for atomic propositions because ¢ is already in positive normal
form. Notice that we transform Uy, ;) into TRUE U instead of a seemingly more
natural [y, because otherwise in the next step we would not consider timed paths p
such that (p,0) = ¢ while S(p) = @. Such paths do exist. For instance, consider

the MTL formula g o)p and the path p = sq 25, g1+ with L(sp) = {p} and
L(s1) = {~p}. Then (p,0) |=5 Djg»yp and S(p) = Cp (but S(p) = TRUEUp as
we defined). To conclude, one cannot transform [, 3 by simply removing the time
constraints [a, b].

Lemma 3. Let ¢ be an MTL formula and p be a timed path in C. We have that

(1, 0) 7 ¢ = (S(p), 0) = &

As the next step, we construct an NFA 45 which accepts all the prefixes of infinite
paths satisfying the formula ¢ according to Def. 9. The NFA can be obtained by a minor
adaptation of the well-known Vardi-Wolper construction [34]. (See [15] for details.) We
then build the product of C and Az.

Definition 10 (Product C ® Ag). Given a CTMC C = (S,AP, L, so,P,E) and an
NFA A; = (Q,2%%, 4, qo, F) we define the product C @ A to be the tuple C ® Az =
(Loc, ly, Locg, ~) where: Loc = SxQ; lo = {so,qo); Locp = SXF; ~»C Locx Loc
such that
P(s,s') >0Aq L) q
(s,q) ~ (s, ¢)

The set of accepted timed paths in C ® Ay is defined by { Locr. Notice that we are
only interested in the discrete paths of C ®.A5. Therefore, we do not assign probabilities
to the transition relation ~~ when computing the product. The product is used to check
which discrete paths in the CTMC verify the formula @.

Proposition 2. For any CTMC C and NFA Ag, S(Paths$(p)) € {Calo) | o €
OLocy |1}, where Locr |1 is the first component of Locp.

Compute all the discrete paths of C ® Az of length at most N and calculate the
probabilities.

1. Search the graph C ® A to get all the discrete accepting paths o of C of length at
most N;

2. Run Alg. 1 on each discrete path ¢ of length n < N to obtain the system of linear

inequalities S;

Compute the probability of o[S] (cf. Sec. 4.2);

4. Sum up all the probabilities for each discrete path to obtain Pr% <~ ().

et

4.1 Constraints Generation

We describe the Alg. 1 that takes as input a discrete path o of length n and an MTL
formula . ? The algorithm returns a family of linear constraints S = \/,.; A e Cij
where ¢;; is a linear inequality over the set of variables %o, ...,%,—1. Given a sys-
tem of linear constraints S we define the set of feasible solutions to be the tuples
(xoy ..., Tn—1) € R™ such that (xg,...,2n_1) € S.

% The algorithm Alg. 1 evaluates the formula ¢ for the continuous semantics.

Algorithm 1 Constraints generation for continuous semantics
Require: A finite discrete path o of length n > 0, an MTL formula ¢ and a time bound T
Ensure: Family of linear inequalities S over to, ..., tn—1

S’ :=Constr_Gen (o,0, p)

S :=Fourier Motzkin(S’,to, ..., tn-1)

return S

Function Constr_Gen (o,t, ¢)

case(y) :
o=p o return (\/}_op € L(ox) AX N jti >t AN M ti<t)AL<T
® =1 : &' :=-Constr_Gen(o,t,p1)
p=p1 N\ p2 . S :=Constr_Gen (o,t, 1) A Constr_Gen (o,t, 2)

o=pUappz: S =T .(t<t <TAt'—t>a At'—t<bA Constr_Gen (c,t', p2)
AVE' t<t' <t = Cconstr_Gen(o,t’, ©1))

return S’

The negation of the family of linear constraints is defined in the standard way. First,
the algorithm executes the function Constr_Gen (o, 0, ¢) . The result is a set of con-
straints S’ in first-order theory of (R, 4, —, 0, 1, <). Second, the algorithm executes the
Fourier-Motzkin procedure in order to eliminate all existential and universal quantifiers.
This results in a family of linear constraints containing only the variables %g, ..., t,_1.

Theorem 2. Given a discrete path o of length n, an MTL formula ¢ and a time bound
T, we have that (o[zo,...,2n—1],0) =1 @ iff (z0,...,2n_1) € S, where S is re-
turned by Alg. 1.

Example 1. Let C be a CTMC and let o be the following finite discrete path on C:
o =8 — S$1 — S2 — s3.Leta,b € AP, let L(sg) = {a},L(s1) = {a}, L(s2) =
{a,b}, L(s3) = {@} and let p = a Uy 2)b. The first step of Alg. 1 consists of comput-
ing Constr_Gen (0,0, ¢) which returns the following family of linear constraints S’
(the parenthesis “{” denotes the A between the formulas):

to+t1+t2 >t
to + 11 <t//\ M

>// >//
m+m_tv{m+m+@_t>)

3ﬂ0§ﬂ<TAﬂzlAﬂ<2A{

//. < 1 ! > "
vt 0_t<t:(to_tv{t0 Z A Z

The constraints in Eq. (2) can always be verified given the constraints in Eq. (1). More-
over, after the Fourier_Motzkin elimination for ¢’,¢” in &’ we obtain the family of
constraints S:
S— { to + t1 <2
to+t +ta>1"

The system S can be represented using the matrix notation: S := {t € RZ, | A - t<Ib},
for a given matrix A € R™*", vector b € R™ and < € {<, <}. The notation R+
stands for the semi-closed interval (0,00) C R. The matrices A, t and b in S are:
A e R?*3,t € R3) and b € R?. More specifically:

10

to
1 1 0 2
TN B A
to

In Alg. 2 we present a procedure which generates a family of linear constraints from
a given MTL formula ¢ under the pointwise semantics. Notice that we do not need
to use the Fourier Motzkin elimination procedure, as the family of constraints
obtained from Constr_Gen (o, 0, ¢) contains no quantifiers.

Algorithm 2 Constraints generation for pointwise semantics
Require: A finite discrete path o of length n > 0, an MTL formula ¢ and a time bound T
Ensure: Family of linear inequalities S over to, . .., tn—1

return Constr_Gen (o, 0,)

Function Constr_Gen (o, 1, ¢)

case(y) :
p=p . ifp € L(o;) return 3"} tx < T else return false
= "1 : §:=-Constr_Gen (0,1, p1)
p=@1 NP2 : S:=Constr_Gen(o,i,p1) A Constr_Gen(o,i,p2)

o =pilapp2: S:=(\}_, ConstrGen(o,i,p2) Aa< ZZZZ te <bA
(/\Z,;liConstr,Gen (0,1, 1)))

return S

Let S be the family of linear constraints obtained from Alg. 1 and 2. § is always
defined as a union of convex polyhedrain R", i.e., S = \/Z-e I A c¢;; where, for each
1el, /\j e, Cij 18 a convex polyhedron.

JEJT;

4.2 Computing Probabilities

Given a CTMC C, a discrete path o of length NV and the family of linear constraints
S(to,...,tn—1) obtained from Alg. 1, the main task of this section is to compute the
probability of o[S], i.e., Pr°(c[S]). To this end, we first add more constraints to S,
namely, for § = \/;.; /\;c ;, ¢ij we obtain

32\/ /\Cij/\(to—F...—i-tN_l>T/\f0—|—...—|—tN_2<T)/\ /\ tr >0
el \jet 0<k<N

These new constraints are used to ensure that there are exactly N discrete jumps during
the time interval [0, 7], and that each residence time is positive.

Now we have N random variables tg,--- ,ty—1, corresponding to the residence
time of each state o; for i < N. The probability Pr’(o[S]) is thus formulated as the
joint probability Pr¢(S(to, - - - ,tx_1)), where t; ~ Exp(E(c;)) foreach 0 < i < N,
and tg, - -- ,ty_1 are bounded by the family of linear constraints S. The value of the

11

joint probability can be computed through the following multidimensional integration:

‘‘‘‘‘ TN-1) =0

N—-1
Pré(0[S)) = // [T EGs) - P(si sisr) x e B dr. 3)
,S(m0

Proposition 3 ([21]). Consider any family of linear inequalities S = \/,;)\ jeJ, Cij-
For each i € I, we can write |\ ¢;j in matrix form A; - t < b; where < € {<, <},

JEJ;
and |\ ;¢ ;. ¢ij is a polyhedron.

From Prop. 3, we have that S = \/IZ:0 C, where each Cy = {t € RZ|A, -t Ib,}
defines a convex set. In case that the union \/’Z:O (' is not convex, we use the inclusion-
exclusion principle to compute Pr¢(c[S]) as follows:

k
Pr¢(0[S]) = ZPrC(U[C’g]) - Z Pr¢(o[C; A Cy]) +

=0 1,j:0<i<j<k

> Pré(a[C; AC; ACy]) — -+ (1) Pr€(a[Co A --- A C))
i,J,h:0<i<j<h<k

Remark 4. In our case, the difference between < and < in the constraints is marginal,
as they would yield the same probability, which can be seen from Eq. (3).

For an index set L C {0,...,k} we writt D = A,.; C;, where C; defines a
polyhedron. By Prop.3, D defines a polyhedron as well. We rewrite Pr¢ (c[D]) as:

N-1 N-1
H E(s;) ‘P(Siasi+1)'/"'/ H e~ Blsmi g
i=0 P =0

N

N-1

H E(s;) - P(si,8i41) ngl}) e FTdr,

Pr¢(o[D))

=0

where E = [E(so), ..., E(sn-1)}, T = [10,- .., 7v_1] and E-7 = SV E(sy) - 7
We use the algorithm of [25] (Sec. 5) to compute efficiently the multidimensional inte-
gral [[D e~ F'7dr based on the Laplace transform. An example of how to compute
the integral [--- [D e BT dr for a convex set D is given in [15]. The time complexity
of solving the multidimensional integral is O(n™), where n is the number of constraints
and m is the number of variables in D.

Remark 5. Admittedly, it is costly to apply the inclusion-exclusion principle to compute
the probabilities. In the worst case, any union of two components is not convex. Notice
that efficient algorithms to decide whether the union of two polyhedra is convex there
exist; see e.g. [12].

12

4.3 Main Algorithm and Correctness

We summarize the time-bounded verification algorithm for a CTMC C against an MTL
formula ¢ in Alg. 3. Recall that A is the maximal exit rate appearing in C.

Algorithm 3 Time-bounded verification of a CTMC C against an MTL formula ¢
Require: C, ¢, T and
Ensure: Pr{ _ ()
Choose an integer N > ATe® + In(2)
Transform ¢ into ¢ and generate NFA A5 out of ¢
Compute the product C ® Az
for each discrete path o of (C ® Ag) |1 of length n < N do
Generate the family of linear constraints S(to, . .., tn—1) using Alg. 1 (or Alg. 2)
Calculate the probability p of o[S]
Pr%<N(@) = Pr%<N(§0) +p
end for
return Pr$ _y(¢)

For the correctness, we first note that the error is bounded by Pr%z ~ (), which
is in turn bounded by the probability of the set of timed paths with at least NV discrete
jumps in [0, T']. Then Lem. 4 yields the bound, as follows.

Lemma 4. Given a CTMC C, an MTL formula , a time bound T and N € N
Pri(¢) — Pre _n(p) < €(T, N).

Theorem 3. Alg. 3 computes Pr% <n(®).

S5 TA Specifications

In this section, we show how the procedure outlined in the previous section can be
adapted to verify TA specifications on CTMCs. Formally, we intend to compute Pr%(A)
= Pr¢({p € Paths$ | p =1 A}). As in the case of MTL specifications, we bound
Pré(A) by Pr%<N(A) = Pr¢ (Path8%<N(A)), such that Pr&.(A) —Pr%<N(A) <e
for ¢ > 0. The measurability of the set of paths Paths% ~WA ={pe Paths% <N |
p =1 A} can be shown as in [17].

5.1 Constraints generation

Alur et. al. in [5] show how to, given a discrete path 7 of TA A, construct a graph G
such that A has a run over 7 if and only if G has no negative cost cycle. The graph G has
exactly n nodes and the number of edges of G depends on the numbers of guards and
invariants in A (see [5] for details). Each edge e = (4, j) (connecting node i to node 5)
is labeled with a value c such that ¢ € H where

H={.—-2-1012,..3U{..—27,-17,07,17,27,...} U{—o00, 00}

13

The set H is used to characterize strict and non-strict constraints in A.

For each discrete path o of the CTMC C we define I1, = {m | m; L(lg iy forall 0 <
i<n-—1}.

Theorem 4. Given a discrete path o of length n, a TA A and a time bound T, we have
that oltg, ..., tn—1] is accepted by A iff (to,...,tn—1) € S, where S is returned by
Alg. 4.

Algorithm 4 Constraints generation for a TA
Require: A finite discrete path o of length n > 0 and a TA A
Ensure: Family of linear constraints S
1: For the discrete path o compute the set I/,
2: foreach 7 € I, do
3: Generate the graph G
Spi=0
for each edge e(7, j) € G labeled with ¢ do
Sri=8-Nt; —t; <c
end for
S=8SV(SeA(to+ ... Ftno1 >T Ato+ .o Fta2 <T)ANgcpen tr >0)
9: end for
10: return S

S A

5.2 Algorithm for TA

Given a timed automaton A we write A to denote the NFA obtained by removing all
the guards, clocks and invariants from .A. The product C ® A follows Def. 10. Similarly
to Prop. 2, we have that

Proposition 4. For any CTMC C and NFA A, S(Paths$(A)) C {Cu(o) | o €

OLocr |1}, where Locr is the set of final locations in C ® A.

The approximation algorithm for time-bounded verification of a TA specification .4
is given in Alg. 5.

Lemma 5. Given a CTMC C, a TA specification A, a time bound T and N € N
Prl.(A) — Prf _n(A) < (T, N).

Theorem 5. Alg. 5 computes Pr% <~ (A).

6 Conclusion
In this paper we have studied time-bounded verification of CTMCs against real-time

specifications. In particular, we presented effective procedures to approximate the prob-
ability of the set of timed paths of CTMCs that satisfy real-time specifications over a

14

Algorithm 5 Time-bounded verification of a TA specification .4 againsta CTMC C
Require: C, A, T and

Ensure: Pr{ _y(A)

1: Choose an integer N > ATe” + In(2)

2: for each discrete path o of (C ® A) |1 of length n < N do

3 Calculate the family of linear constraints S(to, . . . , tn—1) with Algorithm 4

4: Calculate the probability p of o[S]
5
6
7

Pr§ v (A) = Pr§ _(A) +p
: end for
: return Pr{ _y(A)

time interval of fixed bounded length, arbitrarily closely. For the real-time specifica-
tions, we focused on MTL under both the continuous and pointwise semantics, and
general timed-automata.

The aim of the current paper is to provide effective approximation algorithms. We
leave the precise complexity as future work. Notice that, for MTL, the satisfiability
problem over CTMCs is undecidable for continuous semantics [2] while it has non-
primitive recursive complexity for pointwise semantics [28]. These results do not carry
over directly to CTMC:s, as they do not involve nondeterminism. Moreover, we mention
that since our algorithms involve computation over reals, it might make more sense to
consider different computation models (e.g. the BSS model [13]) and the complexity
theory therein, rather than the standard Turing model. Notice that one could also apply
discretization to solve the problem. However, it is not clear how the probabilities are
preserved in the discretized model.

Recently [26] showed that, under the bounded-variability assumption (BVA), an
MTL formula can be transformed into a deterministic timed automaton. Roughly, a
timed path satisfies the BVA if there exist A and & such that, for every interval of the
form [t, ¢ + A], the number of discrete jumps is at most k. Clearly, this is related to
the bound on discrete jumps in [0, T']. However, the BVA is a “global” assumption over
[0, 00), so it does not apply to time-bounded verification. Also, it is not clear for us how
to bound the error under this assumption. It would be interesting to investigate whether
one could obtain a DTA out of MTL under our assumption of finitely many jumps over
[0, T], which could yield an alternative way to solve the problem, based on previous
work of two authors [17]. A natural question is how to tackle the traditional (time-
unbounded) verification. The scheme introduced in this paper still works. However,
one cannot guarantee an approximation to stay within the given error bound ¢, which
means that the resulting procedure is not an approximation algorithm any more. It is
also interesting to tackle real-time specifications given as alternating timed automata
[22] or as TPTL formulas [3,10], as they subsume MTL. We claim that the scheme can
be applied in a straightforward way. However, one needs new constraints generation
procedures. We leave them as future work.

Acknowledgement. We are grateful to Klaus Dréger, Joost-Pieter Katoen, and anony-
mous referees for fruitful discussions and constructive comments.

15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183-235,
1994.

R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J. ACM,
43(1):116-146, 1996.

. R. Alur and T. A. Henzinger. A Really Temporal Logic. J. ACM, 41(1):181-204, 1994.
. R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness. In LICS,

pages 390-401, 1990.

. R. Alur, R. P. Kurshan, and M. Viswanathan. Membership questions for timed and hybrid

automata. In IEEE Real-Time Systems Symposium, pages 254-263, 1998.

. C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle. Model checking Markov

chains with actions and state labels. IEEE Trans. Software Eng., 33(4):209-224, 2007.

. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for

continuous-time Markov chains. IEEE Trans. Software Eng., 29(6):524-541, 2003.

. C.Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Performance evaluation and model

checking join forces. Commun. ACM, 53(9):76-85, 2010.

. C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort. Efficient computation of time-

bounded reachability probabilities in uniform continuous-time Markov decision processes.
Theor. Comput. Sci., 345(1):2-26, 2005.

P. Bouyer, F. Chevalier and N. Markey. On the expressiveness of TPTL and MTL. Inf.
Comput.,208(2):97-116, 2010.

B. Barbot, T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Efficient CTMC model checking
of linear real-time objectives. In P. A. Abdulla and K. R. M. Leino, editors, TACAS, volume
6605 of Lecture Notes in Computer Science, pages 128—142. Springer, 2011.

A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity recognition of the union of polyhedra.
Comput. Geom., 18(3):141-154, 2001.

L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer-
Verlag, 1998.

P. Bouyer. From Qualitative to Quantitative Analysis of Timed Systems. Mémoire
d’habilitation, Université Paris 7, Paris, France, Jan. 2009.

T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Time-bounded verification of
CTMCs against real-time specifications. Tech. Rep. RR-11-06, Department of Computer
Science, University of Oxford, 2011.

T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Quantitative model checking of continuous-
time Markov chains against timed automata specifications. In LICS, pages 309-318, 20009.
T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Model checking of continuous-time Markov
chains against timed automata specifications. Logical Methods in Computer Science, 7(1—
2):1-34, 2011.

C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM),
42(4):857-907, 1995.

S. Donatelli, S. Haddad, and J. Sproston. Model checking timed and stochastic properties
with CSL™. IEEE Trans. Software Eng., 35(2):224-240, 2009.

E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. Time-bounded model checking of
infinite-state continuous-time Markov chains. Fundam. Inform., 95(1):129-155, 2009.

J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I.: Fun-
damentals. Springer-Verlag, 1994.

M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. Alternating timed automata over
bounded time. In LICS, pages 60—-69. IEEE Computer Society, 2010.

16

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

J.-P. Katoen and L. S. Zapreev. Safe on-the-fly steady-state detection for time-bounded reach-
ability. In QEST, pages 301-310, 2006.

R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255-299, 1990.

J. B. Lasserre and E. S. Zeron. A Laplace transform algorithm for the volume of a convex
polytope. J. ACM, 48(6):1126-1140, 2001.

D. Nickovic and N. Piterman. From MTL to deterministic timed automata. In FORMATS,
pages 152-167, 2010.

J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification. In M. Bravetti and
G. Zavattaro, editors, CONCUR, volume 5710 of Lecture Notes in Computer Science, pages
496-510. Springer, 2009.

J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal logic over
finite words. Logical Methods in Computer Science, 3(1), 2007.

J. Ouaknine and J. Worrell. Towards a theory of time-bounded verification. In S. Abramsky,
C. Gavoille, C. Kirchner, F. M. auf der Heide, and P. G. Spirakis, editors, /CALP (2), volume
6199 of Lecture Notes in Computer Science, pages 22-37. Springer, 2010.

0. Roux and V. Rusu. Verifying time-bounded properties for ELECTRE reactive programs
with stopwatch automata. Hybrid Systems 11, pages 405-416, 1995.

A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series in discrete
mathematics and optimization. Wiley, 1999.

A. Sharma and J.-P. Katoen. Weighted lumpability on Markov chains. In In 8th Ershov
Informatics Conference. LNCS, 2011.

M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
FOCS, pages 327-338, 1985.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification
(preliminary report). In LICS, pages 332-344, 1986.

17

	Time-Bounded Verification of CTMCs against Real-Time Specifications

