

Copyright

by

William Lloyd Bircher

2010

Dissertation Committee for William Lloyd Bircher

certifies that this is the approved version of the following dissertation:

Predictive Power Management for Multi-Core Processors

Committee:

Lizy John, Supervisor

Mattan Erez

Steve Keckler

Charles Lefurgy

Tess Moon

David Pan

Predictive Power Management for Multi-Core Processors

by

William Lloyd Bircher, B.S.E.E.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2010

To Sara, Catherine and Elizabeth

v

Acknowledgements

I would like to thank Dr Lizy John for her guidance, insight and flexibility. Her

positive attitude and encouragement were instrumental in staying motivated. I appreciate

her balanced approach to work, study and life that has made my doctoral study possible.

I am grateful to my committee members, Prof. Mattan Erez, Prof. Steve Keckler,

Dr. Charles Lefurgy, Prof. Tess Moon and Prof. David Pan. Your helpful comments and

suggestions greatly improved the quality of the dissertation.

I am thankful to my fellow researchers in the Laboratory for Computer

Architecture (LCA) for our collaborations, discussions and practice talks over the years.

I enjoyed working with Dr. Madhavi Valluri and Jason Law on power modeling. This

collaboration was a great introduction to graduate research and proved to be a strong

basis for my thesis. I look forward to future collaboration with Karthik Ganesan, Jungho

Jo and the other authors who worked on the synthetic power virus paper. I would like to

thank Dimitris Kaseridis and Ciji Isen for many great discussions on research and life. I

am grateful to the other members of LCA, Ajay Joshi, Aashish Phansalkar, Juan Rubio,

Ravi Bhargava, Byeong Lee, Tao Li, Jeff Stuecheli, Jian Chen, Arun Nair, Muhammad

Farooq and Jungho Jo for attending my practice talks and providing insightful feedback.

I am thankful to Tommy Tam, Gwen Bernstrom and Dr. Charles Lefurgy at

International Business Machines for encouraging me to pursue graduate education.

vi

Thanks to Brent Kelly at Advanced Micro Devices for convincing me to join his

power and performance modeling team while completing my PhD. Working on his team

has allowed me to “amortize” the considerable efforts required for doctoral research with

gainful employment.

Finally, I would like to thank my dear wife Sara. Doctoral study requires a major

commitment from family and friends. Doctoral study while working full-time, raising a

family and remodeling a home requires an incredible commitment. I am eternally grateful

for your unwavering encouragement, support and patience without which this dissertation

would not have been possible.

vii

Predictive Power Management for Multi-Core Processors

William Lloyd Bircher, PhD.

The University of Texas at Austin, 2010

Supervisor: Lizy John

Energy consumption by computing systems is rapidly increasing due to the growth of

data centers and pervasive computing. In 2006 data center energy usage in the United

States reached 61 billion kilowatt-hours (KWh) at an annual cost of 4.5 billion USD

[Pl08]. It is projected to reach 100 billion KWh by 2011 at a cost of 7.4 billion USD.

The nature of energy usage in these systems provides an opportunity to reduce

consumption.

Specifically, the power and performance demand of computing systems vary widely in

time and across workloads. This has led to the design of dynamically adaptive or power

managed systems. At runtime, these systems can be reconfigured to provide optimal

performance and power capacity to match workload demand. This causes the system to

frequently be over or under provisioned. Similarly, the power demand of the system is

difficult to account for. The aggregate power consumption of a system is composed of

many heterogeneous systems, each with a unique power consumption characteristic.

This research addresses the problem of when to apply dynamic power management in

multi-core processors by accounting for and predicting power and performance demand

viii

at the core-level. By tracking performance events at the processor core or thread-level,

power consumption can be accounted for at each of the major components of the

computing system through empirical, power models. This also provides accounting for

individual components within a shared resource such as a power plane or top-level cache.

This view of the system exposes the fundamental performance and power phase behavior,

thus making prediction possible.

This dissertation also presents an extensive analysis of complete system power

accounting for systems and workloads ranging from servers to desktops and laptops. The

analysis leads to the development of a simple, effective prediction scheme for controlling

power adaptations. The proposed Periodic Power Phase Predictor (PPPP) identifies

patterns of activity in multi-core systems and predicts transitions between activity levels.

This predictor is shown to increase performance and reduce power consumption

compared to reactive, commercial power management schemes by achieving higher

average frequency in active phases and lower average frequency in idle phases.

ix

Table of Contents

Chapter 1 Introduction ..1

1.1 Attributing Power in Multi-Core Systems ... 1

1.2 When to Adapt ... 4

1.3 Power Variation is Periodic.. 6

1.4 Objectives ... 8

1.5 Thesis Statement .. 9

1.6 Contributions .. 9

1.7 Organization ... 11

Chapter 2 Methodology ..13

2.1 Measuring System and Component Power .. 13

2.1.1 Aggregate CPU Power Measurement ... 14

2.1.2 Subsystem-Level Power in a Server System .. 15

2.1.3 Subsystem-Level Power in a Mobile System ... 17

2.2 Controlling Temperature, Voltage and Frequency ... 19

2.3 Performance Counter Sampling ... 21

2.4 Workloads .. 21

Chapter 3 Modeling CPU Power using Performance Monitoring Counters24

3.1 Correlation of Performance Counters to Power ... 24

3.2 IPC Related Power Models .. 27

3.3 Micro ROM Related Power Models... 30

3.4 Power Management Effects ... 31

3.4.1 Active and Idle Power Management ... 32

3.4.2 Active Power Management: P-states .. 33

3.4.3 Idle Power Management: C-states .. 34

3.4.4 Case Study: Processor Power Management Characteristics 34

x

3.4.5 Power Management-Aware Model ... 37

3.5 Methodology for Power Modeling ... 40

3.6 Summary .. 43

Chapter 4 System-Level Power Analysis ..44

4.1 Average Power ... 44

4.1.1 Server Platform - SPEC CPU, SPECjbb and DBT-2 44

4.1.2 SPEC CPU 2000/2006 CPU and Memory Power Comparison 46

4.1.3 Desktop Platform – SYSmark 2007 .. 48

4.1.4 Desktop Platform - SPEC CPU, 3DMark and SYSmark 49

4.2 Power Consumption Variation ... 53

4.2.1 Server Platform ... 53

4.2.2 Desktop Platform .. 59

4.3 Summary .. 62

Chapter 5 Modeling System-Level Power using Trickle-Down Events64

5.1 Processor Events Propagate to Rest of System .. 64

5.2 Complete-System Server Power Model ... 67

5.2.1 CPU ... 71

5.2.2 Memory ... 73

5.2.3 Disk ... 76

5.2.4 I/O ... 79

5.2.5 Chipset .. 80

5.2.6 Model Validation .. 81

5.3 Complete-System Desktop Power Model .. 84

5.3.1 System Description ... 84

5.3.2 Workloads ... 86

5.3.3 Performance Event Selection .. 88

5.3.4 CPU ... 93

5.3.5 GPU... 94

xi

5.3.6 Memory ... 96

5.3.7 Memory Controller ... 98

5.3.8 Chipset .. 99

5.3.9 Disk ... 99

5.3.10 Model Validation .. 99

5.4 Summary .. 102

Chapter 6 Performance Effects of Dynamic Power Management103

6.1 Direct and Indirect Performance Impacts... 103

6.1.1 Transition Costs .. 103

6.1.2 Workload Phase and Policy Costs .. 104

6.1.3 Performance Effects .. 105

6.1.4 Indirect Performance Effects .. 107

6.1.5 Direct Performance Effects ... 109

6.2 Reactive Power Management ... 110

6.2.1 Power and Performance Results ... 116

6.3 Summary .. 118

Chapter 7 Predictive Power Management ..120

7.1 Core-Level Activity Prediction .. 120

7.2 Commercial DVFS Algorithm ... 125

7.3 Workload Characterization .. 126

7.4 Periodic Power Phase Predictor – PPPP .. 130

7.5 Predicting Core Activity Level .. 134

7.6 Predicting Power Levels... 143

7.7 Summary .. 145

Chapter 8 Related Research ..147

8.1 Performance Counter-Driven Power Models .. 147

8.2 System-Level Power Characterization .. 149

8.3 Predictive Power Adaptation ... 150

xii

8.4 Deadline and User-Driven Power Adaptation ... 151

Chapter 9 Conclusions and Future Work ..153

9.1 Conclusions ... 153

9.2 Future Work .. 156

Bibliography ...158

Vita ..174

xiii

List of Tables

Table 1.1 Windows Vista Reactive DVFS .. 5

Table 2.1 Desktop System Description ... 14

Table 2.2 Server System Description .. 15

Table 2.3 Subsystem Components .. 15

Table 2.4 Laptop System Description ... 19

Table 2.5 Workload Description ... 22

Table 3.1. Intel Pentium 4, High and Low Correlation Performance Metrics 25

Table 3.2 Percent of Fetched µops Completed/Retired – SPEC CPU 2000 26

Table 3.3 µop Linear Regression Model Comparison .. 28

Table 3.5 Instruction Power Consumption .. 30

Table 3.6 µop Linear Regression Model Comparison .. 31

Table 3.7 Example P-states Definition .. 33

Table 3.8 Example C-states Definition ... 34

Table 3.9 AMD Quad-Core Power Model .. 39

Table 4.1 Subsystem Power Standard Deviation (Watts) ... 53

Table 4.2 Coefficient of Variation ... 54

Table 4.3 Percent of Classifiable Samples .. 58

Table 4.4 Workload Phase Classification ... 59

Table 5.1 Integer Average Model Error .. 82

Table 5.2 Floating Point Average Model Error... 83

Table 5.3 System Comparison .. 85

Table 5.4 Desktop Workloads ... 87

Table 5.5 Average Error .. 101

Table 6.1 Performance Loss Due to Low Idle Core Frequency – SPEC CPU 2006 .. 111

Table 6.2 Power/Performance Study: SYSmark 2007 .. 116

xiv

Table 7.1: SYSmark 2007 Components .. 127

Table 7.2: Periodic Power Phase Predictor Field Descriptions 134

Table 7.3: SYSmark 2007 DVFS Hit Rate ... 136

Table 7.4: SYSmark 2007 Prediction Coverage ... 137

Table 7.5: Core Phase Residency by Length... 138

Table 7.6: SYSmark 2007 Power and Performance Impact of PPPP 141

Table 7.7: SYSmark 2007 P-State and C-State Residency of PPPP versus Reactive . 142

xv

List of Figures

Figure 1.1 CPU Core-Level Power Accounting.. 3

Figure 1.2 System-Level Power Accounting .. 4

Figure 1.3 Core Activity Patterns – Blu-Ray Playback .. 7

Figure 1.4 Thread and Aggregate Power Patterns... 8

Figure 2.1 Current Sense Amplification PCB ... 16

Figure 2.2 Power Measurement Environment .. 17

Figure 2.3 Leakage Power Determination... 20

Figure 3.1. Average µOps/cycle - SPEC CPU 2000 ... 27

Figure 3.2 Temperature Sensitivity of Leakage Power ... 35

Figure 3.3 Power by C-state/P-state Combination .. 36

Figure 3.4 CPU Power Model – SPEC CPU 2006 Power and Average Error 39

Figure 3.5 Trickle-Down Modeling Process ... 42

Figure 4.1 Average Power Consumption (Watts) .. 45

Figure 4.2 CPU2000 Average Core Power - 1 Thread vs. 4 Thread............................. 47

Figure 4.3 CPU2006 Average Core Power - 1 Thread vs. 4 Thread............................. 47

Figure 4.4 SPEC CPU2006 Average Core vs. DIMM Power 48

Figure 4.5 Desktop Subsystem Power Breakdown ... 49

Figure 4.6 Subsystem Average Power (Watts) ... 52

Figure 4.7 Subsystem Amplitude Distributions .. 57

Figure 4.8 Core Power Phase Duration ... 61

Figure 4.9 Core Power Phases – SYSmark 2007 .. 62

Figure 5.1. Propagation of Performance Events ... 66

Figure 5.2 Processor Power Model – gcc .. 72

Figure 5.3 Memory Power Model (L3 Misses) – mesa ... 74

Figure 5.4 Prefetch and Non-Prefetch Bus Transactions – mcf 75

xvi

Figure 5.5 Memory Power Model (Memory Bus Transactions)- mcf 76

Figure 5.6 Disk Power Model (DMA+Interrupt) – Synthetic Disk Workload 79

Figure 5.7 GPU Power Model (Non-Gated Clocks) – 3DMark06-HDR1 96

Figure 5.8 DRAM Power Model (∑DCT Access, LinkActive) – SYSmark 2007-3D . 97

Figure 5.9 Memory Controller Power (∑DCT Access, LinkActive) – HDR1 98

Figure 6.1 Direct and Indirect Performance Impact .. 107

Figure 6.2 Remote and Local Probe Sensitivity .. 112

Figure 6.3 C-state vs. P-state Performance ... 113

Figure 6.4 Varying OS P-state Transition Rates ... 114

Figure 7.1: Thread and Aggregate Power Patterns ... 123

Figure 7.2: Windows Vista Reactive P-State Selection Algorithm 126

Figure 7.3: Six-Core Phenom 2 Desktop Activity Levels ... 128

Figure 7.4: Utilization of Multiple Cores by SYSmark 2007 Benchmark 129

Figure 7.5: Periodic Power Phase Predictor .. 132

Figure 7.6: Example of Program Phase Mapping to Predictor 133

Figure 7.7 Core-Level Phase Length Probability Distributions 140

Figure 7.8 Prediction Accuracy of Core Power for Various Predictors 144

1

Chapter 1 Introduction

Computing systems have a wide range of design objectives. Metrics such as

performance, power and cost must be carefully managed in order to meet these

objectives. While some parameters are fixed at design time, others such as performance

and power consumption may be dynamically adjusted at run-time. This allows a system

to be optimal across a wider range of workloads and usage scenarios. This dynamic

optimization, commonly known as dynamic power management, allows performance to

be exchanged for power savings. The amount of savings is constrained by the system

objectives. For example, systems with quality of service (QoS) requirements can allow

power and performance to be reduced only as long as the service demands are met.

Mobile systems powered by batteries must be optimized to deliver the highest

performance/Watt in order to maximize usage time. Compute-cluster performance

capacity must be modulated to match demand so that performance/cost is maximized.

Adaptation within these scenarios requires accurate, run-time measurement of

performance and power consumption. Run-time measurement of power and performance

allow tradeoffs to be made dynamically in response to program and usage patterns.

1.1 Attributing Power in Multi-Core Systems

Multi-core and multi-threaded systems present significant challenges to power

measurement. While performance is readily measurable at the core and program-level,

2

power is more difficult. Invariably power is delivered to multiple cores or system

components through a shared power plane. Power consumption by individual cores or

programs cannot be observed. Consider Figure 1.1. The power consumption of a multi-

core, multi-programmed system simultaneously executing four distinct workloads is

shown. These four workloads have power and performance characteristics that require

distinct adaptations to meet system objectives. Core 1 has the computationally efficient

ray-tracing workload, povray that scales performance nearly perfectly with core

frequency. This is important for power management since controlling adaptations such

as frequency scaling requires accounting for the potential benefit or cost of changing

frequency. In contrast cores 0, 2 and 3 are running applications that are sensitive to 58%-

80% of the change in core frequency. This difference in frequency sensitivity leads to

varying optimization points for dynamic adaptation. Similarly, the power consumption

of each workload is distinct. The highly efficient povray is able to consistently utilize

more than 2/3 of the execution pipelines. This high utilization and concentration of

floating point instructions, leads to high power consumption. At the other extreme, the

gcc compiler application is only able to utilize 1/3 of the execution pipelines using

integer instructions exclusively. In addition to differences in steady state power

consumption, these workloads have different phase behavior. While povray and gcc have

stable power consumption patterns, 3Dsmax and Sketchup (3D rendering) exhibit drastic

variations in power consumption over time. Frequent changes in power consumption

3

increases the overhead of adaptation since transition costs cannot be amortized in the

short duration phases.

Figure 1.1 CPU Core-Level Power Accounting

The problem of multiple programs sharing power resources is not limited to processors.

Attributing power consumption by a program within an entire system presents a similar

challenge. Consider Figure 1.2, which illustrates power consumption for of a modern

laptop computer system across a range of critical workloads. Similar to CPU cores, the

power consumption in memory, chipsets, graphics and hard disks varies drastically across

workloads. Effective power management requires that power be attributable to programs

across the entire system so that power performance tradeoffs can be made.

0

5

10

15

20

25

30

0 100 200 300 400 500

C
P

U
 P

o
w

er
 (

W
a

tt
s)

Time (Seconds)

3dsMax - 77%

Sketchup - 82%

povray - 100%

gcc - 58%

Average

7.4W

Average

4.9W

Standard

Deviation

2.7W

2.4W

Standard

Deviation

0.5W

0.4W

Workload -
Frequency

Sensitivity
%

Core 0

Core 1

Core 2

Core 3

4

Figure 1.2 System-Level Power Accounting

1.2 When to Adapt

Due to the difficulty in observing program phases in shared power plane environments,

existing power management schemes rely on reaction when performing adaptation. This

pragmatic approach leads to sub-optimal performance and power consumption. Consider

the case of the Windows Vista operating system using Dynamic Voltage and Frequency

Scaling (DVFS). To reduce power consumption during low utilization phases, the

operating system power manager reduces voltage and frequency of cores when CPU core

activity level drops below a fixed threshold. The manager periodically samples core

activity level and adjusts the DVFS operating point accordingly. This reactive approach

results in frequent over and under provisioning of performance and power, especially for

“bursty” workloads. Consider Table 1.1, which shows DVFS residency for a recent

productivity workload. This data indicates that the selection of CPU frequency is

2.9 2.7 3.3 3.3 3.3 3.2 2.9 2.9 2.6 2.9 2.8 2.6 2.8

0.5

0.9 0.9 1.4 1.4 1.4 1.4 1.3 1.3 1.4 1.3 1.7 1.4 1.6

0.8

0.9 0.9
4.0 3.8 3.8 3.7

1.3 1.3 1.1 1.1 1.1 1.1 1.1

0.9

2.5 2.4

2.5 2.4 2.4 2.3

2.0 2.0 1.9 2.0 1.9 2.0 1.9

0.5

3.4 3.0

3.5 3.0 3.3 2.9

1.6 1.6 1.3 1.7 1.1 1.4 1.2

0.2

14.8
14.1

10.2 10.6 10.2 10.5

14.3 14.2
11.9 11.1 11.0 10.6 10.3

0.6

0

5

10

15

20

25

30

P
o

w
er

 (
W

a
tt

s)

CPU

Memory

Memory

Controller
GPU

Disk

Graphics

Intensive

Productivity

Compute

Intensive Compute

Intensive

5

suboptimal from a power and performance perspective. Though the CPU is capable of

drastically reducing idle power by operating at less than maximum frequency, it

frequently does not. On average 41% of idle time is spent at a higher than necessary

frequency and voltage. Similarly, performance is reduced by operating at less than the

maximum frequency for 70% of the time. This can greatly impact performance due to

the large increases in runtime that can eliminate energy efficiency gains from reduced

voltage and frequency.

To improve performance and efficiency, adaptation must be performed with an accurate

estimate of future demand. This prevents costly adaptations from being applied when

program phase are too short to amortize the performance and energy cost of adaptation.

To this end a predictive power manager is proposed.

 Table 1.1 Windows Vista Reactive DVFS

 E-Learning Productivity Video Creation 3D

2.4GHz - Active 4.6% 2.4% 5.3% 15.0%

2.4GHz - Idle 17.4% 9.6% 12.4% 17.0%

1.6GHz - Active 1.4% 0.8% 3.2% 5.1%

1.6GHz - Idle 9.4% 6.2% 9.6% 6.7%

1.2GHz - Active 1.2% 1.2% 4.8% 3.1%

1.2GHz - Idle 9.8% 9.7% 13.8% 9.4%

0.8GHz - Active 4.5% 4.7% 4.8% 6.9%

0.8GHz - Idle 51.8% 65.3% 46.1% 36.7%

Active Frequency 1.56 GHz 1.34 GHz 1.51 GHz 1.77 GHz

Idle Frequency 1.24 GHz 1.07 GHz 1.20 GHz 1.32 GHz

6

1.3 Power Variation is Periodic

The major challenge in predictive power management is detecting patterns of usage that

are relevant for power adaptations. Fortunately, the most critical usage metric in modern

computing systems is architecturally visible, namely CPU active/idle state usage. CPU

active and idle states have been shown to be highly correlated to power and performance

demand in complete systems [BiJo06-1]. This allows power and performance demand in

the complete system to be tracked and predicted, using only CPU metrics.

Since the predicted metrics are contained within the CPU, patterns are easily detectable.

Consider Figure 1.3. It shows active and idle usage patterns during the playback of a

Blu-Ray video. Due to the requirement for regular, periodic frame updates, the CPU

active and idle patterns are also regular. Note the active decrypt/render phases that

typically last about 10ms. This corresponds to the execution time to decrypt and render

about six frames of video. In addition to these workload-dependent phases, there are also

operating system induced phases. Interspersed with the long active phases are numerous,

short, 1ms phases. These phases are composed of slightly less than 100us active phases

followed by 1ms idle phases. The active phases are caused by the operating system

scheduler waking the CPU to check for threads that are ready to execute. The regular

patterns are ideal for prediction.

7

Figure 1.3 Core Activity Patterns – Blu-Ray Playback

Detecting patterns at the CPU-level is also advantageous since it allows component-level

patterns to be discerned from aggregate patterns. Consider Figure 1.4. The top figure

shows total CPU power consumption for a multi-core processor. The core-level power

consumption is shown in the subsequent four figures. Though the individual cores have a

regular, easily detectable pattern, the aggregate power obscures much of the periodic

behavior. This concept extends to the complete system in which individual core or thread

usage patterns induce similar patterns in shared resources such as memory or I/O devices.

Tracking and predicting CPU usage patterns provides the opportunity to more effectively

adapt power and performance to match demand of the complete system.

C
o

re
 A

ct
iv

it
y

Time (ms)

Active

Idle

Active

Decrypt/Render

Idle except for scheduler

0 10 20 30 40 50 60 70

8

Figure 1.4 Thread and Aggregate Power Patterns

1.4 Objectives

The objective of this dissertation is to develop a predictive power manager using

performance counter-based power models. The specific objectives are as follows.

1. Develop performance counter-based, run-time models for complete system power

consumption.

2. Demonstrate the effectiveness of thread-level power accounting.

3. Characterize power consumption patterns of server, desktop and mobile systems.

0

50

100

150

0 20 40 60 80 100 120 140 160 180 200

W
at

ts

Seconds

Total Power = ∑CorePowerN N=0 to 3

0

50

W
at

ts

CorePower0

0

50

W
at

ts

CorePower1

0

50

W
at

ts

Core Power2

0

50

0 20 40 60 80 100 120 140 160 180 200

W
at

ts

Seconds

CorePower3

Phase

Misalignment

9

4. Design a predictive power management scheme to improve performance and

power efficiency.

1.5 Thesis Statement

Complete system power consumption of a multi-core system can be accurately estimated

by tracking core-level CPU performance events. These estimates may be used to predict

changes in power and performance of the system. Compared to commercial, reactive

power managers this predictive power manager yields higher performance and lower

power.

1.6 Contributions

This dissertation makes several contributions in the areas of modeling methodology,

power models, measurement-based workload characterization and novel power

management strategies.

a) A methodology for constructing power models based on performance events. The

methodology is shown to be effective across CPU architectures, system categories

and workloads.

b) A simple, accurate model for CPU power based on performance counters. The

model is constructed by applying linear-regression to power and performance

measurements captured on an actual system. The model demonstrates the need to

account for speculative execution when modeling power consumption.

10

c) The concept of trickle-down power events is presented. By identifying CPU

performance events that trickle-down to other subsystems, a complete-system

power model based on CPU performance counters. Power for subsystems

including memory, chipsets and disk are modeled using events directly

measureable in the CPU.

d) A characterization of complete-system power consumption for server, desktop

and mobile platforms is presented. The impacts of workloads, power

management and temperature are quantified. Statistical characterization of power

amplitude and duration is provided for numerous subsystems.

e) An analysis of the performance impacts on power management for multi-core

processors. Performance loss due to power management of shared resources is

considered. Certain workloads are found to be more sensitive to power

management. Negative interactions between operating systems are shown to

reduce performance and power efficiency.

f) A predictive power manager is proposed for controlling DVFS in a multi-core

processor. By identifying and anticipating patterns of power consumption, the

manager is able to improve performance and efficiency. It is compared to the

commercial, reactive scheme used in Windows Vista.

11

1.7 Organization

This dissertation is organized as follows:

 Chapter 2 describes the methodology for measuring power and performance

events within a range of system types and subsystems ranging from CPUs to hard drives.

Techniques are provided for isolating and measuring dynamic and static power within

actual computing systems.

 Chapter 3 presents an analysis of processor performance events that correlate to

power consumption. These findings direct the construction of a simple, speculation-

aware power model based on a small number of performance events. A formal

methodology for developing performance counter power models is presented.

 Chapter 4 provides a broad analysis of subsystem-level power consumption across

a wide range of workloads including scientific computing, commercial transaction

processing, desktop productivity, content creation and consumption. Power is considered

in relative terms comparing across each subsystem. To inform power management

decisions, power phase behavior is considered in terms of duration and amplitude.

 Chapter 5 presents an extensive number of system power models based upon

processor performance counters. The motivation behind the composition of each model

is provided. Accuracy statistics and measure versus modeled time-domain comparisons

are given.

12

 Chapter 6 explores the power and performance impact of dynamic power

management. Detailed analysis of the relationship between power adaptations such as

clock gating and DVFS and performance are provided. The sub-optimal nature of a

commercial DVFS scheme is explored and explained.

 Chapter 7 presents the Period Power Phase Predictor for control DVFS power

management actions. The predictor is compared to a state-of-the-art commercial DVFS

scheme in terms of performance and power consumption. Results are presented for a

desktop productivity workload that contains a high-level of power phase transitions.

 Chapter 8 summarizes previous contributions in the area performance counter

power modeling and predictive power management. Chapter 9 describes conclusions

topics of future research.

13

Chapter 2 Methodology

The development of power models based on performance events requires the

measurement of power and performance on systems running a wide range of workloads.

This chapter describes the methodology for measuring power and performance events on

actual systems (not simulation) running realistic workloads. The first section describes

techniques and equipment for in-system measurement of power across a range of systems

and components. The compositions of three systems are defined: server, desktop and

laptop. The second section shows how system parameters such as temperature, voltage

and frequency can be manipulated to expose and quantify underlying properties of

systems. The third section describes how performance monitoring counters (PMC) can

be tracked in a manner that has minimal impact on the observed system. The last section

describes which workloads are preferred for power management analysis and why.

2.1 Measuring System and Component Power

To measure power consumption, a range of instrumentation methodologies are used.

Each methodology is designed to match measurement requirements while conforming to

the constraints of the measured system. The systems and measurement requirements are:

1) aggregate CPU power in a desktop system, 2) subsystem-level power in a server

system, 3) subsystem-level power in a mobile system.

14

2.1.1 Aggregate CPU Power Measurement

CPU power consumption is measured using a clamp-on current probe. The probe, an

Agilent 1146A [Ag08], reports current passing through its sensor by detecting the

magnitude and polarity of the electromagnetic field produced by the sampled current.

This type of measurement simplifies instrumentation since the observed conductors do

not have to be cut to insert current sensing resistors. The drawback of this approach is

that only wire-type conductors can be sampled. It is not possible to sample conductors

embedded in the printed circuit board. For the target system this restricts power

measurement to the input conductors of the processor voltage regulator module (VRM).

As a result, a portion of the reported power consumption is actually attributed to the

inefficiency of the VRM. These modules have an efficiency of 85%-90%. The reader

should consider the 10%-15% loss when comparing results to manufacturer reported

power consumption. The voltage provided by the current probe is sampled at 10 KHz by

a National Instruments AT-MIO-16E-2 data acquisition card[Ni08]. The LabVIEW

software tool [La10] can interpret the voltage trace or as in this case it is written to a

binary file for offline processing. The details of the system are described below in Table

2.1.

Table 2.1 Desktop System Description

System Parameters

Single Pentium 4 Xeon 2.0 GHz, 512KB L2 Cache, 2MB L3 Cache, 400 MHz FSB

4 GB PC133 SDRAM Main Memory

Two 16GB Adaptec Ultra160 10K SCSI Disks

Redhat Linux

15

2.1.2 Subsystem-Level Power in a Server System

To study component-level server power, the aggregate CPU power measurement

framework is used and extended to provide additional functionality required for

subsystem-level study. The most significant difference between the studies of CPU level

versus subsystem level is the requirement for simultaneously sampling multiple power

domains. To meet this requirement the IBM x440 server is used which provides separate,

measureable power rails for five major subsystems. It is described in Table 2.2.

Table 2.2 Server System Description

System Parameters

Four Pentium 4 Xeon 2.0 GHz, 512KB L2 Cache, 2MB L3 Cache, 400 MHz FSB

32MB DDR L4 Cache

8 GB PC133 SDRAM Main Memory

Two 32GB Adaptec Ultra160 10K SCSI Disks

Fedora Core Linux, kernel 2.6.11

By choosing this server, instrumentation is greatly simplified due to the presence of

current sensing resistors on the major subsystem power domains. Five power domains

are considered: CPU, chipset, memory, I/O, and disk. The components of each

subsystem are listed in Table 2.3.

Table 2.3 Subsystem Components

Subsystem Components

CPU Four Pentium 4 Xeons

Chipset Memory Controllers and Processor Interface Chips

Memory System Memory and L4 Cache

I/O I/O Bus Chips, SCSI, NIC

Disk Two 10K rpm 32G Disks

16

Power consumption for each subsystem (CPU, memory, etc.) can be calculated by

measuring the voltage drop across each current sensing resistor. In order to limit the loss

of power in the sense resistors and to prevent excessive drops in regulated supply voltage,

the system designer used a particularly small resistance. Even at maximum power

consumption, the corresponding voltage drop is in the tens of millivolts. In order to

improve noise immunity and sampling resolution we design a custom circuit board [Bi06]

to amplify the observed signals to levels more appropriate for the measurement

environment. The printed circuit board is shown in Figure 2.1. This board provides

amplification for eight current measurement channels. The board also provides BNC-

type connecters to allow direct connection to the data acquisition component. The entire

measurement framework is shown in Figure 2.2.

Figure 2.1 Current Sense Amplification PCB

17

The main components are subsystem power sensing, amplification (current probe), data

acquisition, and logging. Subsystem power sensing is provided by resistors onboard the

x440 server. The voltage drop across the resistors is amplified by the custom circuit

board. The amplified signals are captured by the data acquisition card. Finally, the host

system, running LabVIEW, logs the captured data to a file for offline processing.

Figure 2.2 Power Measurement Environment

2.1.3 Subsystem-Level Power in a Mobile System

Power measurement at the subsystem-level in a mobile system presents unique

opportunities and challenges not typically encountered in desktop or server systems. Due

to the requirement for low power consumption and long battery-life, mobile systems

implement an extensive array of power saving features. These features require isolation

of power delivery so subsystems can be managed independently. This isolation allows

18

power to be measured at a finer grain than desktop/server systems that have a larger

degree of sharing across subsystems. It also leads to a wider range of power levels across

subsystems. High-power CPU subsystems may typically consume tens of Watts while

low-power chipsets may only consume a Watt or less. The measurement of different

ranges of power requires different approaches in order to maximize accuracy and

minimize perturbation. To this end a system specifically designed for power analysis is

used. The system is used by a major CPU manufacturer [Bk09] in the validation of

processors and chipsets. Depending on the expected power levels for a given subsystem

an inline current sensing resistor is implemented. High current subsystems use low value

resistors in the range of just a few milliohms. Low current subsystems use resistors in the

range of a few hundred milliohms. This approach allows the observed voltage drop due

to current flow to always be within the maximum accuracy range of the data acquisition

device. It also reduces the impact measurement has on the system. If the voltage drop

due to the sensor is too large, the effective voltage delivered to the subsystem could be

out of the subsystem’s operating range. The system characteristics and measureable

subsystems are listed below in Table 2.4.

19

Table 2.4 Laptop System Description

Processor(s) Dual-core 45nM 2.0GHz
Memory 4GB DDR3-1066

Power

Management

CPU Clock Gating and DVFS
DRAM Power Down and Self Refresh

Chipset Link Disconnect
Harddrive Spin Down and ATA modes

Graphics Processor Clock Gating
Graphics RS780

Observable

Subsystems

CPU
Chipset
Memory

Memory Controller
GPU
Disk

2.2 Controlling Temperature, Voltage and Frequency

The development of power and performance models that are sensitive to temperature,

voltage and frequency requires those parameters to be independently controlled. To this

en`d, multiple techniques are employed. The most difficult parameter to control is

temperature. Temperature has a major impact on power consumption due to its

exponential relationship with leakage power. Depending on the intensity, instruction mix

and data use pattern of workloads, temperature and therefore power varies drastically. To

eliminate this effect a closed loop temperature controller is used to regulate processor

package temperature. The controller regulates temperature within 0.1 degree Celsius

from 20C to 100C. It circulates chilled, 20C water to remove heat from the processor

package. Fine-grain control of temperature is provided by a Peltier-effect thermoelectric

cooler. This device can rapidly add or remove heat from the processor package

depending on demand. Workloads that naturally heat the processor above the setpoint,

20

cause the controller to remove the excessive heat. Workloads operating below the

setpoint cause it to add heat. The controller is able to dynamically adjust the heating or

cooling load with changes in the workload. This fine-grain control of temperature

provides two important abilities: isolation of leakage from switching power and

development of temperature sensitive leakage model.

Voltage and frequency control are provided through architectural interfaces provided in

the processor. Recent processors [Bk09] provide architectural control of processor core

frequency and voltage through model specific registers. This interface allows system-

level code to create arbitrary combinations of voltage and frequency operating points for

DVFS and clock gating functions. Fixing voltage and scaling frequency allows

calculation of leakage power. See Figure 2.3. Fixing frequency and scaling voltage and

temperature allows the derivation of voltage and temperature-dependent leakage models.

Figure 2.3 Leakage Power Determination

0

5

10

15

20

25

30

35

0 400 800 1200 1600 2000 2400

P
o

w
er

 (
W

a
tt

s)

Frequency (MHz)

AMD M300 Processor Power

Extrapolate power

to 0 MHz

Leakage Power at fixed Temp. and Voltage

Dynamic Power

as a function of only

Frequency at fixed Voltage

Discrete measurement points

21

2.3 Performance Counter Sampling

To sample performance monitoring counters a small kernel that provides periodic

sampling of processor performance counters is developed. This kernel uses a device

driver to provide ring-0 access to user-mode applications. This approach is preferred

over existing user-mode performance counter libraries as it affords more precise control

of sampling and lower overhead. In all experiments, the worst-case sampling overhead

(% CPU time sampling) for performance counter access averages less than 1% for

sampling intervals as low as 16ms. In addition to the performance impact of counter

sampling, there is a power impact which must be minimized. A common problem with

periodically scheduled code, such as performance counter sampling, is excessive

scheduler activity. This activity causes CPUs to frequently exit the idle state to service

interrupts, thus increasing power consumption. The sampling kernel avoids this issue by

explicitly requesting a scheduling interval that exactly matches the required sampling

interval. As a result the scheduler only runs enough to schedule the performance counter

sampling events and background operating system activity.

2.4 Workloads

Workload selection is a critical part of dynamic power management analysis. The focus

on power accounting and prediction requires workloads with widely varying power and

performance levels. Unlike microarchitectural analysis that considers phases within an

22

instruction stream lasting only a few microseconds, dynamic power management must

also consider long duration phases ranging from hundreds to millions of microseconds.

These phases, caused by events such as thread migrations, context switches or device

interrupts provide greater opportunity (and challenge) for power management due to the

longer time for amortizing adaptation costs. To this end, this dissertation analyzes power

consumption, modeling and prediction across over sixty distinct subtests. The workloads

and their characteristics are listed in Table 2.5.

Table 2.5 Workload Description

Name

[Subtest Count]

Workload

Type

Subsystem

Target

Phase Behavior Systems

Analyzed

SPEC CPU 2000

[26]

Scientific CPU

DRAM

Instruction Server

Desktop

Laptop

SPEC CPU 2006

[29]

Scientific CPU

DRAM

Instruction Server

Desktop

Laptop

SPECjbb 2005

[1]

Transaction

Processing

CPU

DRAM

Instruction Server

DBT-2

[1]

Database I/O

Disk

Instruction

Active-Idle

Power Management

Server

SYSmark 2007

[4]

Productivity CPU

DRAM

I/O

Disk

Instruction

Active-Idle

Threadedness

Power Management

Desktop

Laptop

3DMark 2006

[6]

3D Gaming Graphics

CPU

DRAM

Instruction

Active-Idle

Power Management

Laptop

Idle

[1]

Idle CPU Active-Idle Server,

Desktop

Laptop

To develop power models for active execution (non-idle) the SPEC CPU 2000, 2006 and

SPECjbb 2005 workloads are used [Sp00] [Sp06] [Sj06]. These workloads contain

23

instruction streams that exercise a wide range of intensities in the CPU and memory

subsystems. They include integer and floating centric workloads. Within these two types

the focus varies from workloads completely bound by CPU execution speed to those

bound be memory access latency and throughput. These benchmarks provide sufficient

information to develop active power models for CPU and memory. The limitation is that

they operate in an unrealistic fully-active mode utilization only the CPU and memory

subsystems. Unlike real usage scenarios, these workloads do not frequently transition

between the active and idle states or exercise disk, graphics or I/O subsystems.

To address this limitation the DBT-2, SYSmark 2007 and 3DMark 2006 benchmarks are

included. These workloads emulate real usage scenarios by including user-input and

system interactions. DBT-2 [Os06] is intended to approximate the TPC-C transaction

processing benchmark. This workload does not require network clients, but does use

actual hard disk access through the PostgreSQL [PS06] database. SYSmark 2007 [Sm07]

is implemented using simulated user input through the application GUI (graphical user

interface). The numerous delays required for GUI interaction causes many idle phases

across the subsystems. This causes a large degree of active-idle and idle-active

transitions, thread migrations and power management events. 3DMark06 [3d06] contains

six subtests covering CPU and graphics-intensive workloads. Additionally, systems are

characterized in the idle state. This sets a baseline for power consumption and represents

common usage patterns.

24

Chapter 3 Modeling CPU Power using

Performance Monitoring Counters

Effective power management requires fine-grain accounting of power within complex,

computing systems. Since these systems contain multiple components sharing power

resources, it is difficult to attribute power to individual components. It has been shown

that performance-relevant events are strong predictors of power consumption. Due to the

widespread availability of on-chip performance monitoring facilities, it is possible to

develop accurate, run-time power models based upon performance events. This chapter

demonstrates the effectiveness of these at CPU power accounting. Models are shown

ranging from simple three-term linear to polynomial models that account for power

management and workload effects such voltage, frequency and temperature. The chapter

concludes with a formal definition of the model building methodology.

3.1 Correlation of Performance Counters to Power

While past research [LiJo03] [Be00] and intuition suggest that instructions/cycle (IPC)

alone can account for CPU power, this study considers a larger array of metrics for

building models. Correlation coefficients were calculated for all twenty-one observed

PMCs. Initially, we attempted to find correlation across multiple sample points in a

single workload trace. However, it was found that minor discrepancies in alignment of

25

the power trace to the PMC trace could cause large variations in correlation. Since there

is such a large set of workloads each workload is used as a single data point in the

correlation calculation. For each metric the average rate across each workload is

determined. For most, the metrics are converted to event/cycle form, but a few are in

other forms such as hit rates. Additional derived metrics are included such as completed

µops/cycle (retired + cancelled µops). A subset of the correlation results can be seen in

Table 3.1.

Table 3.1. Intel Pentium 4, High and Low Correlation Performance Metrics

Metric Correlation

Speculatively Issued µops/Cycle 0.89

Fetched µops/Cycle 0.84

Retired Instructions/Cycle 0.84

Completed µops/Cycle 0.83

Loads/Cycle 0.80

Retired µops/Cycle 0.79

Branches/Cycle 0.78

Stores/Cycle 0.64

Mispredicted Branches/Cycle 0.41

Level 2 Cache Misses/Cycle -0.33

Cancelled µops/Cycle 0.33

Level 2 Cache Hits/Cycle 0.31

Bus Accesses/Cycle -0.31

Trace Cache Issued µops/Cycle 0.32

Bus Utilization -0.31

Floating Point ops/µop -0.22

Prefetch Rate 0.17

Trace Cache Build µops/Cycle -0.15

Instruction TLB Hits/Cycle -0.09

Trace Cache Misses/Cycle -0.09

Instruction TLB Misses/Cycle -0.04

26

As expected IPC-related metrics show strong correlation. One of the more unexpected

findings is the weak negative correlation of floating point instruction density (ratio of all

dynamic instructions). This is in contrast to past findings [Be00] that show a strong

correlation between floating point operations per second and power. Later in section 3.3

an explanation is provided. Another unexpected result is the lack of correlation to data

prefetch rate.

This research shows that rather than considering only IPC, a more accurate model can be

constructed using a metric that encompasses power consumed due to speculation. Figure

3.1 shows the average number of µops for the SPEC 2000 benchmarks that are fetched,

completed and retired in each cycle. Table 3.2 shows the portions of fetched µops that

complete or retire, for each of the twenty-four benchmarks.

Table 3.2 Percent of Fetched µops Completed/Retired – SPEC CPU 2000

Name %Complete %Retire Name %Complete %Retire

gzip 92.7 69.8 wupwise 97.0 91.0

vpr 85.3 60.0 swim 99.9 99.7

gcc 94.2 77.7 mgrid 99.1 98.6

mcf 63.0 31.5 applu 98.7 96.6

crafty 94.6 78.4 equake 96.8 93.5

bzip2 92.0 72.1 sixtrack 99.2 97.8

vortex 98.0 95.0 mesa 92.1 75.2

gap 92.8 73.5 art 84.9 77.5

eon 91.7 81.5 facerec 95.5 90.5

parser 90.1 69.0 ammp 94.8 88.5

twolf 85.2 55.2 fma3d 97.0 94.3

 lucas 99.9 95.9

 apsi 97.1 93.6

Integer Avg. 88.7 69.4 Float Avg. 96.3 91.7

27

The first bar in Figure 3.1 “Fetch” shows the number of µops that are fetched from the

Trace Cache in each cycle. The second bar “Complete” shows the sum of µops that are

either retired or cancelled each cycle. Cancelled µops are due to branch misprediction.

The third bar, “Retire”, shows only µops that update the architectural state. This figure

shows that the processor fetches 21.9% more µops than are used in performing useful

work. Therefore, a more accurate power model should use the number of µops fetched

per cycle instead of the number retired. Table 3.3 provides a comparison of linear

regression power models based on these three metrics.

Figure 3.1. Average µOps/cycle - SPEC CPU 2000

3.2 IPC Related Power Models

Twenty-one processor performance metrics are examined for their correlation to power

consumption. The most correlated metrics are all similar to (retired) instructions per

cycle. Using this finding as a guide numerous linear models are constructed using

regression techniques. Power is calculated as the sum of a positive constant α0 and the

Fetch

0.89
Complete

0.84

Retire

0.73

0.6

0.7

0.8

0.9

1.0

µ
o
p
s

/
C

y
cl

e

28

product of another positive constant α1 and a performance metric metric1. An example is

shown in Equation 3.1.

����� = 	∑ 	
 ×��
���
 + 	
�� ×��
���
�� …	� ×��
����
�

��

Results for seven of the best models are listed below in Tables 3.3, 3.4 and 3.6. Tables

3.3 and 3.6 support the hypothesis that fetched µops are the most representative of IPC

type metrics. The worst of these metrics is the familiar IPC. This is caused by the lack

of a one-to-one mapping of instructions to µops. Many x86 instructions map to a

sequence of µops. For example, a single ADD instruction that uses memory as its source

and destination is actually composed of three µops. The first µop loads a value from

memory, the second adds a register or immediate to the value from memory and the third

stores the result back to memory. Alternatively, an ADD instruction that does not use

memory as an operand has a one-to-one mapping of instruction to µop. Assuming all

µops consume the same amount of power, the instruction that uses memory would

consume three times as much power.

Table 3.3 µop Linear Regression Model Comparison

 Retired µops/cyc Completed µops/cyc Fetched µops/cyc

Coefficients
α0 α1 α0 α1 α0 α1

36.3 4.37 35.8 4.44 35.7 4.31

Avg Error 3.26% 2.8% 2.6%

Coefficient of

Determination
0.696 0.735 0.737

(3.1)

29

Table 3.4 Instruction Linear Regression Model Comparison

Retired

instructions/cyc

Completed

instructions /cyc

Coefficients
α0 α1 α0 α1

36.8 5.28 36.3 5.52

Avg Error 5.45% 4.92%

Coefficient of

Determination
0.679 0.745

Of the µop-based models fetched µops is the most representative metric for power

consumption. This suggests that µops that do not update the architected state of the

machine still consume a significant amount of power. For the case of cancelled µops,

this is not surprising since these µops did complete execution but were not retired. So,

they would have traversed nearly the entire processor pipeline consuming a similar power

level as retired µops. More surprising is the effect of fetched µops on the power model.

Fetched µops includes retired and cancelled operations. It also includes the remaining

µops that were cancelled before completing execution. Since fetched µops provides the

most accurate model, cancelled µops must be consuming a significant amount of power.

These models generate minimum and maximum power values (36W – 47W) similar to

what was found on a Pentium 3 (31W-48W) [Be00] with similar µop/cycle ranges (0 –

2.6). The stated average error values are found using the validation set described in

Table 3.1.

30

3.3 Micro ROM Related Power Models

The power models in Tables 3.3 and 3.4 perform best when applied to workloads mostly

composed of integer-type instructions (SPEC-INT). Larger errors occur for workloads

with high rates of floating point instructions (SPEC-FP). Isci et al [IsMa03] demonstrate

that FP workloads such as equake use complex microcode ROM delivered µops. While

the complex instructions execute, microcode ROM power consumption is high, but total

power consumption is reduced slightly. In order to determine if this is the case for these

traces, several synthetic workloads are created, composed almost entirely of complex

instructions. Each of the programs is composed of a single large loop that is repeated for

approximately ten seconds. The loop body is composed of numerous instances (30+) of

one particular instruction. Since more than 90% of executed instructions are identical,

average power due an individual instruction can be estimated.

Table 3.5 Instruction Power Consumption

Instruction
Power

(Watts)

First Instruction Latency

(cycles)

Subsequent Instruction Latency

(cycles)

fcos 30 180-280 130

fsin 31 160-200 130

fptan 25 240-300 170

imul 28 15-18 5

idiv 32 66-80 30

Table 3.5 [In04] shows that high latency instructions such as floating point type, consume

less power than the 36W minimum predicted by the IPC models. One possible cause is

greater opportunity for clock gating. Since these instructions are guaranteed to take a

31

long time to complete, more aggressive power saving techniques may be performed.

Further investigation will be required to validate this hypothesis. Since Table 3.5

supports the conclusion that high latency instructions consume less power, the models

can be improved by accounting for this behavior. One possible accounting method is to

note that most high latency instructions are composed of relatively long µop sequences

sourced by the microcode ROM. Microcode ROM events can be observed using the

trace cache metric, microrom µops. This metric counts the number of µops delivered

from the microcode ROM. The resultant models are given in Table 3.6. As expected

from the observations of power consumption of microcode ROM delivered instructions,

the model’s microcode ROM component is negative. This small correction allows the

power model to extend below 36W for workloads with high instances of complex

microcode ROM instructions.

Table 3.6 µop Linear Regression Model Comparison

 Deliver, µROM Deliver, µROM, Build

Coefficients
α0 α1 α2 α0 α1 α2 α3

36.7 4.24 -11.8 36.7 4.24 -14.6 5.74

Avg Error 2.50% 2.55%

Coefficient of

Determination
0.844 0.850

3.4 Power Management Effects

While instruction and µop-based power models accurately account for power during fully

active phases, they perform poorly in the presence of dynamic power management and

temperature variation. This section characterizes the effect that power adaptations such

32

as clock gating and dynamic voltage and frequency scaling have on power consumption.

The strong relationship between temperature and leakage power is described. These

findings are then used to develop a fully power management and temperature-aware

processor power model.

3.4.1 Active and Idle Power Management

An effective power management strategy must take advantage of program and

architecture characteristics. Designers can save energy while maintaining performance

by optimizing for the common execution characteristics. The two major power

management components are active and idle power management. Each of these

components use adaptations that are best suited to their specific program and architecture

characteristics. Active power management seeks to select an optimal operating point

based on the performance demand of the program. This entails reducing performance

capacity during performance-insensitive phases of programs. A common example would

be reducing the clock speed or issue width of a processor during memory-bound program

phases. Idle power management reduces power consumption during idle program phases.

However, the application of idle adaptations is sensitive to program phases in a slightly

different manner. Rather than identifying the optimal performance capacity given current

demand, a tradeoff is made between power savings and responsiveness. In this case the

optimization is based on the length and frequency of a program phase (idle phases) rather

than the characteristics of the phase (memory-boundedness, IPC, cache miss rate). In the

remainder of this section active power adaptations are referenced as p-states and idle

33

power adaptations as c-states. These terms represent adaption operating points as defined

in the ACPI specification. ACPI [Ac07] “…is an open industry specification co-

developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. ACPI establishes

industry-standard interfaces enabling OS-directed configuration, power management, and

thermal management of mobile, desktop, and server platforms.”

3.4.2 Active Power Management: P-states

A p-state (performance state) defines an operating point for the processor. States are

named numerically starting from P0 to PN, with P0 representing the maximum

performance level. As the p-state number increases, the performance and power

consumption of the processor decrease. Table 3.7 shows p-state definitions for a typical

processor. The state definitions are made by the processor designer and represent a range

of performance levels that match expected performance demand of actual workloads. P-

states are simply an implementation of dynamic voltage and frequency scaling. The

resultant power reduction is obtained using these states is largely dependent on the

amount of voltage reduction attained in the lower frequency states.

Table 3.7 Example P-states Definition

P-State Frequency (MHz) VDD (Volts)

P0 FMax × 100% VMax × 100%

P1 FMax × 85% VMax × 96%

P2 FMax × 75% VMax × 90%

P3 FMax × 65% VMax × 85%

P4 FMax × 50% VMax × 80%

34

Table 3.8 Example C-states Definition

C-State Response Latency(us) Relative Power

C0 0 100%

C1 10 30%

C2 100 5%

3.4.3 Idle Power Management: C-states

A c-state (CPU idle state) defines an idle operating point for the processor. States are

named numerically starting from C0 to CN, with C0 representing the active state. As the

c-state number increases, the performance and power consumption of the processor

decrease. Table 3.8 shows c-state definitions for a typical processor. Actual

implementation of the c-state is determined by the designer. Techniques could include

low latency techniques, clock and fetch gating, or more aggressive high latency

techniques such as voltage scaling or power gating.

3.4.4 Case Study: Processor Power Management Characteristics

The power saving states described in this section provides a significant range of power

and performance settings for optimizing efficiency, limiting peak power consumption, or

both. However, other parameters greatly influence the effective power consumption.

Temperature, workload phase behavior, and power management policies are the

dominant characteristics. Temperature has the greatest effect on static leakage power.

This can be seen in Figure 3.2 which shows power consumption of a synthetic workload

at various combinations of temperature and frequency. Note that ambient temperature is

20°C and “idle” temperature is 35°C.

35

Figure 3.2 Temperature Sensitivity of Leakage Power

As expected, a linear change in frequency yields a linear change in power consumption.

However, linear changes in temperature yield exponential changes in power

consumption. Note that static power is identified by the Y-intercept in the chart. This is

a critical observation since static power consumption represents a large portion of total

power at high temperatures. Therefore, an effective power management scheme must

also scale voltage to reduce the significant leakage component. To see the effect of

voltage scaling consider Figure 3.3.

Figure 3.3 shows the cumulative effect of p-states and c-states. Combinations of five p-

states (x-axis) and four operating modes are shown. The lowest power case, C1e-Idle,

represents all cores being idle for long enough that the processor remains in the C1e state

more than 90 percent of the time. The actual amount of time spent in this state is heavily

0

10

20

30

40

50

60

35 50 65 80 95

C
o
re

 P
o
w

er
 (

W
a
tt

s)

Die Temperature (Celsius)

Leakage

Dynamic

Dynamic power

constant for fixed

voltage and frequency

Leakage power

varies exponentially

with temperature

36

influenced by the rate of input/output (I/O) and OS interrupts. This state also provides

nearly all of the static power savings of the low-voltage p-states even when in the P0

state. Second, the C1-Idle case shows the power consumption assuming at least one core

remains active and prevents the processor from entering the C1e state. This represents an

extreme case in which the system would be virtually idle, but frequent interrupt traffic

prevents all cores from being idle. This observation is important as it suggests system

and OS design can have a significant impact on power consumption. The remaining two

cases, C0-Idle and C0-Max, show the impact of workload characteristics on power. C0-

Idle attains power savings though fine-grain clock gating.

C0-Max All Cores Active IPC ≈ 3

C0-Idle All Cores Active IPC ≈ 0

C1- Idle At Least One Active Core, Idle Core Clocks Gated

C1e-Idle “Package Idle” - All Core Clocks Gated, Memory Controller Clocks Gated

Figure 3.3 Power by C-state/P-state Combination

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4

P
o
w

er
 (

W
a
tt

s)

P-State

C0-Max C0-Idle C1-Idle C1e-Idle

37

The difference between C0-Idle and C0-Max is determined by the amount of power spent

in switching transistors, which would otherwise be clock-gated, combined with worst-

case switching due to data dependencies. C0-Max can be thought of as a pathological

workload in which all functional units on all cores are 100 percent utilized and the

datapath constantly switches between 0 and 1. All active phases of real workloads exist

somewhere between these two curves. High-IPC compute-bound workloads are closer to

C0-Max while low-IPC memory-bound workloads are near C0-Idle.

3.4.5 Power Management-Aware Model

The model improves on existing on-line models [Be00] [BiJo06-1] [IsMa03] by

accounting for power management and temperature effects. Like existing models it

contains a workload dependent portion that is dominated by the number of instructions

completed per second. In this case the number of fetched operations per second is used

in lieu of instructions completed. The fetched µops metric is preferred as it also accounts

for speculative execution. In addition to fetched µops, a retired floating point µops

metric is also included. This accounts for the power difference between integer and

floating point ops in the AMD processor. Unlike the Pentium 4 processor which exhibits

little difference in power consumption between integer and floating point applications,

the AMD processor exhibits much higher power consumption for high-throughput

floating point applications. A further distinction of this model is that it contains a

temperature dependent portion. Using workloads with constant utilization, processor

temperature and voltage are varied to observe the impact on static leakage power.

38

Temperature is controlled by adjusting the speed of the processor’s fan. Temperature is

observed with a
1
/8 degree Celsius resolution using an on-die temperature sensor [Bk09].

This sensor can be accessed by the system under test through a built-in, on-chip register.

The resultant temperature-dependent leakage equation is shown in Table 3.9. Since

temperature is modeled over only the operating range of the processor, it can be

accounted for as a quadratic equation. Alternatively, a wider temperature range can be

accounted for using and an exponential equation in the form of a×e
T×b

. The coefficients a

and b are found through regression. The term T represents the die temperature in Celsius.

For this study the quadratic form is used due to its lower computational overhead and

sufficient accuracy. Voltage is controlled using the P-State Control Register [Bk09].

This allows selection of one of five available voltage/frequency combinations. Voltage is

observed externally as a subset of the traced power data. Like the workload dependent

model, the coefficients of the static power model are tuned using regression techniques.

Note that the static power model is highly process dependent. Processors with different

semiconductor process parameters require the model to be re-tuned.

The dominant power management effects (voltage/frequency scaling, clock gating) are

further accounted for using the gateable and ungateable power models. Gateable power

is found by measuring the effect of enabling/disabling idle core clock gating. Ungateable

represents the portion of power which cannot be gated. These components are also found

experimentally. The resultant, average error in the model is 0.89%. The standard

deviation of the error for SPEC CPU2006 and SYSmark 2007 is less than 1%. Worst-

39

case error is 3.3%. Alternatively stated, 68.2% of workloads have an error of less than

1%. Per workload error is shown in Figure 3.4. The composition of the CPU model is

summarized in Table 3.9.

Table 3.9 AMD Quad-Core Power Model

Power Models Equation

Total Power
∑ (WorkloadDependentN + 	UngateableN	 + 	GateableN)*

���
+ StaticVolt,Temp

Workload

Dependent

Power

((FetchOpsN/Sec)×CoeffF+(FloatPointOpsN/Sec) ×CoeffFP

+(DCAccessN/Sec) ×CoeffDC) ×Voltage
2

Idle Power

Management

Power

(Gateable)

(%HaltedN) ×CoeffGateable×Voltage
2
×FrequencyN

Irreducible

Power

(Ungateable)

(%NonHaltedN) ×CoeffUngateable×Voltage
2
×FrequencyN

Irreducible

Power

(Static)

(Temp
2
×CoeffT

2
+Temp

1
×CoeffT

1
+×CoeffT

0
)VoltageN

Figure 3.4 CPU Power Model – SPEC CPU 2006 Power and Average Error

1.4%1.4%

3.0%

0.6%

0.4%

0.8%

0.4%

0.2%

2.1%

0.5%

0.3%

0.2%

0.9%

0.6%

0.5%

0.3%

0.6%

2.3%
0.2%

1.0%
1.6%

0.2%

0.9%
0.2%

0.2%

3.3%

0.6%

0.1%

0.8%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

30

31

32

33

34

35

36

37

p
er

lb
en

ch

b
zi

p
2

g
cc

m
cf

g
o
b

m
k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
2
6

4
re

f

o
m

n
et

p
p

as
ta

r

x
al

an
cb

m
k

b
w

av
es

g
am

es
s

m
il

c

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
sA

D
M

le
sl

ie
3

d

n
am

d

d
ea

lI
I

so
p

le
x

p
o
v

ra
y

ca
lc

u
li

x

G
em

sF
D

T
D

to
n

to

lb
m

w
rf

sp
h

in
x
3

W
a

tt
s

Measured Modeled

Error %

40

3.5 Methodology for Power Modeling

With an understanding of system level events that are visible to the processor it is

possible to apply the iterative modeling process as depicted in Figure 3.5. This procedure

utilizes linear and polynomial regression techniques to build power models for individual

subsystems. The user identifies workloads which target a particular subsystem (cache,

system memory, disk) and performs regression modeling using performance events as

inputs. The model is then applied to a larger set of workloads to confirm accuracy and

the lack of outlier cases. Depending on the outcome, the process is repeated with

alternate performance events as inputs. Though an exhaustive search of performance

events can be performed, a rapid solution is found when events are selected with high

correlation to subsystem activity. Details of the modeling process in Figure 3.5 are listed

below.

1. Measure subsystem-level power using subset of workloads. Begin with simple,

easy-to-run workloads.

2. Confirm that Coefficient of Variation is greater than α for the chosen workload.

The simplest workloads often do not generate sufficient power variation for model

tuning. For example consider any of the cache-resident workloads in SPEC CPU 2000

which generate little or no activity in subsystems outside of the processor cores such as

memory. Tuning the model based on these low-variation workloads may cause the

process to include performance events that do not correlate well with power.

41

3. Based on basic domain knowledge, choose performance events, measureable by

performance counters that are most relevant to the subsystem in question. Choose

counters that are expected to “trickle-down” to other subsystems. The pool of candidate

performance counters may need to be expanded if sufficient accuracy is not achieved.

4. Using the selected performance counter events as the input variables and

subsystem power as the output variable, perform linear regression modeling. For

example, in the general linear equation y = mx + b, vary the coefficients m and b until the

sum-of-squares error is minimized. Multiple linear or polynomial regression may be

used in subsequent iterations of algorithm if sufficient accuracy is not obtained.

5. Using a subset of workloads calculate average error per sample. If less than ρ%

error cannot be achieved, choose an a new performance event. Selection of ρ is dictated

by the required model accuracy and time required for solution. Setting ρ to a low

(restrictive) value may extend time to solution. It may also prevent the process from

finding a solution.

6. Assess the representativeness of the model by manually comparing graphs of

modeled versus measured power. This avoids the case in which statistical assessment

cannot detect major errors such as those seen in Anscombe’s Quartet [An73].

7. Using complete set of workloads calculate average error per sample. If less than δ

% error cannot be achieved, choose a new performance event. Like ρ, δ is selected

according the accuracy and time-to-solution requirements.

42

Figure 3.5 Trickle-Down Modeling Process

N

Y

Qualatative

Assessmet

OK?

Y

Full Set

Error < δ%

End

Start

Characterize

Subsystem

Power

Is CoV

> α

Choose

Alternative

Workload

Y

N

Choose Subset of

Performance

Counters

Perform

Linear

Regression

Modeling

Subset

Error < ρ%

Perform

Polynomial

Regression

Modeling

Choose New

Performance

Metric

N

More

Metrics

Available?

N

Y

1.

2.

3.

4.

5.

6.

7.

Y

N

43

3.6 Summary

This section describes concepts and methodologies for modeling processor power

consumption through the use of performance monitoring counters. These models achieve

average error rates of under 1% using only a handful of metrics/signals. Simple,

deterministic, processor power models such as these will increase in importance as the

need for energy efficiency increases. Techniques that maximize performance within

fixed power limits or optimize power metrics (Perf/Watt, Energy × Delay, etc.) are

becoming prevalent in processors [Po10][McPo06][ChJa09] and systems. Since these

techniques rely on accurate processor power accounting, performance counter power

models will increase in importance.

44

Chapter 4 System-Level Power Analysis

This chapter provides an extensive characterization of system-level power consumption

across platforms and workloads ranging from servers to laptops. For each system type,

workloads and subsystems specific to the system are considered. Power consumption is

considered in terms of average and variability. While average power is critical for energy

efficiency, variation including maximum and minimum power is required for effective

system and dynamic power management design.

4.1 Average Power

4.1.1 Server Platform - SPEC CPU, SPECjbb and DBT-2

For the case of SPEC CPU and SPECjbb workloads the behavior is distinct from the

DBT-2 database workload. In Figure 4.1 a comparison of average subsystem power

consumption is given for all workloads. Compared to the disk-bound DBT-2, the

memory-bound and cpu-bound applications show significantly higher CPU and memory

power consumption. While DBT-2 only increases average CPU power by 26% compared

to idle, all of these workloads increase average CPU power by more than 250%. For

memory, the top three consumers are floating point workloads. This supports the

intuitive conclusion that memory power consumption is correlated to utilization.

45

Figure 4.1 Average Power Consumption (Watts)

The remaining subsystems have little variation from workload to workload. For the disk

subsystem this can be explained by two factors. First, most workloads used in this study

contain little disk access with the exception of DBT-2. For most others, the initial

loading of the working set is the majority of the disk access. Using synthetic workloads

targeted at increasing disk utilization, less than a 3% increase in average disk power can

be achieved compared to idle. This is due to the second factor which is a lack of disk

power management. Modern hard disks often have the ability to save power during low

utilization through low power states and variable speed spindles. However, the server

disks used in this study do not make use of these power saving modes. Therefore, disk

power consumption is dominated by the power required for platter rotation which can

account for almost 80% of max power [ZeSo03]. For I/O and chipset subsystems, little

workload to workload variation is observable. In the case of the chipset, offset errors due

2.9 2.7 3.3 3.3 3.3 3.2 2.9 2.9 2.6 2.9 2.8 2.6 2.8

0.5

0.9 0.9 1.4 1.4 1.4 1.4 1.3 1.3 1.4 1.3 1.7 1.4 1.6

0.8

0.9 0.9
4.0 3.8 3.8 3.7

1.3 1.3 1.1 1.1 1.1 1.1 1.1

0.9

2.5 2.4

2.5 2.4 2.4 2.3

2.0 2.0 1.9 2.0 1.9 2.0 1.9

0.5

3.4 3.0

3.5 3.0 3.3 2.9

1.6 1.6 1.3 1.7 1.1 1.4 1.2

0.2

14.8
14.1

10.2 10.6 10.2 10.5

14.3 14.2
11.9 11.1 11.0 10.6 10.3

0.6

0

5

10

15

20

25

30

P
o

w
er

 (
W

a
tt

s)

CPU

Memory

Memory

Controller
GPU

Disk

Graphics

Intensive

Productivity

Compute

Intensive Compute

Intensive

46

to aliasing were introduced that affected average power results. Much greater variation

can be found within each workload.

4.1.2 SPEC CPU 2000/2006 CPU and Memory Power Comparison

Compared to desktop and mobile systems servers have a different power consumption

composition across subsystems. Due to the presence of large memory subsystems,

DIMM power is a much larger component. Also, larger working sets such as those found

in SPEC CPU2006 compared to SPEC CPU2000 shift power consumption from the cores

to the DIMMs. Consider CPU2000 in Figure 4.2 and CPU2006 in Figure 4.3. Due to

comparatively small working sets, CPU2000 workloads are able to achieve higher core

power levels. The reason is that, since the working set fits completely within the on-chip

caches, the processor is able to maintain high levels of utilization. This is made more

evident by the power increases seen as the number of simultaneous threads is increased

from one to four. Since there is less performance dependence on the memory interface,

utilization and power continue to increase as threads are added. The result is different for

SPEC CPU2006. Due to the increased working set size of this benchmark, the memory

subsystem limits performance. Therefore, core power is reduced significantly for the

four-thread case. Differences for the single-thread case are much less, due to a reduced

dependency on the memory subsystem. The shift in utilization from the core to the

memory subsystem can be seen clearly in Figure 4.4. For the most compute-bound

workloads, core power is five times larger than DIMM power. However, as the

47

workloads become more memory-bound, the power levels converge to the point where

DIMM power slightly exceeds core power.

Figure 4.2 CPU2000 Average Core Power - 1 Thread vs. 4 Thread

Figure 4.3 CPU2006 Average Core Power - 1 Thread vs. 4 Thread

20 20 20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19 18 18 18 18 18 18 17 17 17

53 53 53
50 49 49 49 48 48 48 48 48 47 46 46 46 46 45 45 45 45

43 42 42
40 39

38

33

29

19

14

0

10

20

30

40

50

60

cr
af

ty

p
er

lb
m

k

eo
n

g
zi

p

p
ar

se
r

g
ap

m
es

a

g
al

g
el

g
cc

v
o
rt

ex

m
g

ri
d

b
zi

p
2

si
x
tr

ac
k

v
p
r

A
v

er
ag

e

ap
si

w
u

p
w

is
e

fa
ce

re
c

am
m

p

fm
a3

d

tw
o

lf

lu
ca

s

eq
u
ak

e

ap
p
lu ar

t

sw
im

m
cf 3
D

V
id

eo
C

re
at

io
n

E
le

ar
n

in
g

P
ro

d
u

ct
iv

it
y

W
a

tt
s

SPEC2000-1x

SPEC2000-4x

Desktop

20 20 19 19 19 19 19 19 19 19 19 18 18 18 18 18 18 17 17 17 17 17 17 16 16 16 16 16 16 16

50 49 49 48 48 48 47 46 46 46 45 45 43 42 42 42 41 40 40 40 39 39 38 37 37 35 35 35 34 34 33
29

19

14

0

10

20

30

40

50

60

g
am

es
s

h
2
6

4
re

f

h
m

m
er

ca
lc

u
li

x

n
am

d

p
o
v

ra
y

g
ro

m
ac

s

p
er

lb
en

ch

g
o
b

m
k

d
ea

lI
I

sj
en

g

to
n

to

x
al

an
cb

m
k

ca
ct

u
sa

d
m

b
zi

p
2

A
v

er
ag

e

as
ta

r

g
cc

sp
h

in
x
3

w
rf

b
w

av
es

ze
u

sm
p

le
sl

ie
3

d

o
m

n
et

p
p

g
em

sf
d
td

so
p

le
x

m
cf

li
b

q
u
an

tu
m

m
il

c

lb
m 3
D

V
id

eo
C

re
at

io
n

E
le

ar
n

in
g

P
ro

d
u

ct
iv

it
y

W
a

tt
s

SPEC2006-1x

SPEC2006-4x

Desktop

48

Figure 4.4 SPEC CPU2006 Average Core vs. DIMM Power

4.1.3 Desktop Platform – SYSmark 2007

In this section average power consumption levels across a range of workloads are

considered. Two major conclusions for desktop workloads are drawn: the core is the

largest power consumer and it contains the most variability across workloads. Though

other subsystems, such as memory controller and DIMM, have significant variability

within workloads, only the core demonstrates significant variability in average power

across desktop workloads. Consider Figure 4.5: while average core power varies by as

much as 57 percent, the next most variable subsystem, DIMM, varies by only 17 percent.

Note, this conclusion does not hold for server systems and workloads in which much

larger installations of memory modules cause greater variability in power consumption.

The cause of this core power variation can be attributed to a combination of variable

levels of thread-level parallelism and core-level power adaptations. In the case of 3D, the

workload is able to consistently utilize multiple cores.

50 49 49 48 48 48 47 46 46 46 45 45 43 42 42 42 41 40 40 40 39 39 38 37 37 35 35 35 34 34

10 17 25 18 10 9 16 16 14 21 12 22 26 29 25 25 25 25 34 34 36 29 38 32 38 33 35 34 36 39

0

10

20

30

40

50

60

70

80

90

g
am

es
s

h
2
6

4
re

f

h
m

m
er

ca
lc

u
li

x

n
am

d

p
o
v

ra
y

g
ro

m
ac

s

p
er

lb
en

ch

g
o
b

m
k

d
ea

lI
I

sj
en

g

to
n

to

x
al

an
cb

m
k

ca
ct

u
sA

D
M

b
zi

p
2

A
v

er
ag

e

as
ta

r

g
cc

sp
h

in
x
3

w
rf

b
w

av
es

ze
u

sm
p

le
sl

ie
3

d

o
m

n
et

p
p

G
em

sF
D

T
D

so
p

le
x

m
cf

li
b

q
u
an

tu
m

m
il

c

lb
m

W
a

tt
s

DIMM

CPU

49

At the other extreme, the productivity workload rarely utilizes more than a single core.

Since Quad-Core AMD processor power adaptations are applied at the core level,

frequency reduction achieves significant power savings on the three idle cores. As a

result, the productivity workload consumes much less power than the 3D workload. The

remaining workloads offer intermediate levels of thread-level parallelism and therefore

have intermediate levels of power consumption. Also note that this level of power

reduction is due only to frequency scaling. With the addition of core-level voltage

scaling, the variation/power savings is expected to increase considerably.

Figure 4.5 Desktop Subsystem Power Breakdown

4.1.4 Desktop Platform - SPEC CPU, 3DMark and SYSmark

To understand subsystem-level power consumption average and standard deviation

results are presented. Figure 4.6 displays average power of each subsystem measured in

Watts. To give an indication of the variation in power consumption Table 4.1 displays

3.7 3.7 3.7 3.6

22.1 22.2 21.1 22.0

13.9 13.8 13.7 13.8

10.9 10.5 10.3 10.1

33.1

18.7
14.3

29.4

0

10

20

30

40

50

60

70

80

90

3D E-Learning Productivity Video

Creation

P
o
w

er
(W

a
tt

s) CPU

Memory

I/O

Disk

Video

50

the standard deviation of subsystem power. Two major differences are apparent

comparing desktop to server power consumption: desktop power in each subsystem is

much less while relative variability is much greater. In both cases, power management

plays a large role. Effective power management through DVFS, clock gating and link

management reduce average power during idle and low utilization phases. This leads to a

greater difference in sample-to-sample power. Additionally, semiconductor process

improvements have a major effect.

The CPU subsystem is considered first. Not surprisingly, the desktop processor has

average power that is an order of magnitude less than the server processor. This is

largely influenced by process (130nM vs. 45nM), DVFS (desktop-only) and idle power

management. While the server idle power represents at least 24% of average power,

desktop idle power is no more than 4%. These large power savings require the CPU

model to include additional metrics such as frequency, voltage and temperature. It is not

sufficient to consider metrics associated only with the instruction stream (IPC, cache

accesses).

Like CPU, the chipset also exhibits much greater power variation. Unlike the server

chipset which has nearly uniform power consumption, the desktop chipset has much

greater variation with standard deviation representing as much as 10% of average power.

The difference illustrates the impact of link (Hypertransport) power management.

Average power values are also much less due to the lack of an L3 cache in the desktop

51

processor. In both platforms the top-level cache is contained in the chipset power rail.

To reduce power consumption and cost the desktop designer lacks an L3 cache.

Yet another subsystem with order-of-magnitude power reduction is the DRAM memory.

Despite higher operating frequency (533Mhz vs 100MHz) average DRAM power is

reduced by almost a factor of 10. The reason is reduced memory voltage (2.8V vs 1.5V),

reduced capacity (8GB vs 4GB) and more aggressive memory power management. Note

that the desktop system differentiates between DRAM, “Memory” subsystem and the

Memory Controller. The server system includes both in the memory subsystem. The

desktop memory controller has a similar level of power variation as the DRAMs. This is

due to the memory controller management power savings for both subsystems. This also

allows implementation of simple trickle-down models in multiple subsystems that are

driven by the same performance metrics.

An additional subsystem, not present in the server analysis is the RS780 GPU (graphics

processing unit). This subsystem has unique bi-modal power consumption. In all cases

GPU power is either near the maximum or minimum levels. For workloads with little or

no GPU activity power ranged from 0.8W to 1.3W with little variation. The graphics-

centric workloads of 3DMark06 had much greater variation as the workload alternates

between ~1W and 4W. This gives the GPU one of the largest power variations with a

standard deviation covering over 25% of the maximum power. The bimodal power

consumption is caused by aggressive idle power management and low active power

variation.

52

Figure 4.6 Subsystem Average Power (Watts)

Lastly the desktop hard drive power is considered. Three factors affect the large average

power reduction and relative standard deviation increase: spindle speed, platter size and

link power management. Since spindle power is such a large component of drive power

consumption, reducing from 7200rpm to 5400rpm has a large impact. To conform to a

smaller form factor, disk platter diameter is reduced nearly 28% (3.5” to 2.5”). This

reduces spindle and drive head power. Less power is required to rotate a smaller mass

and move the drive head a shorter distance. Also, SATA link power management

reduces power consumption in the control electronics and links during idle phases. These

changes yield a drastic increase in variability with standard deviation representing 32% of

average power in the most intense workload (video creation).

2.9 2.7 3.3 3.3 3.3 3.2 2.9 2.9 2.6 2.9 2.8 2.6 2.8

0.5

0.9 0.9 1.4 1.4 1.4 1.4 1.3 1.3 1.4 1.3 1.7 1.4 1.6

0.8

0.9 0.9
4.0 3.8 3.8 3.7

1.3 1.3 1.1 1.1 1.1 1.1 1.1

0.9

2.5 2.4

2.5 2.4 2.4 2.3

2.0 2.0 1.9 2.0 1.9 2.0 1.9

0.5

3.4 3.0

3.5 3.0 3.3 2.9

1.6 1.6 1.3 1.7 1.1 1.4 1.2

0.2

14.8
14.1

10.2 10.6 10.2 10.5

14.3 14.2
11.9 11.1 11.0 10.6 10.3

0.6

0

5

10

15

20

25

30
P

o
w

er
(W

a
tt

s)
CPU

Memory

Memory Controller

GPU

Disk

Chipset

53

Table 4.1 Subsystem Power Standard Deviation (Watts)

Workload CPU Chipset Memory
Memory

Controller
GPU Disk Total

idle 0.026 0.010 0.008 0.008 0.002 0.115 0.129

SPEC CPU2006 INT 2.586 0.257 1.518 0.447 0.174 0.361 2.689

SPEC CPU2006 FP 2.334 0.246 1.970 0.500 0.143 0.240 2.263

gt1 0.736 0.093 0.808 0.217 0.904 0.487 1.57

gt2 0.820 0.105 0.905 0.241 1.090 0.488 2.05

cpu1 1.989 0.262 0.706 0.168 0.356 0.469 2.02

cpu2 2.036 0.263 0.709 0.167 0.362 0.421 2.23

hdr1 0.757 0.131 1.043 0.294 1.144 0.527 1.84

hdr2 0.826 0.152 1.134 0.326 1.096 0.497 2.16

EL 0.696 0.158 0.980 0.278 0.051 0.373 1.744

VC 1.774 0.252 0.585 0.114 0.069 0.566 2.540

PR 0.683 0.250 0.811 0.155 0.086 0.438 1.506

3D 1.159 0.170 0.587 0.108 0.029 0.321 1.701

SPECjbb 1.230 0.297 1.096 0.235 0.031 0.232 2.765

4.2 Power Consumption Variation

4.2.1 Server Platform

To quantify the extent of power variation within a workload coefficient of variation

(CoV) metric is used. This metric uses standard deviation to quantify variation in a data

set, and also normalizes the variation to account for differences in average data. Since

the subsystems in this study have average power values that differ by nearly an order of

magnitude, this metric is most appropriate. Table 4.2 provides a summary of the

coefficient of variation for all workloads.

Compared to the variation in average power among workloads on a given subsystem, the

variation within a particular workload is less consistent. Subsystem-workload pairs such

54

as CPU-gcc and memory-SPECjbb have a large variety of power levels. In contrast disk-

art and chipset-mcf have as much as 300X less variation.

Table 4.2 Coefficient of Variation

 CPU Chipset Memory I/O Disk

idle 8.86×10
-3

 4.61×10
-3

 1.17×10
-3

 3.86×10
-3

 1.25×10
-3

gcc 5.16×10
-2

 1.13×10
-2

 6.90×10
-2

 4.05×10
-3

 2.44×10
-3

mcf 3.37×10
-2

 8.53×10
-3

 3.60×10
-2

 3.81×10
-3

 1.50×10
-3

vortex 6.99×10
-3

 4.12×10
-3

 2.06×10
-2

 3.11×10
-3

 7.82×10
-4

art 2.47×10
-3

 3.66×10
-3

 5.31×10
-3

 3.12×10
-3

 2.51×10
-4

lucas 1.21×10
-2

 6.34×10
-3

 5.73×10
-3

 3.09×10
-3

 3.25×10
-4

mesa 6.05×10
-3

 3.49×10
-3

 8.81×10
-3

 3.86×10
-3

 3.85×10
-4

mgrid 3.58×10
-3

 2.46×10
-3

 3.36×10
-3

 3.06×10
-3

 2.37×10
-4

wupwise 1.56×10
-2

 6.96×10
-3

 9.45×10
-3

 3.12×10
-3

 4.95×10
-4

DBT-2 1.70×10
-1

 6.73×10
-3

 2.37×10
-2

 4.35×10
-3

 1.61×10
-3

SPECjbb 2.34×10
-1

 1.75×10
-2

 7.61×10
-2

 1.70×10
-3

 3.34×10
-3

The cause for this difference can be attributed to the presence or lack of power

management in the various subsystems. The most variable subsystem, the CPU, makes

use of explicit clock gating through the instruction set. Whenever the operating system is

unable to find a schedulable process, it issues the “halt” instruction. This puts the

processor in a low power mode in which the clock signal is gated off in many parts of the

chip. This mode reduces power consumption in the processor to less than 25% of typical.

Since the memory subsystem does not make use of significant power management

modes, its variation is due only to varying levels of utilization. Since these workloads

exhibit large variations in memory utilization, this has a significant impact.

In contrast, the chipset and I/O subsystems have little variation in utilization. Since these

subsystems also do not make use of power saving modes, their total variation is low. In

55

the case of I/O, the observed workloads make little or no use of disk and network

resources. For the chipset subsystem, the causes are not as clear and require further

study. As mentioned in the previous section the lack of disk power management causes

little variation in disk power consumption. If these subsystems are to benefit from

dynamic adaptation, workloads with larger variation in utilization would be needed.

In order to justify the use of CoV for identifying workloads with distinct, adaptable

phases the probability distributions for extreme cases are considered. In order for a

subsystem-workload pair to be a strong candidate for optimization, it must have distinct

program/power phases. If a workload exhibits constant power consumption it is difficult

to identify distinct phases. Further if the difference in phases is small, it may be difficult

to distinguish a phase in the presence of sampling noise. Therefore, a strong candidate

should have multiple distinct phases. This can be observed in the power amplitude

distributions in Figure 4.7. A narrow distribution represents a constant power

consumption. A wide distribution represents many levels of power consumption.

Distinct power phases only exist in the wide distributions.

Figure 4.7 shows the average power distribution for the various subsystems. Not

surprisingly, CPUs are the dominant power users. However, unlike distributed, scientific

NAS Parallel Benchmark [FeGe05-1] and mobile, productivity workloads such as

PCMark and 3DMark [MaVa04], I/O and disk power are significant. While differences

in average subsystem power are large at 138% for disk compared to CPU, the variations

within an individual subsystem are even greater. A comparison of subsystem power

56

amplitude distributions is made in Figure 4.7. Note that the CPU distribution is truncated

at 60 Watts to prevent obscuring results from the other subsystems. A small number of

phases (6.5%) exist above 60 Watts and extending to 163 Watts.

These distributions suggest that there are significant opportunities for phase-based power

savings for CPU, I/O, and disk. These subsystems have more wider and/or multimodal

distributions. The larger variations in power consumption provide greater opportunity to

use runtime detection techniques such as [In06] [IsMa06]. In contrast, chipset and

memory have homogeneous behavior suggesting nearly constant power consumption and

less opportunity for phase detection.

The presence of power variation is not sufficient to motivate the application of power

adaptation. Due to the overhead of detection and transition, adapting for short duration

phases may not be worthwhile. Table 4.3 presents the percentage of samples that are

classifiable as phases with durations of 1 ms, 10ms, 100ms and 1000ms. A group of

power samples is considered a phase if the power level within the group remains

constant. To quantify the similarity, the coefficient of variation (CoV) is calculated for

the group. The group is considered a phase if the CoV does not exceed a specified

threshold. The boundaries of a phase are determined by samples which cause the CoV to

exceed the threshold. Results for CoV of 0.25, 0.1 and 0.05 are presented. At thresholds

of 0.25 and 0.1 excessive error exists especially in I/O subsystem phase classifications.

A probable cause of the error is the greater sample-to-sample variability of the I/O power

trace. The disk subsystem, which has higher than average error, also has a wider than

57

average distribution. The apparent increased residency for longer phases is specific to the

high CoV cases. The reason is that by including a larger number of samples (longer

phase length) in the CoV calculation and using a high CoV threshold, the “real” phase

behavior is obscured. Actual phase edges get averaged out by the larger number of

samples. This is primary reasons for choosing CoV=0.05 for the subsequent analysis. It

exhibits the desired behavior of distinguishing the long and short phases. For the

following discussion, a CoV of 0.05 is utilized.

Figure 4.7 Subsystem Amplitude Distributions

The effect of narrow chipset and memory distributions is evident in their high rates of

classification. For both, at least half of all samples can be classified as 1000 ms phases.

In contrast, CPU, I/O and disk have no 1000 ms phases and considerably fewer phases

classified at finer granularities. These results can be used to plan power management

strategies for a particular workload. For example, by noting that the I/O subsystem has

almost no phases longer than 1 ms, the designer would be required to use low latency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50

P
ro

b
ab

il
it

y

Watts

CPU

Disk

I/O

Memory

Chipset

Subsystem Total Power %

Disk 13%

Chipset 15%

Memory 20%

CPU 28%

I/O 24%

58

adaptations. In contrast, the disk subsystem has 18.5% of samples definable as 100 ms

phases, thus providing greater opportunity to amortize adaptation costs. While chipset

and memory subsystems have a large percentage of classifiable samples, they may not be

viable candidates for adaptation. By also considering that most of the chipset and

memory samples are close to the average, standard deviations of 0.9 Watts and 1.4 Watts

respectively, there may be insufficient variation for runtime phase detection.

Table 4.3 Percent of Classifiable Samples

Duration (ms) CPU Chipset Memory I/O Disk

CoV = 0.25

1 98.5 100 100 99.5 100

10 90.8 100 100 87.6 100

100 70.0 100 100 85.3 100

1000 36.0 100 100 96.3 100

Error % 8.78 3.70 3.47 15.2 6.31

CoV = 0.10

1 91.7 100 100 81.1 100

10 66.0 100 98.6 35.7 88.6

100 43.1 100 94.4 21.0 95.6

1000 9.30 100 93.1 0.00 95.0

Error % 4.60 3.70 3.47 6.63 6.31

CoV = 0.05

1 61.6 88.3 97.7 22.4 98.4

10 25.5 78.0 91.2 1.70 32.1

100 6.00 63.2 78.6 0.00 18.5

1000 0.00 64.4 50.0 0.00 0.00

Error % 3.38 3.46 2.68 3.67 2.93

From these results, it is clear that distinct phases are detectable at granularities ranging

from seconds to milliseconds. The next step in utilizing the phases is to combine the

amplitude and duration results to direct power management strategies. An example

classification is given in Table 4.4.

59

Table 4.4 Workload Phase Classification

 High Power Med Power Low Power

High Duration 5% 10% 20%

Med Duration 0% 15% 5%

Low Duration 10% 35% 0%

This classification can be used to direct selection of power saving techniques. The phase

duration selects the power management type, based on similar transition times. The

power level and frequency work in opposition to each other as a policy control. For

example, a particular phase may only occur 5% of the time. However, since it is such a

high power case it would be valuable to reduce its power. At the other extreme, a phase

may consume low power, but since it occurs frequently it would be valuable to address.

4.2.2 Desktop Platform

In this section the intra-workload phase characteristics that contribute to the variation are

considered. These results are attributable to the three dominant components of power

adaptation: hardware adaptation, workload characteristics, and OS control of adaptations.

In Figure 4.8 a distribution of the phase length of power consumption for desktop

workloads is presented. Two major conclusions are drawn: the operating system has a

significant effect on phase length and interactive workloads tend to have longer phases.

First, the two spikes at 10 ms and 100 ms show the effect of the operating system. These

can be attributed to the periodic timer tick of the scheduler and p-state transitions

requested by the operating system. In the case of Microsoft Windows Vista, the periodic

timer tick arrives every 10-16 ms [Mm05]. This affects the observed power level since

60

power consumed in the interrupt service routine is distinct from “normal” power levels.

In the case of high-IPC threads, power is reduced while servicing the interrupt, which

typically has a relatively low-IPC due to cold-start misses in the cache and branch

predictor. In the case of low-power or idle threads, power is increased since the core

must be brought out of one or more power saving states in order to service the interrupt.

This is a significant problem for power adaptations since the timer tick is not workload

dependent. Therefore, even a completely idle system must “wake up” every 10 ms to

service an interrupt, even though no useful work is being completed. Also, 10 ms phase

transitions are artificially introduced due to thread migration. Since thread scheduling is

performed on timer tick intervals, context switches, active-to-idle, and idle-to-active

transitions occur on 10 ms intervals. The 100 ms phases can be explained by the OS’s

application of p-state transitions. Experimentally, it can be shown that the minimum rate

at which the operating system will request a transition from one p-state to another is 100

ms. When p-state transitions are eliminated, the spike at the 100 ms range of Figure 4.8

is eliminated.

The second conclusion from Figure 4.8 is that interactive workloads have longer phase

durations. In the case of 3D and video creation workloads, a significant portion of time is

spent in compute-intensive loops. Within these loops, little or no user interaction occurs.

In contrast, the productivity and e-learning workloads spend a greater percentage of the

time receiving and waiting for user input. This translates into relatively long idle phases

which are evident in the lack of short duration phases in Figure 4.8.

61

1 10 100 1000

F
re

q
u

e
n

c
y

PhaseLength(ms)

3D Productivity

E-learning VideoCreation

Figure 4.8 Core Power Phase Duration

This is further supported by Figure 4.9, which group the most common phases by

combinations of amplitude and duration. Note that all phases less than 10 ms are

considered to be 10 ms. This simplifies presentation of results and is reasonable since the

OS does not apply adaptation changes any faster than 10 ms. These figures show that the

highest power phases only endure for a short time. These phases, which are present only

in 3D and – to a much lesser degree – in video creation, are only possible when multiple

cores are active. The lack of long duration high power phases is attributable to two

causes: low percent of multithreaded phases and higher IPC dependence during

multithreaded phases. The dependence on IPC for phase length increases as the number

of active cores increases. When many cores are active the power differences are caused

by changes in active power due to IPC (performance). When few cores are active, total

62

power is dominated by leakage power since active power is low. Leakage power is

mostly affected by p-state changes. Fluctuations in IPC occur at much shorter durations

(100s ns) than p-state changes (100s ms). Therefore, stable power consumption levels

are less likely as the number of active cores increases.

Figure 4.9 Core Power Phases – SYSmark 2007

4.3 Summary

This section characterizes power consumption in modern server and desktop computing

systems. The characterization demonstrates the relationship between the power

consumption of various subsystems and workloads. Popular computational workloads

such as SPEC CPU are shown to generate power variation in the processor and memory

subsystems, but not in the remainder of subsystems. By comparing power variation in a

server system with little power management to a recent desktop system with extensive

8%

13%

9%

35%

9%

15%

11%

8%
10%

12%

22%

12%
21%

11%12% 17%

28%

11%

7%

64%

17%

-10W

0W

10W

20W

30W

40W

50W

60W

1 10 100 1,000 10,000

C
o

re
 P

o
w

er

Phase Duration (ms)

3D

E-Learning

Productivity

Video Creation

Relative size

correspond to %

samples in group

Phases due

to 10ms

scheduling

quanta

Idle Phases

Active

Program

Phases

63

power management, it is shown that most variation is due to power management. This

suggests that as systems employ more aggressive power management, instantaneous

power consumption will increase its variability. Power limiting strategies will need to

account for and respond to frequent power transitions due to the increased potential for

performance loss or power overage.

64

Chapter 5 Modeling System-Level Power

using Trickle-Down Events

This chapter presents system-level power models based on performance counter events

within the processor. The first section defines the concept and intuition behind trickle-

down performance events. The second section describes the server power model. The

last section describes the laptop power model.

5.1 Processor Events Propagate to Rest of System

Trickle-down power modeling provides an accurate representation of complete-system

power consumption using a simple methodology. The approach relies on the broad

visibility of system-level events to the processor. This allows accurate, performance

counter based models to be created using only events local to the processor. These local

events can be measured using ubiquitous performance counters found in all modern

microprocessors. Local events are preferred since power models can be built using a

single interface. There is no need to create interfaces to multiple devices and subsystems

which have inconsistent or incomplete performance counter APIs (Application

Programming Interface). It is particularly common at the system level since components

are often designed by multiple vendors. Trickle-down modeling also addresses hardware

costs in systems implementing direct measurement. Rather than providing sensors and

65

power measurement hardware for multiple subsystems, measurement need only be

implemented on a single system during the design stage. The model is created based on

measurement from a small number of systems which allows power measurement

hardware to be eliminated from the final product.

While the trickle-down approach simplifies power modeling of complete systems it

requires a modest knowledge of subsystem level interaction. The effectiveness of the

model at capturing system-level power is determined by the selection of comprehensive

performance events. Some events such as top-level cache or memory accesses are

intuitive. A miss in the first level cache will necessarily generate traffic in higher level

caches and or the memory subsystem. Other events such as those found in I/O devices

are not as obvious. Consider the system diagram in Figure 5.1.

This represents the quad-socket server for which the trickle-down modeling approach is

applied. The arrows flowing outward from the processor represent events that originate

in the processor and trickle-down to other subsystems (L3 Miss, TLB Miss, MemBus

Access and Uncacheable Access). Arrows flowing inward such as DMA (Direct

Memory Access) or bus master access and I/O interrupts may not be directly generated

by the processor, but are nevertheless visible. Since DMA access is typically performed

to addresses marked as cacheable by the processor, they can be observed in the standard

cache access metrics. To distinguish DMA accesses by a particular device, events should

be qualified by address range. Each device typically uses a private range of addresses in

66

system memory for DMA access. Similarly interrupts from multiple devices can be

distinguished by interrupt number or address in the case of message signaled interrupts.

Figure 5.1. Propagation of Performance Events

With over forty detectable performance events [Sp02], the Pentium IV provides a

challenge in selecting events that are most representative of subsystem power. The

subsystem interconnections pictured in Figure 5.1 provide a starting point. By noting the

“trickle-down” effect of events in the processor, a subset of the performance events is

selected to accurately model subsystem power consumption. A simple example would be

the effect of cache misses in the processor. For a typical microprocessor the top-level

cache affects power consumption in the memory subsystem. Transactions that cannot be

satisfied (cache miss) by the top-level cause a cache line (block) sized access to the main

CPU

Chipset Memory

I/O

Disk Network

L3 Miss

TLB Miss

DMA Access

MemBus Access
Uncacheable Access

I/O Interrupt

67

memory. Since the number of main memory accesses is directly proportional to the

number of cache misses, it is possible to approximate the number of accesses using only

cache misses. Since these memory accesses must go off-chip, power is consumed

proportionally in the memory controller and DRAM. In reality the relation is not so

simple, but there is still a strong causal relationship between cache misses and main

memory accesses.

5.2 Complete-System Server Power Model

Though the initial selection of performance events for modeling is dictated by an

understanding of subsystem interactions (as in the previous example), the final selection

of which event type(s) to use is determined by the average error rate and a qualitative

comparison of the measured and modeled power traces. The dominant, power-related

performance events are described below.

Cycles – Execution time in terms of CPU clock cycles. The cycles metric is combined

with most other metrics to create per cycle metrics. This corrects for slight differences in

sampling rate. Though sampling is periodic, the actual sampling rate varies slightly due

to cache effects and interrupt latency.

Halted Cycles – Cycles in which clock gating is active. When the Pentium IV processor

is idle, it saves power by gating the clock signal to portions of itself. Idle phases of

execution are “detected” by the processor through the use of the HLT (halt) instruction.

68

When the operating system process scheduler has available slack time, it halts the

processor with this instruction. The processor remains in the halted state until receiving

an interrupt. Though the interrupt can be an I/O device, it is typically the periodic OS

timer that is used for process scheduling/preemption. This has a significant effect on

power consumption by reducing processor idle power from ~36W to 9W. Because this

significant effect is not reflected in the typical performance metrics, it is accounted for

explicitly in the halted cycles counter.

Fetched µops – Micro-operations fetched. The micro-operations (µops) metric is used

rather than an instruction metric to improve accuracy. Since in the P6 architecture

instructions are composed of a varying number of µops, some instruction mixes give a

skewed representation of the amount of computation being done. Using µops normalizes

the metric to give representative counts independent of instruction mix. Also, by

considering fetched rather than retired µops, the metric is more directly related to power

consumption. Looking only at retired µops would neglect work done in execution of

incorrect branch paths and pipeline flushes.

L3 Cache Misses – Loads/stores that missed in the Level 3 cache. Most system main

memory accesses can be attributed to misses in the highest level cache, in this case L3.

Cache misses can also be caused by DMA access to cacheable main memory by I/O

devices. The miss occurs because the DMA must be checked for coherency in the

processor cache.

69

TLB Misses – Loads/stores that missed in the instruction or data Translation Lookaside

Buffer. TLB misses are distinct from cache misses in that they typically cause trickle-

down events farther away from the microprocessor. Unlike cache misses, which usually

cause a cache line to be transferred from/to memory, TLB misses often cause the transfer

of a page of data (4KB or larger). Due to the large size of pages, they are often stored on

disk. Therefore, power is consumed on the entire path from the CPU to the hard disk.

DMA Accesses – Transaction that originated in an I/O device whose destination is

system main memory. Though DMA transactions do not originate in the processor, they

are fortunately visible to the processor. As demonstrated in the L3 Miss metric

description, these accesses to the processor (by an I/O device) are required to maintain

memory coherency. Being able to observe DMA traffic is critical since it causes power

consumption in the memory subsystem. An important thing to consider in the use of the

Pentium IV’s DMA counting feature is that it cannot distinguish between DMA and

processor coherency traffic. All memory bus accesses that do not originate within a

processor are combined into a single metric (DMA/Other). For the uniprocessor case this

is not a problem. However, when using this metric in an SMP environment such as this,

care must be taken to attribute accesses to the correct source. Fortunately, the workloads

considered here have little processor-to-processor coherency traffic. This ambiguity is a

limitation of the Pentium IV performance counters and is not specific to this technique.

Processor Memory Bus Transactions – Reads or writes on processor’s external memory

bus. All transactions that enter/exit the processor must pass through this bus. Intel calls

70

this the Front Side Bus (FSB). As mentioned in the section on DMA, there is a limitation

of being able to distinguish between externally generated (other processors) and DMA

transactions.

Uncacheable Accesses – Load/Store to a range of memory defined as uncacheable.

These transactions are typically representative of activity in the I/O subsystem. Since the

I/O buses are not cached by the processor, downbound (processor to I/O) transactions and

configuration transactions are uncacheable. Since all other address space is cacheable, it

is possible to directly identify downbound transactions. Also, since configuration

accesses typically precede large upbound (I/O to processor) transactions, it is possible to

indirectly observe these.

Interrupts – Interrupts serviced by CPU. Like DMA transactions, most interrupts do not

originate within the processor. In order to identify the source of interrupts, the interrupt

controller sends a unique ID (interrupt vector number) to the processor. This is

particularly valuable since I/O interrupts are typically generated by I/O devices to

indicate the completion of large data transfers. Therefore, it is possible to attribute I/O

bus power to the appropriate device. Though, the interrupt vector information is

available in the processor, it is not available as a performance event. Therefore, the

presence of interrupt information in the processor simulated by obtaining it from the

operating system. Since the operating system maintains the actual interrupt service

routines, interrupt source accounting can be easily performed. In this case the

/proc/interrupts file available in Linux operating systems is used.

71

The form of the subsystem power models is dictated by two requirements: low

computational cost and high accuracy. Since these power models are intended to be used

for runtime power estimation, it is preferred that they have low computational overhead.

For that reason regression curve fitting is attempted using single or multiple input linear

models. If it is not possible to obtain high accuracy with a linear model, a single or

multiple input quadratic is selected.

Subsystem Power Models

The following sections describe the details of the subsystem power models. Descriptions

are given for issues encountered during the selection of appropriate input metrics. For

each subsystem a comparison of modeled and measured power under a high variation

workload is given.

5.2.1 CPU

This CPU power model improves an existing model [BiVa05] to account for halted clock

cycles. Since it is possible to measure the percent of time spent in the halt state, it is

possible to account for the greatly reduced power consumption due to clock gating. This

addition is not a new contribution, since a similar accounting was made in the model by

Isci [IsMa03]. The distinction is that this model is the first application of a performance-

based power model in an SMP environment. The ability to attribute power consumption

to a single physical processor within an SMP environment is critical for shared

computing environments. In the near future it is expected that billing of compute time in

72

these environments will take account of power consumed by each process [Mc04]. This

is particularly challenging in virtual machine environments in which multiple customers

could be simultaneously running applications on a single physical processor. For this

reason, process-level power accounting is essential.

Given that the Pentium IV can fetch three instructions/cycle, the model predicts range of

power consumption from 9.25 Watts to 48.6 Watts. The form of the model is given in

Equation 5.1.

∑
=

×+×−+

NumCPUs

i

i
i

Cycle

sFetchedUop
ivePercentAct

1

31.4)25.97.35(25.9

Figure 5.2 Processor Power Model – gcc

A trace of the total measured and modeled power for the four processors is given in

Figure 5.2. The workload used in the trace is eight threads of gcc, started at 30s intervals.

Average error is found to be 3.1%. Note that unlike the memory bound workloads that

saturate at eight threads, the cpu-bound gcc saturates after only 4 simultaneous threads.

-100%

-50%

0%

50%

100%

0

50

100

150

200

0 100 200 300 400

E
rr

o
r

(%
)

W
a

tt
s

Seconds

Measured

Modeled

Error

(5.1)

73

5.2.2 Memory

This section considers models for memory power consumption based on cache misses

and processor bus transactions.

The initial attempt at modeling memory power made use of cache misses. A model based

on only cache misses/cycle is an attractive prospect as it is a well understood metric and

is readily available in performance monitoring counters. The principle behind using

cache misses as proxy for power is that loads not serviced by the highest level cache,

must be serviced by the memory subsystem. As demonstrated in [Ja01], power

consumption in DRAM modules is highest when the module is in the active state. This

occurs when either read or write transactions are serviced by the DRAM module.

Therefore, the effect of high-power events such as DRAM read/writes can be estimated.

In this study, the number of L3 Cache load misses per cycle is used. Since the Pentium

IV utilizes a write-back cache policy, write misses do not necessarily cause an immediate

memory transaction. If the miss was due to a cold start, no memory transaction occurs.

For conflict and capacity misses, the evicted cache block will cause a memory transaction

as it updates memory.

The initial findings showed that L3 cache misses were strong predictors of memory

power consumption (Figure 5.3). The first workload considered is the integer workload

mesa from the SPEC CPU 2000 suite. Since a single instance of this workload does not

sufficiently utilize the memory subsystem, multiple instances are used to increase

74

utilization. For mesa, memory utilization increases noticeably with each instance of the

workload. Utilization appears to taper off once the number of instances approaches the

number of available hardware threads in the system. In this case the limit is 8 (4 physical

processors x 2 threads/processor). The resultant quadratic power model is given in

Equation 5.2. The average error under the mesa workload is low at only 1%. However,

the model fails under extreme cases.

66.7
3

43.3
3

28

2

1

×+×+∑
=

Cycle

LoadMissesL

Cycle

LoadMissesL i
NumCPUs

i

i

Figure 5.3 Memory Power Model (L3 Misses) – mesa

Unfortunately, L3 misses do not perform well under all workloads. In cases of extremely

high memory utilization, L3 misses tend to underestimate power consumption. It is

found that when using multiple instances of the mcf workload, memory power

consumption continues to increase, while L3 misses are slightly decreasing.

It is determined that one of the possible causes is hardware-directed prefetches that are

not accounted for in the count of cache misses. However, Figure 5.4 shows that though

-100%

-50%

0%

50%

100%

25

30

35

40

45

0 500 1000 1500

E
rr

o
r(

%
)

W
a

tt
s

Seconds

Measured

Modeled

Error

(5.2)

75

prefetch traffic does increase after the model failure, the total number of bus transactions

does not. Since the number of bus transactions generated by each processor does not

sufficiently predict memory power, an outside (non-CPU) agent is accessing the memory

bus. For the target system the only other agent on the memory bus is the memory

controller itself, performing DMA transactions on behalf of I/O devices.

Figure 5.4 Prefetch and Non-Prefetch Bus Transactions – mcf

Changing the model to include memory accesses generated by the microprocessors and

DMA events resulted in a model that remains valid for all observed bus utilization rates.

It should be noted that using only the number of read/write accesses to the DRAM does

not directly account for power consumed when the DRAM is in the precharge state.

DRAM in the precharge state consumes more power than in idle/disabled state, but less

than in the active state. During the precharge state, data held in the sense amplifiers is

committed to the DRAM array. Since the initiation of a precharge event is not directly

controlled by read/write accesses, precharge power cannot be directly attributed to

-100%

-50%

0%

50%

100%

0

5

10

15

20

25

30

0 50 100 150 200

E
rr

o
r(

%
)

B
u

s
T

ra
n

sa
ct

io
n

s/
1

K
 C

y
cl

es

Seconds

Non-Prefetch

Prefetch

Error

Cache-Miss model error grows as

memory traffic becomes dominated

by prefetch

76

read/write events. However, in practice read/write accesses are reasonable predictors.

Over the long term (thousands of accesses) the number of precharge events should be

related to the number of access events. The resultant model is given in Equation 5.3. A

trace of the model applied to the mcf workload is shown in Figure 5.5. This workload

cannot be modeled using cache misses. The model yields an average error rate of 2.2%.

8

2

1

4 10813101.502.29 −

=

−

⋅×+⋅×−∑
MCycle

tionsBusTransac

MCycle

tionsBusTransac i
NumCPUs

i

i

5.2.3 Disk

The modeling of disk power at the level of the microprocessor presents two major

challenges: large distance from CPU to disk and little variation in disk power

consumption. Of all the subsystems considered in this study, the disk subsystem is at the

greatest time and distance from the microprocessor.

Figure 5.5 Memory Power Model (Memory Bus Transactions)- mcf

Therefore, there are challenges in getting timely information from the processor’s

perspective. The various hardware and software structures that are intended to reduce the

-100%

-50%

0%

50%

100%

0

10

20

30

40

50

0 500 1000 1500

E
rr

o
r

(%
)

W
a

tt
s

Seconds

Measured

Modeled

Error

(5.3)

77

average access time to the distant disk by the processor make power modeling difficult.

The primary structures are: microprocessor cache, operating system disk cache, I/O

queues and I/O and disk caches. The structures offer the benefit of decoupling high-

speed processor events from the low-speed disk events. Since the power modeling

techniques rely on the close relationship between the subsystems, this is a problem.

This is evidenced in the poor performance of the first attempts. Initially, we considered

two events: DMA accesses and uncacheable accesses. Since the majority of disk

transfers are handled through DMA by the disk controller, this appeared to be a strong

predictor. The number of uncacheable accesses by the processor was also considered.

Unlike the majority of application memory, memory mapped I/O (I/O address mapped to

system address space) is not typically cached. Generally, I/O devices use memory

mapped I/O for configuration and handshaking. Therefore, it should be possible to detect

accesses to the I/O devices through uncacheable accesses. In practice neither of these

metrics fully account for fine-grain power behavior. Since such little variation exists in

the disk power consumption it is critical to accurately capture the variation that does

exist. In this case the lack of variation is due to a lack of power management features.

The addition of power management magnifies the variation present in the workload.

Accounting for and modeling the small variation in the absence of power management

suggests an accurate model can be constructed with power management.

To address this limitation the manner in which DMA transactions are performed is noted.

Coarsely stated, DMA transactions are initiated by the processor by first configuring the

78

I/O device. The transfer size, source and destination are specified through the memory

mapped I/O space. The disk controller performs the transfer without further intervention

from the microprocessor. Upon completion or incremental completion (buffer

full/empty) the I/O device interrupts the microprocessor. The microprocessor is then able

to use the requested data or discard local copies of data that was sent. This study uses the

number of interrupts originating from the disk controller. This approach has the

advantage over the other metrics in that the events are specific to the subsystem of

interest. This approach is able to represent fine-grain variation with low error. In the

case of the synthetic disk workload, by using the number of disk interrupts/cycle an

average error rate of 1.75% is achieved. The model is provided in Equation 5.4. An

application of the model to the memory-intensive mcf is shown in Figure 5.6. Note that

this error rate accounts for the large DC offset within the disk power consumption. This

error is calculated by first subtracting the 21.6W of idle (DC) disk power consumption.

The remaining quantity is used for the error calculation.

4.4518.9

101.11106.106.21

2

1

15

2

7

×−×+

⋅×−⋅×+∑
=

Cycle

DMAAccess

Cycle

DMAAccess

Cycle

Interrupt

Cycle

Interrupts

ii

NumCPUs

i

ii

(5.4)

79

Figure 5.6 Disk Power Model (DMA+Interrupt) – Synthetic Disk Workload

5.2.4 I/O

Since the majority of I/O transactions are DMA transactions from the various I/O

controllers, an I/O power model must be sensitive to these events. Three events are

considered to observe DMA traffic: DMA accesses on memory bus, uncacheable

accesses and interrupts. Of the three, interrupts/cycle is the most representative. DMA

accesses to main memory seemed to be the logical best choice since there is such a close

relation to the number of DMA accesses and the switching factor in the I/O chips. For

example, a transfer of cache line aligned 16 dwords (4 bytes/dword), maps to a single

cache line transfer on the processor memory bus. However, in the case of smaller, non-

aligned transfers the linear relationship does not hold. A cache line access measured as a

single DMA event from the microprocessor perspective may contain only a single byte.

This would grossly overestimate the power being consumed in the I/O subsystem.

Further complicating the situation is the presence of performance enhancements in the

I/O chips.

-100%

-50%

0%

50%

100%

21.2

21.4

21.6

21.8

22

22.2

22.4

0 100 200 300 400

E
rr

o
r

(%
)

W
a

tt
s

Seconds

Measured

Modeled

Error

80

One of the common enhancements is the use of write-combing memory. In write-

combining, the processor or I/O chip in this case combines several adjacent memory

transactions into a single transaction further removing the one-to-one mapping of I/O

traffic to DMA accesses on the processor memory bus. As a result, interrupt events are

better predictors of I/O power consumption. DMA events failed to capture the fine-grain

power variations. DMA events tended to have few rapid changes, almost as if the DMA

events had a low-pass filter applied to them. The details of the model can be seen in

Equation 5.5. Accounting for the large DC offset increases error significantly to 32%.

Another consideration with the model is the I/O configuration used. The model has a

significant idle power which is related to the presence to two I/O chips capable of

providing six 133MHz PCI-X buses. While typical in servers, this is not common for

smaller scale desktop/mobile systems that usually contain 2-3 I/O buses and a single I/O

chip. Further, the server only utilizes a small number of the I/O buses present. It is

expected that with a heavily populated, system with fewer I/O buses, the DC term would

become less prominent. This assumes a reasonable amount of power management within

the installed I/O devices.

9

2

1

6 1012.1101087.32 ⋅×−⋅×+∑
=

Cycle

Interrupt

Cycle

Interrupt i
NumCPUs

i

i

5.2.5 Chipset

The chipset power model is the simplest of all subsystems since a constant is all that is

required for accuracy. There are two reasons for this. First, the chipset subsystem

(5.5)

81

exhibits little variation in power consumption. Therefore, a constant power model is an

obvious choice. Further, it is difficult to identify the effect performance events have on

power consumption compared to induced electrical noise in the sensors. The second, and

more critical reason, is a limitation in the power sampling environment. Since the chipset

subsystem uses power from more than one power domain, the total power cannot be

measured directly. Instead, it is derived by finding the average measured difference in

power between multiple domains. The average chipset power is 19.9W.

5.2.6 Model Validation

Tables 5.1 and 5.2 present summaries of average errors for the five models applied to

twelve workloads. Errors are determined by comparing modeled and measured error at

each sample. A sample corresponds to one second of program execution or

approximately 1.5 billion instructions per processor. For performance counter sampling,

the total number of events during the previous one second is used. For power

consumption, the average of all samples in the previous second (ten thousand) is used.

One second sample intervals provide a compromise between trace size and accuracy.

Reducing the sample interval to as low as 100 microseconds does increase the magnitude

of error in worst-case samples. However, the cumulative average error as shown in

Equation 5.6 is nearly identical to that obtained with one second sample intervals. The

benefit is that trace size is reduced to a practical level that allows tracing complete,

realistic workloads.

82

%100
1

×

−

=

∑
=

NumSamples

Measured

MeasuredModeled

orAverageErr

NumSamples

i i

ii

The I/O and disk models performed well under all workloads. The low error rates are

partly due to low power variation / high idle power consumption. The CPU and memory

subsystems had larger errors, but also larger workload variation. The worst case errors

for CPU occurred in the memory-bound workload: mcf. Due to a high CPI

(cycles/instruction) of greater than ten cycles, the fetch-based power model consistently

underestimates CPU power. This is because under mcf the processor only fetches one

instruction every 10 cycles even though it is continuously searching for (and not finding)

ready instructions in the instruction window. For mcf this speculative behavior has a

high power cost that is equivalent to executing an additional 1-2 instructions/cycle.

Table 5.1 Integer Average Model Error

Workload CPU Chipset Memory I/O Disk

Idle 1.74% 0.586% 3.80% 0.356% 0.172%

Gcc 4.23% 10.9% 10.7% 0.411% 0.201%

Mcf 12.3% 7.7% 2.2% 0.332% 0.154%

Vortex 6.53% 13.0% 15.6% 0.295% 0.332%

DBT-2 9.67% 0.561% 2.17% 5.62% 0.176%

SPECjbb 9.00% 7.45% 6.14% 0.393% 0.144%

DiskLoad 5.93% 3.06% 2.93% 0.706% 0.161%

Integer Average
7.06

±3.50%

6.18%

±4.92%

6.22%

±5.12%

1.16%

±1.97%

0.191%

±0.065%

All Workload Average
6.67 %

±3.42%

5.97%

±4.23%

8.80%

±5.54%

0.824%

±1.52%

0.390%

±0.492%

(5.6)

83

The memory model averaged about 9% error across all workloads. Surprisingly the

memory model fared better under integer workloads. The error rate for floating point

workloads tended to be highest for workloads with the highest sustained power

consumption. For these cases the model tends to underestimate power. Since the rate of

bus transactions is similar for high and low error rate workloads it is suspected that the

cause of underestimation is the access pattern. In particular the model does not account

for differences in the power for read versus write access. Also, the number of active

banks within the DRAM is not directly accounted for. Accounting for the mix of reads

versus writes would be a simple addition to the model. However, accounting for active

banks will likely require some form of locality metric.

Idle power error is low for all cases indicating a good match for the DC term in the

models. Chipset error is high considering the small amount of variation. This is due to

the limitation of the constant model assumed for chipset power.

Table 5.2 Floating Point Average Model Error

Workload CPU Chipset Memory I/O Disk

Art 9.65% 5.87% 8.92% 0.240% 1.90%

Lucas 7.69% 1.46% 17.5 % 0.245% 0.31%

Mesa 5.59% 11.3% 8.31% 0.334% 0.17%

mgrid 0.360% 4.51% 11.4% 0.365% 0.55%

wupwise 7.34% 5.21% 15.9% 0.588% 0.42%

FP Average
6.13%

±3.53%

5.67%

±3.57%

12.41%

±4.13%

0.354%

±0.142%

0.67%

±0.70%

All Workload

Average

6.67 %

±3.42%

5.97%

±4.23%

8.80%

±5.54%

0.824%

±1.52%

0.39%

±0.49%

84

5.3 Complete-System Desktop Power Model

In this section results for the application of the trickle-down modeling approach are

presented for a recent desktop platform. This platform differs from the previous server in

terms of process technology, system architecture, manufacturer and workload among

others. It is shown that though this platform is significantly different than the server, the

trickle-down modeling approach still accurately models power. Of particular importance

are two major differences: subsystem level power management and workload

characteristics. Power management increases the complexity and utility of the power

model as power consumption varies greatly with the application of power management.

Compare this to the server system in which power remains near a constant level due to

subsystems not reducing performance capacity, and therefore power consumption, during

periods of low utilization. Increased power variation is also attributable to desktop-

specific workloads. While server workloads tend to always operate at full speed (e.g.

SPEC CPU) desktop workloads such as SYSmark and 3DMark contain large portions of

low utilization. This exposes the impact of power management and the need to model it.

5.3.1 System Description

To validate the effectiveness of the trickle-down approach the process is applied to a

recent desktop platform. A comparison of the two systems used in this study (server and

desktop) is provided in Table 5.3. These systems differ in their power management

implementations and subsystem components. The desktop system is optimized for power

85

efficiency rather than performance. This leads to greater variation in power consumption

compared to a server since power management features reduce power greatly during low

utilization. Server systems tend to employ less aggressive power savings. Therefore,

power at low utilization is greater and overall variation is lesser. This difference is

evident in the analysis of average subsystem-level power in Tables 5.1 - 5.2 and 5.6. The

power management implementation in the desktop system also requires the use of more

extensive power models. Rather than only needing to consider CPU clock gating and

DRAM power down modes, the desktop system model must consider DVFS, chipset link

power management, disk and GPU power management. The wider range of power

consumption also leads to greater temperature sensitivity.

Table 5.3 System Comparison

Platform

Segment

Server Desktop

Manufacturer Intel AMD

Processor(s) Quad-socket 130nM

2.8GHz

Dual-core 45nM 2.0GHz

Memory 8GB DDR-200 4GB DDR3-1066

Power

Management

CPU Clock Gating

DRAM Power Down

CPU Clock Gating and DVFS

DRAM Power Down and Self

Refresh

Chipset Link Disconnect

Harddrive Spin Down and

ATA modes

GPU Clock Gating

Graphics Rage ProXL RS780

Observable

Subsystems

CPU

Chipset

Memory

I/O

Disk

CPU

Chipset

Memory

Memory Controller

GPU

Disk

86

Another major difference is the ability to measure subsystem power at a finer granularity.

The desktop platform allows direct measurement of memory controller and GPU in

addition to all the subsystems that are measureable in the server system. One exception is

the server I/O subsystem which contains numerous PCI-X busses and bridges. The

desktop system does not contain comparable I/O subsystem. Therefore, it is not included

in the study.

5.3.2 Workloads

Due to the distinctions between server and desktop systems several desktop or client-

appropriate workloads are added. In typical server or desktop benchmarks the GPU

subsystem is almost entirely idle. Therefore, to exercise the GPU subsystem the

3DMark06 benchmark is included. 3DMark06 contains six subtests covering CPU and

GPU intensive workloads. Four of the subtests target the GPU’s 3D processing engine

(gt1, gt2, hdr1, hdr2). The other two (cpu1 and cpu2) heavily utilize CPU cores but have

almost no GPU utilization. Targeting the 3D engine generates the largest power variation

since the 3D engine is by far the largest power consumer in the GPU. An interesting side

effect of the desktop GPU is intense system DRAM utilization. To reduce cost and

power consumption, desktop systems such as this use a portion of system DRAM in lieu

of locally attached, private DRAM. As a result, 3D workloads in desktop systems are

effective at generating wide power variation in the memory subsystem.

Overall subsystem level power management is exposed through the addition of the

SYSmark 2007 benchmark. This workload is implemented using simulated user input

87

through the application GUI. The numerous delays required for GUI interaction causes

many idle phases across the subsystems. This allows power management to become

active. Contrast this to the vast majority of benchmarks which, by design, operate the

CPU and other subsystems only at the 100% load level. The DBT-2 database workload is

excluded as it is not practical and relevant to run on a desktop platform. For comparison

to the server model, SPEC CPU, SPECjbb and Idle workloads are included. The

workloads on targeted subsystems are summarized below in Table 5.4.

Table 5.4 Desktop Workloads

Workload Description Subsystems Targeted

Idle Only background OS processes All (power managed)

SPEC CPU 2006

INT

perlbench, bzip2, gcc, mcf,

gobmk, hmmer, sjeng, libquantum,

h264ref, omnetpp, astar,

xalancbmk

CPU

Memory

Memory Controller

FP

bwaves, games, milc, zeusmp,

gromacs, cactusADM, leslie3d,

namd, dealII, soplex, povray,

calculix, gemsFDTD, tonto, lbm,

wrf, sphinx3

CPU

Memory

Memory Controller

3DMark06

gt1
Graphics Test 1 and 2

GPU

Memory

Memory Controller
gt2

cpu1
CPU Test 1 and 2 CPU

cpu2

hdr1
High Dynamic Range Test 1 and 2

GPU

Memory

Memory Controller hdr2

SYSmark 2007

EL E-Learning CPU

Memory

Memory Controller

Chipset

Disk

VC Video Creation

PR Productivity

3D 3D

SPECjbb2005 Server-Side Java

CPU

Memory

Memory Controller

88

5.3.3 Performance Event Selection

Performance event selection is critical to the success of performance counter-driven

power models. To identify a minimum set of representative performance events, the

relationship between each event and power consumption must be understood. This

section describes the performance monitoring counter events used to construct the trickle-

down power model. The definition and insight behind selection of the counters is

provided.

Fetched µops – Micro-operations fetched. Comparable to the Pentium IV fetched micro-

operations, this metric is highly correlated to processor power. It accounts for the largest

portion of core pipeline activity including speculation. This is largely the result of fine-

grain clock gating. Clocks are gated to small portions of the pipelines when they are not

being used.

FP µops Retired – Floating point micro-operations retired. FP µops Retired accounts

for the difference in power consumption between floating point and integer instructions.

Assuming equal throughput, floating point instructions have significantly higher average

power. Ideally, the number of fetched FPU µops would be used. Unfortunately, this

metric is not available as a performance counter. This is not a major problem though

since the fetched µops metric contains all fetched µops, integer and floating point.

DC Accesses – Level 1 Data Cache Accesses. A proxy for overall cache accesses

including Level 1,2,3 data and instruction. Considering the majority of workloads, level

89

1 data cache access rate dominates cache-dependent power consumption. No other single

cache access metric correlates as well to processor core power (including caches).

%Halted/%Not-Halted – Percent time processor is in halted state. This represents

power saved due to explicit clock gating. The processor saves power using fine-grain

and coarse-grain of clock gating. Fine-grain clock gating saves power in unutilized

portions of the processor while instructions are in-flight. Coarse-grain clock gating can

save more power than fine-grain yet it requires the processor to be completely idle. The

processor applies this type of gating only when the processor is guaranteed to not have

any instructions in-flight. This condition by definition occurs following execution of the

HLT instruction. Halt residency is controlled by the operating system and interrupts

scheduling work on processors.

CPU Clock Frequency – Core clocks per second. Due to the use of DVFS, it is

necessary to track the instantaneous frequency of the processor. Though some metrics

such as µops fetched or retired implicitly track the power consumed in many components

due to clock frequency, they do not track workload-independent power consumers such

as clock grids. Using clock frequency in conjunction with %Halt it is possible to account

for power consumed in these units.

CPU Voltage – CPU Voltage Rail. Due to the application of DVFS the processor may

operate at a range of discrete voltages in order to save power. Changes in voltage have a

significant impact on power consumption due to the exponential relationship between

90

voltage and dynamic (~V
2
) and leakage power (~V

3
). Due to a single, shared voltage

plane, the actual voltage applied is the maximum requested of all cores in a socket. The

requested voltage can be read using the P-State Status Register [Bk09].

Temperature – CPU Temperature. At the high voltages required for multi-GHz

operation, leakage power becomes a major component of power consumption. Also, at

idle when dynamic power is nearly eliminated due to clock gating leakage power can be

the dominant contributor. Since temperature has a strong relation to leakage power (T
2
)

it is necessary to account for this effect by measuring temperature. Temperature can be

approximated using a series of on-die thermal sensors. The output of these sensors can

be obtained using a configuration-space register [Bk09].

GPU Non-Gated Clocks – Number of GPU clocks per second. Similar to CPU power,

GPU power is greatly impacted by the amount of clock gating and DVFS. In this study

the DVFS usage is restricted to frequency changes only. Therefore, nearly all GPU

power variation can be accounted for by this single metric.

DCT Accesses – ∑ N=0-1 DCTNPageHits+DCTNPageMisses + DCTNPageConflicts. DCT

(DRAM ConTroller) Access accounts for all memory traffic flowing out of the two on-

die memory controllers, destined for system DRAM. These events include cpu-generated

and DMA traffic.

Link Active% – Percent time Hypertransport links connected. To save power in the I/O

interconnection during idle periods, the Hypertransport links are disconnected. During

91

periods of disconnect, cache snoop traffic and interrupts are blocked. This allows power

to be saved in the CPU I/O interconnect and I/O subsystem. Also, the DRAM may be

placed in self-refresh mode since DRAM access is blocked. If a cache snoop or interrupt

event occurs, the links are reconnected.

Spindle Active % – Percent time hard disk spindle is spinning. In traditional

mechanical hard drives, the spindle motor represent the largest single consumer of power

in the drive. To save energy the spindle motor can be powered down. Due to the high

latency (and energy consumption) for starting/stopping the spindle this can only be done

when the drive is expected to be idle for a long time (minutes or more). In practice,

typical workloads prevent the spindle from ever powering down. This includes all

benchmarks used in this study, except idle. Therefore, spindle activity can be sufficiently

accounted for by only distinguishing between idle and active workloads.

CPUToIOTransactions – Non-cacheable access to memory-mapped I/O devices . I/O

device activity can be approximated using a measure of how many memory transactions

generated by the CPUs are targeted at non-cacheable address space. Typically, I/O

devices contain a DMA controllers which performs access to cacheable space in system

memory. The configuration and control of these transactions is performed by the CPU

through small blocks of addresses mapped in non-cacheable space to each I/O device.

DRAMActive% – Percent time DRAM channel is active. Power savings in the DRAM

and memory controller is controlled by the memory controller. When a memory channel

92

has not issued a memory transaction for at least fixed period of time, the memory

controller sends the channel to one of the precharge power down modes [Bk09]. This

primarily saves power in the DRAM chips, but also provides a slight savings in the

memory controller.

SUBSYSTEM POWER MODELS

The impact of effective power management can be seen in the form of the power models

of this section. In all cases it is necessary to explicitly account for power management to

obtain accurate models. This causes all models to take a similar form. Previous models

[BiVa05] [BiJo06-1] are dominated by terms which were directly proportional to

workload activity factors (IPC, cache accesses). While those workload-dependent terms

are also used here, Idle Power Management and Irreducible power are also quantified.

The idle power management term estimates power saved when instructions or operations

are not actively proceeding through the subsystem. For CPUs this primarily occurs when

executing the idle loop. The CPU detects one of the idle instructions (HLT, mwait) and

takes actions such as clock or power gating. Other subsystems such as memory or I/O

links similarly detect the absence of transactions and save power through various degrees

of clock gating. Irreducible power contains the “baseline” power which is consumed at

all times. This baseline power is largely composed of leakage and ungateable

components.

93

5.3.4 CPU

To test the extensibility of performance counter power modeling across processor

architectures, the methodology is applied to an AMD Phenom quad-core processor. Like

the Intel Pentium 4 processor used in sections 3.2 and 3.3, fetched instructions is a

dominant metric for power accounting. Differences in architecture and microarchitecture

dictate that additional metrics are needed to attain high accuracy. Two areas are

prominent: floating point instruction power and architectural power management. Unlike

the Intel server processor which exhibits nearly statistically uniform power consumption

across workloads of similar fetch rate, the AMD desktop processor consumes up to 30%

more power for workloads with large proportions of floating point instructions.

To account for the difference in floating point instruction power, the desktop processor

model employs an additional metric for retired floating point instructions. A still larger

power difference is caused by the addition of architectural power management on the

desktop processor. The older, server processor only has architectural power management

in the form of clock gating when the halt instruction is issued by the operating system.

The newer, desktop processor adds architectural, DVFS. This leads to drastic reductions

in switching and leakage power. To account for these power reductions, the desktop

model includes tracking of processor frequency, voltage and temperature. The details of

the model can be found in Section 3.4.5.

94

While this model is accurate for most current generation processors, future processors

may require additional metrics to maintain comparable accuracy. Power savings

techniques such as power gating and on-die voltage regulation will require new methods

for power accounting. These techniques extend the sensitivity of leakage power

consumption to functional unit activity levels. Currently, leakage power is dictated

almost completely by architecturally visible, core-level, idle and DVFS states. Future

power gating implementations will likely be applied within subsets of a core, such as

floating point units or caches. Similarly, on-die regulation allows DVFS to be applied

independently to particular functional units. This increases the complexity of

performance counter power modeling which normally only accounts for switching power.

To accounting for these local power adaptations, models will need either detailed

knowledge of the power gating and DVFS implementations or statistical characterizations

of their application. Given the effectiveness of performance counter power models at

accounting for fine-grain switching power, it is likely that power gating and on-die

regulation can also be accounted for.

5.3.5 GPU

To estimate GPU power consumption a technique similar to that typically used for CPUs

is employed: count the number of ungated clocks. In CPUs this is done by subtracting

the number of halted clocks from all clocks [BiJo06-1]. In the case of the RS780 the

ungated clocks can be measured directly. This approach only accounts directly for power

saved due to clock gating. Power reductions due to DVFS are not explicitly represented.

95

Despite this, high accuracy of less than 1.7% error is obtained due to the implementation

of DVFS. Unlike CPU DVFS which allows the operating system to reduce voltage and

frequency during active phases, GPU DVFS reduces voltage only when clock gating is

applied (idle). Therefore, increased power due to operating at the higher voltage is

included in the non-gated clock metric. This bi-modal behavior can be seen in Figure

5.7. The mostly-idle, clock-gated portion of the HDR1 workload draws about 1.5W. The

fully active phase increases voltage and eliminates clock gating. Power increases

drastically to over 4W.

An alternative metric for GPU power was also considered: % GUI Active. This metric

represents the portion of time in which the GPU is updated the display. The main

limitation of this approach is that it does not account for the intensity of work being

performed by the underlying GPU hardware. Low-power 2D workloads, such as low-bit

rate video playback, appear to have the same GPU utilization as more intense high-

resolution video decoding. An example of modeled versus measured GPU power for

3DMark06-HDR1 is provided in Figure 5.7. Modeled GPU power as a function of non-

gated GPU clocks is shown by Equation 5.7.

GPU Power =

0.0068 × (Non-Gated Clocks /sec) × 10
-6

+ 0.8467

(5.7)

96

Figure 5.7 GPU Power Model (Non-Gated Clocks) – 3DMark06-HDR1

5.3.6 Memory

Memory or DRAM power consumption is one of the more variable subsystems. Similar

to the CPU, the application of various power management features yields a wide range of

power consumption. For example consider the standard deviation of power consumption

in SPECjbb of 1.096W compared to average its average of 1.71W. This variation is

caused by the three modes of operation: self-refresh, precharge power down and active.

Self-refresh represents the lowest power state in which DRAM contents are maintained

by on-chip refresh logic. This mode has a high entry/exit latency and is only entered

when the system is expected to be idle for a long period. The memory controller selects

this mode as part of its hardware-controlled C1e idle [Bk09] state. Since this state is

entered in conjunction with the hypertransport link disconnect, the power savings can be

represented using the LinkActive% metric. Pre-charge power down is a higher-power,

lower-latency alternative which provides power savings for short idle phases. This

allows pre-charge power savings to be considered with normal DRAM activity power.

-100%

-50%

0%

50%

100%

0

1

2

3

4

5

0 20 40 60 80

E
rr

o
r(

%
)

W
a

tt
s

Seconds

Measured

Modeled

Errorclock gating

97

Light activity yields higher precharge residency. DRAM activity is estimated using the

DCTAccess metric. The sum of all DCT accesses on both channels (hit, miss and

conflict) correlates positively to active DRAM power and negatively to precharge power

savings. In most workloads this approach gave error of less than 10%. The two outliers

were the CPU subtests of 3DMark06. Due to many of the memory transactions being

spaced at intervals just slightly shorter than the precharge power down entry time, the

model underestimates power by a larger margin. Higher accuracy would require a direct

measurement of pre-charge power down residency or temporal locality of memory

transactions. An example of model versus measured Memory power for SYSmark 2007-

3D is provided in Figure 5.8. The modeled power as a function of the DRAM channel

access rate (DCTAccess/sec) and Hypertransport activity percentage (LinkActive%) is

given in Equation 5.8. Additional details for the equation components, DCTAccess/sec

and LinkActive percent are given in section 5.3.3.

DIMM Power =

4x10
-8

 x DCTAccess/sec + 0.7434 x LinkActive% + 0.24

Figure 5.8 DRAM Power Model (∑DCT Access, LinkActive) – SYSmark 2007-3D

-100%

-50%

0%

50%

100%

0

1

2

3

0 100 200 300 400 500 600 700

E
rr

o
r(

%
)

W
a

tt
s

Seconds

Measured

Modeled

Error

1 core

accessing DRAM

4 cores

accessing DRAM

(5.8)

98

5.3.7 Memory Controller

Since the memory controller is responsible to entry and exit of power saving modes for

itself and memory, the memory metrics can also be used to estimate memory controller

power. Though both use link active and DCTAccesses the relative weights are different.

Memory power has a large sensitivity to the transaction rate, 4 · 10
-8

 W/transaction/sec.

Compare this to the memory controller which is more than four times smaller at 9 · 10
-9

W/transaction/sec. Similarly, transaction-independent portion is much higher for the

memory controller at 1.9W compared to 0.98W for memory. This reflects the

unmanaged power consumers in the memory controller. The same 3DMark06 error

outliers exist here. An example of model versus measured Memory Controller power for

3DMark06-HDR1 is provided in Figure 5.9. The modeled power is provided below in

Equation 5.9.

Memory Controller Power =

9x10
-9

 x DCTAccess/sec + 0.798 x LinkActive% + 1.05

Figure 5.9 Memory Controller Power (∑DCT Access, LinkActive) – HDR1

-100%

-50%

0%

50%

100%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 100

E
rr

o
r(

%
)

W
a

tt
s

Seconds

Measured

Modeled

Error

(5.9)

99

5.3.8 Chipset

The Chipset power model represents power consumed in the Hypertransport controller.

Like the memory and memory controller subsystems, power consumption is dominated

by the link disconnect state and memory controller accesses. Overall and worst-case

were less than the others due to the workload independent contributions being relatively

the largest. The model for I/O controller power is shown in Equation 5.10.

I/O Controller Power =

-10
-16

x (DCTAcc/sec)
2
 + 2x10

-8
x (DCTAcc/sec) + 1.24 x LinkAct% + 1.34

5.3.9 Disk

The improvements in power management for hard disks between the server-class used in

the Server study study [BiJo06-1] and the more recent desktop/mobile disk used here is

evident in the power model in Equation 5.11. Rather than the negligible power variation

previously observed (<1%), the variable portion (one standard deviation) is on average

30%. This provides more power savings, but a more difficult modeling challenge. As a

result average error is higher at 6.6%. The hard disk power model which is a function of

CPU-to-I/O transactions and spindle activity is shown in Equation 5.11.

Hard Disk Power =

3 x 10
-5

 x (CPUToIOTrans/sec) + 0.629 x SpindleActive + 0.498

5.3.10 Model Validation

Table 5.5 summarizes the average error results for the six subsystem power models. The

CPU subsystem had the second lowest error at 1.64% largely due to the comprehensive

(5.11)

(5.10)

100

power model that was used. Compare to the server power model which averaged over

6% error using only three inputs. More importantly, this low error rate suggests that

performance counter power models are effective across multiple microprocessor

architecture generations, platforms, and manufacturers (Intel and AMD).

The chipset power model is also improved compared to the server chipset model with

average error of 3.3%. Like the server model, the desktop model contained a large

workload-independent component: although in this case it contributed less than half the

total chipset power rather than the 100% seen in the server model.

The memory and memory controller power models had the highest average error with

5.3% and 6.0% respectively. The high error is largely due to the CPU portion of the

3DMark06 workload. This workload generates memory transactions at an interval that

prevents effective utilization of precharge power down modes. Therefore, the model

tends to underestimate memory power consumption. To resolve this error, a metric of

typical memory bus idle duration or power down residency would be needed.

The GPU power model had the lowest error rate at slightly less than 1%. This illustrates

the effectiveness of the non-gated GPU clocks as a proxy for GPU power. In most

workloads the GPU power has a clear bimodal characteristic. Active regions have a

power level that is consistent. Idle regions also have a consistent power level due to the

presence of idle clock gating. It is expected that as finer grain power management is

101

applied to the GPU core logic, larger active power variation will occur. This will

necessitate a comprehensive power model such as that used in the CPU.

Table 5.5 Average Error

 CPU Chipset Memory Memory Controller GPU Disk

Idle 0.3% 1.8% 1.2% 0.4% 1.7% 2.5%

SPEC CPU2006 Integer 1.3% 4.0% 2.3% 3.4% 0.2% 5.3%

SPEC CPU2006 FP 1.1% 2.6% 7.2% 2.9% 0.5% 4.4%

gt1 0.8% 5.3% 3.3% 1.3% 0.9% 7.1%

gt2 1.2% 5.8% 3.3% 4.4% 0.4% 8.7%

cpu1 1.6% 1.8% 12.5% 14.1% 1.0% 6.9%

cpu2 1.9% 1.9% 11.5% 13.4% 1.3% 9.2%

hdr1 2.2% 2.7% 0.8% 0.7% 1.0% 0.9%

hdr2 1.9% 4.7% 1.6% 8.6% 0.7% 2.7%

EL 2.7% 9.3% 8.5% 7.7% 0.0% 1.8%

VC 1.0% 1.8% 8.4% 11.7% 1.6% 10.6%

PR 2.5% 1.1% 5.7% 5.6% 0.9% 12.1%

3D 2.8% 3.5% 5.5% 4.7% 0.0% 10.7%

SPECjbb 1.5% 0.4% 2.0% 4.1% 0.8% 9.8%

Average 1.63% 3.34% 5.27% 5.93% 0.79% 6.62%

Finally, the disk subsystem is the one subsystem which has a higher error rate compared

the server power model. In this case the error can be attributed to the effectiveness of on-

disk and link power management. In the case of the server model, no active power

management is provided. This allows for an accurate model as the workload independent

portion dominates. In contrast the more recent desktop hard drive has a workload

dependent portion which contributes as much as 1/3 of total power. This causes

modeling error to have a larger impact. Note that the subtests with the highest errors are

also those with the highest disk utilization.

102

5.4 Summary

In this section feasibility of predicting complete system power consumption using

processor performance events is demonstrated. The models take advantage of the trickle-

down effect of these events. These events which are visible in the processing unit, are

highly correlated to power consumption in subsystems including memory, chipset, I/O,

disk and microprocessor. Subsystems farther away from the microprocessor require

events more directly related to the subsystem, such as I/O device interrupts or clock

gating status. Memory models must take into account activity that does not originate in

the microprocessor. In this case, DMA events are shown to have a significant relation to

memory power. It is shown that complete system power can be estimated with an

average error of less than 9% for each subsystem using performance events that trickle

down from the processing unit.

The trickle-down approach is shown to be effective across system architectures,

manufacturers and time. High accuracy is achieved on systems from both major PC

designers (Intel and AMD), Server and desktop architectures, and across time with

systems from 2005 and 2010 exhibiting comparable accuracy.

103

Chapter 6 Performance Effects of

Dynamic Power Management

6.1 Direct and Indirect Performance Impacts

6.1.1 Transition Costs

Due to physical limitations, transitioning between adaptation states may impose some

cost. The cost may be in the form of lost performance or increased energy consumption.

In the case of DVFS, frequency increases require execution to halt while voltage supplies

ramp up to their new values. This delay is typically proportional to the rate of voltage

change (seconds/volt). Frequency decreases typically do not incur this penalty as most

digital circuits will operate correctly at higher than required voltages. Depending on

implementation, frequency changes may incur delays. If the change requires modifying

the frequency of clock generation circuits (phase locked loops), then execution is halted

until the circuit locks on to its new frequency. This delay may be avoided if frequency

reductions are implemented using methods which maintain a constant frequency in the

clock generator. This is the approach used in Quad-Core AMD processor c-state

implementation. Delay may also be introduced to limit current transients. If a large

number of circuits all transition to a new frequency, then excessive current draw may

result. This has a significant effect on reliability. Delays to limit transients are

104

proportional to the amount of frequency change (seconds/MHz). Other architecture-

specific adaptations may have variable costs per transition. For example, powering down

a cache requires modified contents to be flushed to the next higher level of memory. This

reduces performance and may increase power consumption due to the additional bus

traffic. When a predictive component is powered down it no longer records program

behavior. For example, if a branch predictor is powered down during a phase in which

poor predictability is expected, then branch behavior is not recorded. If the phase

actually contains predictable behavior, then performance may be lost and efficiency may

be lost. If a unit is powered on and off in excess of the actual program demand, then

power and performance may be significantly affected by the flush and warm-up cycles of

the components. In this study the focus is on fixed cost per transition effects such as

those required for voltage and frequency changes.

6.1.2 Workload Phase and Policy Costs

In the ideal case the transition costs described above do not impact performance and save

maximum power. The reality is that performance of dynamic adaption is greatly affected

by the nature of workload phases and the power manager’s policies. Adaptations provide

power savings by setting performance to the minimum level required by the workload. If

the performance demand of a workload were known in advance, then setting performance

levels would be trivial. Since they are not known, the policy manager must estimate

future demand based on the past. Existing power managers, such as those used in this

study (Windows Vista [Vi07] and SLES Linux [PaSt06]), act in a reactive mode. They

105

can be considered as predictors which always predict the next phase to be the same as the

last. This approach works well if the possible transition frequency up the adaptation is

greater than the phase transition frequency of workload. Also, the cost of each transition

must be low considering the frequency of transitions. In real systems, these requirements

cannot currently be met. Therefore, the use of power adaptations does reduce

performance to varying degrees depending on workload. The cost of mispredicting

performance demand is summarized below.

Underestimate: Setting performance capacity lower than the optimal value causes

reduced performance. Setting performance capacity lower than the optimal value may

cause increased energy consumption due to increased runtime. It is most pronounced

when the processing element has effective idle power reduction.

Overestimate: Setting performance capacity higher than the optimal value reduces

efficiency as execution time is not reduced yet power consumption is increased. This

case is common in memory-bound workloads.

Optimization Points: The optimal configuration may be different depending on which

characteristic is being optimized. For example, Energy×Delay may have a different

optimal point compared to Energy×Delay
2
.

6.1.3 Performance Effects

P-states and C-states impact performance in two ways: Indirect and Direct. Indirect

performance effects are due to the interaction between active and idle cores. In the case

106

of Quad-Core AMD processors, this is the dominant effect. When an active core

performs a cache probe of an idle core, latency is increased compared to probing an

active core. The performance loss can be significant for memory-bound (cache probe-

intensive) workloads. Direct performance effects are due to the current operating

frequency of an active core. The effect tends to be less compared to indirect, since

operating systems are reasonably effective at matching current operating frequency to

performance demand. These effects are illustrated in Figure 6.1.

Two extremes of workloads are presented: the compute-bound crafty and the memory-

bound equake. For each workload, two cases are presented: fixed and normal scheduling.

Fixed scheduling isolates indirect performance loss by eliminating the effect of OS

frequency scheduling and thread migration. This is accomplished by forcing the

software thread to a particular core for the duration of the experiment. In this case, the

thread runs always run at the maximum frequency. The idle cores always run at the

minimum frequency. As a result, crafty achieves 100 percent of the performance of

processor that does not use dynamic power management. In contrast, the memory-bound

equake shows significant performance loss due to the reduced performance of idle cores.

Direct performance loss is shown in the dark solid and light solid lines, which utilize OS

scheduling of frequency and threads. Because direct performance losses are caused by

suboptimal frequency in active cores, the compute-bound crafty shows a significant

performance loss. The memory-bound equake actually shows a performance

107

improvement for low idle core frequencies. This is caused by idle cores remaining at a

high frequency following a transition from active to idle.

Figure 6.1 Direct and Indirect Performance Impact

6.1.4 Indirect Performance Effects

The amount of indirect performance loss is mostly dependent on the following three

factors: Idle core frequency, OS p-state transition characteristics, and OS scheduling

characteristics. The probe latency (time to respond to probe) is largely independent of

idle core frequency above the “breakover” frequency (FreqB). Below FreqB the

performance drops rapidly at an approximately linear rate. This can be seen in Figure 6.1

as the dashed light line. The value of FreqB is primarily dependent on the inherent probe

latency of the processor and the number of active and idle cores. Increasing the active

core frequency increases the demand for probes and therefore increases FreqB. Increasing

60%

65%

70%

75%

80%

85%

90%

95%

100%

200 700 1200 1700 2200

P
er

fo
rm

a
n

ce

Idle Core Frequency (MHz)

crafty-fixed

equake-fixed

equake

crafty

FreqB

108

the number of cores has the same effect. Therefore, multi-socket systems tend to have a

higher FreqB. Assuming at least one idle core, the performance loss increases as the ratio

of active-to-idle cores increases. For an N-core processor, the worst-case is N-1 active

cores with 1 idle core. To reduce indirect performance loss, the system should be

configured to guarantee than the minimum frequency of idle cores is greater than or equal

to FreqB. To this end the Quad-Core AMD processor uses clock ramping in response to

probes [Bk09]. When an idle core receives a probe from an active core, the idle core

frequency is ramped to the last requested p-state frequency. Therefore, probe response

performance is dictated by the minimum idle core frequency supported by the processor.

For the majority of workloads, this configuration yield less than 10 percent performance

loss due to idle core probe latency.

The other factors in indirect performance loss are due to the operating system interaction

with power management. These factors, which include OS p-state transition and

scheduling characteristics, tend to mask the indirect performance loss. Ideally, the OS

selects a high frequency p-state for active cores and a low frequency for idle cores.

However, erratic workloads (many phase transitions) tend to cause high error rates in the

selection of optimal frequency. Scheduling characteristics that favor load-balancing over

processor affinity worsen the problem. Each time the OS moves a process from one core

to another, a new phase transition has effectively been introduced. More details of OS p-

state transitions and scheduling characteristics are given in the next section on direct

performance effects.

109

6.1.5 Direct Performance Effects

Since the OS specifies the operating frequency of all cores (p-states), the performance

loss is dependent on how the OS selects a frequency. To match performance capacity

(frequency) to workload performance demand, the OS approximates demand by counting

the amount of slack time a core has. For example, if a core runs for only 5 ms of its 10

ms time allocation it is said to be 50 percent idle. In addition to the performance demand

information, the OS p-state algorithm uses a form of low-pass filtering, hysteresis, and

performance estimation/bias to select an appropriate frequency. These characteristics are

intended to prevent excessive p-state transitions. This has been important historically

since transitions tended to cause a large performance loss (PLL settling time, VDD

stabilization). However, in the case of Quad-Core AMD processors and other recent

designs, the p-state transition times have been reduced significantly. As a result, this

approach may actually reduce performance for some workloads and configurations. See

the light, solid line for equake and dark dashed lines for crafty in Figure 6.1. These two

cases demonstrate the performance impact of the OS p-state transition hysteresis.

As an example, consider a workload with short compute-bound phases interspersed with

similarly short idle phases. Due to the low-pass filter characteristic, the OS does not

respond to the short duration phases by changing frequency. Instead, the cores run at

reduced frequency with significant performance loss. In the pathologically bad case, the

OS switches the frequency just after the completion of each active/idle phase. The cores

run at high frequency during idle phases and low frequency in active phases. Power is

110

increased while performance is decreased. OS scheduling characteristics exacerbate this

problem. Unless the user makes use of explicit process affinity or an affinity library,

some operating systems will attempt to balance the workloads across all cores. This

causes a process to spend less contiguous time on a particular core. At each migration

from one core to another there is a lag from when the core goes active to when the active

core has its frequency increased. The aggressiveness of the p-state setting amplifies the

performance loss/power increase due to this phenomenon. Fortunately, recent operating

systems such as Microsoft Windows Vista provide means for system designers and end

users to adjust the settings to match their workloads/hardware [Vi07].

6.2 Reactive Power Management

In this section, results are presented to show the effect that dynamic adaptations

ultimately have on performance and power consumption. All results are obtained from a

real system, instrumented for power measurement. The two major areas presented are

probe sensitivity (indirect) and operating system effects (direct).

First, the probe sensitivity of SPEC CPU2006 is considered. Table 6.1 shows

performance loss due to the use of p-states. In this experiment the minimum p-state is set

below the recommended performance breakover point for probe response. This

emphasizes the inherent sensitivity workloads have to probe response. Operating system

frequency scheduling is biased towards performance by fixing active cores at the

maximum frequency and idle cores at the minimum frequency. These results suggest that

floating point workloads tend to be most sensitive to probe latency. However, in the case

111

of SPEC CPU2000 workloads, almost no performance loss is shown. The reason, as

shown in section 4.3.1, is that smaller working set size reduces memory traffic and,

therefore, the dependence on probe latency. For these workloads only swim, equake, and

eon showed a measureable performance loss.

Table 6.1 Performance Loss Due to Low Idle Core Frequency – SPEC CPU 2006

SPEC CPU 2006 – INT

perlbench -0.8% sjeng 0.0%

bzip2 -1.0% libquantum -7.0%

gcc -3.6% h264ref -0.8%

mcf -1.8% omnetpp -3.7%

gobmk -0.3% astar -0.5%

hmmer -0.2%

SPEC CPU 2006 – FP

bwaves -5.6% soplex -6.7%

games -0.6% povray -0.5%

milc -7.9% calculix -0.6%

zeusmp -2.1% GemsFDTD -5.9%

gromacs -0.3% tonto -0.6%

cactusADM -2.6% lbm -5.6%

leslie3D -6.0% wrf -3.2%

namd -0.1% sphinx3 -5.6%

dealII -1.3%

Next, it is shown that by slightly increasing the minimum p-state frequency it is possible

to recover almost the entire performance loss. Figure 6.2 shows an experiment using a

synthetic kernel with high probe sensitivity with locally and remotely allocated memory.

The remote case simply shows that the performance penalty of accessing remote memory

can obfuscate the performance impact of minimum p-state frequency. The indirect

performance effect can be seen clearly by noting that performance increases rapidly as

the idle core frequency is increased from 800 MHz to approximately 1.1 GHz. This is a

112

critical observation since the increase in power for going from 800 MHz to 1.1 GHz is

much smaller than the increase in performance. The major cause is that static power

represents a large portion of total power consumption. Since voltage dependence exists

between all cores in a package, power is only saved through the frequency reduction.

There is no possibility to reduce static power since voltage is not decreased on the idle

cores.

Figure 6.2 Remote and Local Probe Sensitivity

Using the same synthetic kernel the effect of p-states is isolated from c-states. Since the

p-state experiments show that indirect performance loss is significant below the

breakover point, now c-state settings that do not impose the performance loss are

considered. To eliminate the effect of this performance loss the processor can be

configured for ramped probe response. In this mode, idle cores increase their frequency

before responding to probe requests. To obtain an optimal tradeoff between performance

and power settings, this setting mode can be modulated using hysteresis, implemented by

0%

20%

40%

60%

80%

100%

120%

800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

Idle Core Frequency

LocalMem

RemoteMem

Frequency Insensitive Range

Frequency

Sensitive

Region

113

adjusting a hysteresis timer. The timer specifies how long the processor remains at the

increased frequency before returning to the power saving mode. The results are shown in

Figure 6.3. The blue line represents the performance loss due to slow idle cores caused

by the application of c-states only. Like the p-state experiments, performance loss

reaches a clear breakpoint. In this case, the breakover point represents 40 percent of the

maximum architected delay. Coupling c-states with p-states, the red shows that the

breakover point is not as distinct since significant performance loss already occurs. Also,

like the p-state experiments, setting the hysteresis timer to a value of the breakover point

increases performance significantly while increasing power consumption only slightly.

Figure 6.3 C-state vs. P-state Performance

Next, the effect of operating system tuning parameters for power adaptation selection is

considered. In order to demonstrate the impact of slow p-state selection, Figure 6.4 is

presented. The effect is shown by varying a single OS parameter while running the

SYSmark E-Learning subtest. In this graph, the TimeCheck value is varied from 1 ms to

1000 ms. TimeCheck controls how often the operating system will consider a p-state

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

P
er

fo
rm

an
ce

C-State Hysteresis (%Max)

C-State Only

P-State+C-State

114

change. Two major issues were found: minimum OS scheduling quanta and

increase/decrease filter.

Figure 6.4 Varying OS P-state Transition Rates

First, performance remains constant when scaling from 1 us to 10 ms (< 1 ms not

depicted). This is attributable to the OS implementation of scheduling. For Microsoft

Windows Vista, all processes are scheduled on the 10 ms timer interrupt. Setting

TimeCheck to values less than 10 ms will have no impact since p-state changes, like all

process scheduling, occur only on 10-ms boundaries. Second, even at the minimum

TimeCheck value, performance loss is at 80 percent. The reason is that other settings

become dominant below 10 ms. In order for a p-state transition to occur the workload

must overcome the in-built low-pass filter. This filter is implemented as a combination

of two thresholds: increase/decrease percent and increase/decrease time. The percent

threshold represents the utilization level that must be crossed in order to consider a p-

state change. The threshold must be exceeded for a fixed amount of time specified by

0%

20%

40%

60%

80%

100%

1 10 100 1000

P
er

fo
rm

a
n

ce

TimeCheck (ms)

Cannot change

p-state faster

than scheduling

quanta

Performance

loss increases

as p-state lag

increases

115

increase/decrease time. Since the increase time is much longer than TimeCheck (300 ms

vs. 10 ms), significant performance is lost even at the minimum setting.

To reduce the impact of slow p-state transitions OS settings are selected that increase

transition rates. In a general sense, frequent p-state transitions are not recommended due

to the hardware transition costs. However, these experiments have shown that the

performance cost for slow OS-directed transitions is much greater than that due to

hardware. This can be attributed to the relatively fast hardware transitions possible on

Quad-Core AMD processors. Compared to OS transitions which occur at 10 ms

intervals, worst-case hardware transitions occur in a matter of 100’s of microseconds.

Figure 6.5 shows the effect of optimizing p-state changes to the fastest rate of once every

10 ms. The probe-sensitive equake is shown with and without “fast p-states.” This

approach yields between 2 percent and 4 percent performance improvement across the

range of useful idle core frequencies. As is shown in the next section, this also improves

power savings by reducing active-to-idle transition times.

Figure 6.5 Effect of Increasing P-state Transition Rate

88%

90%

92%

94%

96%

98%

100%

800 1300 1800 2300

P
er

fo
rm

an
ce

Minimum Core Frequency (MHz)

Default

Fast P-States

Average

performance

increase 1.1%

116

6.2.1 Power and Performance Results

In this section results for p-state and c-state settings are presented that reflect the findings

of the previous sections. In this case the Microsoft Windows Vista operating system

running desktop workloads is studied. This approach gives the highest exposure to the

effect the operating system has on dynamic adaptations. By choosing desktop workloads,

the number of phase transitions and, therefore, OS interaction is increased. Since these

workloads model user input and think times, idle phases are introduced. These idle

phases are required for OS study since the OS makes use of idle time for selecting the

operating point. Also, Microsoft Windows Vista exposes tuning parameters to scale the

built-in adaptation selection algorithms for power savings versus performance. Table 6.2

shows power and performance results for SYSmark 2007 using a range of settings chosen

based on the results of the previous sections.

Table 6.2 Power/Performance Study: SYSmark 2007

Workload P-State Selection Performance Loss Power Savings

E-Learning Default 8.8% 43.1%

Video Creation Default 6.2% 44.7%

Productivity Default 9.5% 45.3%

3D Default 5.9% 45.9%

E-Learning Fast 6.4% 45.9%

Video Creation Fast 5.2% 46.1%

Productivity Fast 8.0% 47.8%

3D Fast 4.6% 48.2%

E-Learning Fast-Perf 1.5% 32.9%

Video Creation Fast-Perf 1.8% 25.4%

Productivity Fast-Perf 2.5% 27.9%

3D Fast-Perf 1.4% 35.1%

117

In order to reduce p-state performance loss, the idle core frequency is set to 1250 MHz.

To prevent c-state performance loss, ramped probe mode is used with the hysteresis time

set above the breakover point. Also, C1e mode is disabled to prevent obscuring the idle

power savings of the architected p-states and c-states. The C1e state is a

microarchitectural feature that reduces power when all cores are idle. The power and

performance effects of this state can reduce the measureable effect of the p-state and c-

state decisions made by the operating system.

Two important findings are made regarding adaption settings. First, setting power

adaptations in consideration of performance bottlenecks reduces performance loss while

retaining power savings. Second, reducing OS p-state transition time increases

performance and power savings. Table 6.2 shows the resultant power and performance

for a range of OS p-state algorithm settings. It is shown that performance loss can be

limited to less than 10 percent for any individual subtest while power savings average 45

percent compared to not using power adaptations. The effect of workload characteristics

is evident in the results. E-learning and productivity show the greatest power savings due

to their low utilization levels. These workloads frequently use only a single core. At the

other extreme, 3D and video creation have less power savings and a greater dependence

on adaption levels. This indicates that more parallel workloads have less potential benefit

from p-state and c-state settings, since most cores are rarely idle. For those workloads,

idle power consumption is more critical. These results also point out the limitation of

118

existing power adaptation algorithms. Since current implementations only consider idle

time rather than memory-boundedness, the benefit of p-states is underutilized.

Additionally, the effect of adjusting operating system p-state transition parameters is

shown in Table 6.2. Columns Fast and Fast-Perf represent cases in which p-state

transitions occur at the fastest rate and bias towards performance respectively. Since

existing operating systems such as Microsoft Windows XP and Linux bias p-state

transitions toward performance, these results can be considered representative for those

cases.

6.3 Summary

In this section, a power and performance analysis of dynamic power adaptations is

presented for a Quad-Core AMD processor. Performance and power are shown to be

greatly affected by direct and indirect characteristics. Direct effects are composed of

operating system thread and frequency scheduling. Slow transitions by the operating

system between idle and active operation cause significant performance loss. The effect

is greater for compute-bound workloads which would otherwise be unaffected by power

adaptations. Slow active-to-idle transitions also cause reduced power savings. Indirect

effects due to shared, power-managed resources such as caches can greatly reduce

performance if idle core frequency reductions are not limited sufficiently. These effects

are more pronounced in memory-bound workloads since performance is directly related

to accessing shared resources between the active and idle cores. Finally, it is shown that

119

performance loss and power consumption can be minimized through careful selection of

hardware adaptation and software control parameters. In the case of Microsoft Windows

Vista running desktop workloads, performance loss using a naïve operating system

configuration is less than 8 percent on average for all workloads while saving an average

of 45 percent power. Using an optimized operating system configuration, performance

loss drops to less than 2 percent with power savings of 30 percent.

While the results attained through optimizing a reactive operating system power

adaptation are promising, further improvement can be achieved through new approaches.

The existing adaptations algorithms have several limitations including poor response to

phase changes and a lack of process awareness and frequency-sensitivity. The ability to

increase the responsiveness of the reactive algorithm is limited since excessive

adaptations reduce performance and increase energy consumption. To attain higher

performance and efficiency, a predictive adaptation is required. Predictive adaptation

effectively provides the responsiveness of a maximally reactive scheme without the

overhead of excessive adaptation.

Another limitation is the lack of frequency-sensitivity awareness in current algorithms.

To make best use of dynamic processor voltage and frequency scaling, the sensitivity of a

workload to frequency should be accounted. By knowing the frequency sensitivity,

workloads which do not benefit from high frequency could achieve much lower power.

Similarly, workloads that scale well with frequency can attain higher performance by

avoiding the use of excessively low frequencies.

120

Chapter 7 Predictive Power Management

7.1 Core-Level Activity Prediction

Existing power management techniques operate by reducing performance capacity

(frequency, voltage, resource size) when performance demand is low, such as at idle or

similar low activity phases. In the case of multi-core systems, the performance and

power demand is the aggregate demand of all cores in the system. Monitoring aggregate

demand makes detection of phase changes difficult (active-to-idle, idle-to-active, etc.)

since aggregate phase behavior obscures the underlying phases generated by the

workloads on individual cores. This causes sub-optimal power management and over-

provisioning of power resources. In this study, these problems are addressed through

core-level, activity prediction.

The core-level view makes detection of phase changes more accurate, yielding more

opportunities for efficient power management. Due to the difficulty in anticipating

activity level changes, existing operating system power management strategies rely on

reaction rather than prediction. This causes sub-optimal power and performance since

changes in performance capacity by the power manager lag changes in performance

demand. To address this problem we propose the Periodic Power Phase Predictor

(PPPP). This activity level predictor decreases SYSmark 2007 client/desktop processor

power consumption by 5.4% and increases performance by 3.8% compared to the

121

reactive scheme used in Windows Vista operating system. Applying the predictor to the

prediction of processor power, accuracy is improved by 4.8% compared to a reactive

scheme.

Dynamic power management provides a significant opportunity for increasing energy

efficiency and performance of computing systems. Energy efficiency is increased by

reducing performance capacity (frequency, parallelism, speculation, etc.) when the

demand for performance is low. Efficiency or a lack thereof may impact the performance

of a system. High-density server and multi-core processor performance is limited by

power delivery and dissipation. Reducing the power consumption in one component may

allow other components to consume more power (higher voltage and frequency) and

therefore achieve higher performance. These systems would otherwise have higher

performance if they were not sharing power resources [Bl07] [McPo06] [FaWe07]

[WaCh08] [WuJu05]. Power management allows the performance of cores/systems

sharing power to increase by “borrowing” power from idle or performance-insensitive

cores/systems and reallocating it to heavily-utilized cores/systems.

The challenge in applying power management to increase efficiency and performance is

in identifying when to adapt performance capacity. The ubiquitous, architected solution

implemented in operating systems such as Windows/Linux is to react to changes in

performance demand. Though this approach is simple, it performs sub-optimally

[BiJo08] [DiSo08] for workloads with many distinct and/or short phases. Each time a

workload transitions from a phase of low performance demand to a phase of high

122

performance demand, reactive power management increases performance capacity

sometime after the phase transition. During the time between the change in demand and

capacity, performance may be less than optimal. Similarly, power consumption is sub-

optimal on transitions from high to low demand. The amount of performance loss is

proportional to the number of phase changes in the workload and the lag between demand

and capacity. For increasing performance in power-limited situations, reactions must be

fast to prevent overshooting the power limit or missing opportunities to increase

performance.

Identifying when to adapt is complicated by the presence of multiple cores sharing power

resources. Consider Figure 7.1. Core-level power consumption is shown for a system

with multiple simultaneous threads. The program threads are fixed to the cores with

thread N on core N, thread N-1 on core N-1, etc. Since power monitoring is typically

provided at the system-level [Po10], existing power control techniques use the erratic

fluctuations in the total power for predicting future behavior. This is unfortunate since in

this example, the individual threads have a periodic, easily discernable pattern, while the

pattern in the aggregate power is less discernable. If power phases can be tracked at the

core-level, accurate dynamic power management schemes can be devised.

To improve the effectiveness of power management the use of predictive, core-level

power management is proposed. Rather than reacting to changes in performance

demand, past activity patterns are used to predict future transitions. Rather than using

aggregate power information, activity and power measured at the core-level is used.

123

Figure 7.1: Thread and Aggregate Power Patterns

To analyze the effectiveness of the predictor the SYSmark 2007 benchmark is used. It

contains numerous, desktop/personal computing applications such as Word, Excel,

PowerPoint, Photoshop, Illustrator, etc. The benchmark is structured to have a high

degree of program phase transitions, including extensive use of processor idle states (c-

states) and performance states (p-states) [Ac07]. Rather than being strictly dominated by

the characteristics of the workload itself, SYSmark 2007 accounts for the impact of

periodic, operating system scheduling and I/O events. Using this observation, we

0

50

100

150

0 50 100 150 200

W
at

ts

Seconds

Total Power = ∑CorePowerN N=0 to 3

0

50

W
at

ts

CorePower0

0

50

W
at

ts

CorePower1

0

50

W
at

ts

Core Power2

0

50

0 50 100 150 200

W
at

ts

Seconds

CorePower3

Phase

Misalignment

124

construct a periodic power phase predictor. This simple periodic predictor tracks and

predicts periodic phases by their duration. By predicting future demand, aggressive

adaptations can be applied. The core-level predictive technique outperforms existing

reactive power management schemes by reducing the effective lag between workload

phase transitions and power management decisions. By predicting the individual power

contribution of each thread rather than predicting the aggregate effect, complex phases

can be predicted. The contributions of this chapter are summarized as follows.

(1) Concept of core-level power phases in multi-core systems. Core-level power phases

unveil more opportunities for power saving adaptations than are possible if only

aggregate system level information is used.

(2) A simple, periodic power phase predictor. Though prior research [DuCa03] [IsBu06]

demonstrates the effectiveness of power management using predictive schemes on

uniprocessors, this research shows its effectiveness when applied to multi-core systems

with operating system scheduling interactions. The proposed predictive power

management is compared against the reactive algorithm in the Windows Vista operating

system. Previous research focused on single-threaded SPEC CPU 2000 benchmarks,

while this study uses SYSmark 2007 which includes popular desktop/personal computing

applications such as Microsoft Word, Excel, PowerPoint, Adobe Photoshop, Illustrator,

etc. These workloads include difficult to predict power management events due to large

numbers of interspersed idle phases and frequent thread migrations.

125

7.2 Commercial DVFS Algorithm

Existing, commercial DVFS algorithms in Windows and Linux operating systems select

processor clock frequencies by reacting to changes in core activity level [Vi07]. Activity

level represents the ratio of architected code execution (active time) to wall clock time

(active + idle time). Processors become idle when they exhaust the available work in

their run queues. The intent of these algorithms is to apply low frequencies when a

processor is mostly idle and high frequencies when mostly active. This provides high

performance when programs can benefit and low power when they cannot.

In this study the predictive DVFS algorithm is compared to that used in the Windows

Vista operating system [Vi07]. This Vista algorithm reactively selects DVFS states (core

frequency) in order to maintain a target core activity level of 30%-50%. See Figure 7.2.

The “predicted” activity level is the last observed activity level, hence this is a reactive

scheme.

When the core activity level is greater than 50%, the reactive algorithm selects a higher

frequency to increase performance enough to allow the core to be idle more than 50%

(i.e. active < 50%) of the time. The new frequency is selected assuming a 100%

frequency increase reduces active time by 50%. For example assume a core operates at

1GHz and is 100% active. In order to achieve an activity level of 50%, the algorithm

would attempt to double the frequency to 2GHz. Frequency reductions are similar in that

activity levels below 30% cause the algorithm to reduce frequency in order to increase

126

activity levels to 30%. Since processors have a finite number of architected DVFS states,

the algorithm selects the nearest frequency which meets the target activity level.

+�
�,�
-	.�,�/ = 	
0���123
45

0���123
45 + 0���6785

Figure 7.2: Windows Vista Reactive P-State Selection Algorithm

7.3 Workload Characterization

To analyze the power/performance impact of the predictive power management scheme

on real-world workloads, a system running the desktop/client SYSmark 2007 benchmark

is characterized. This benchmark represents a wide range of desktop computing

applications. The benchmark components are E-Learning, Video Creation, Productivity,

and 3D. The individual subtests are listed in Table 7.1. This benchmark is particularly

important to the study of dynamic power adaptations since it provides realistic user

scenarios that include user interface and I/O delays. These delays cause a large amount

Decrease

Frequency

No Change

Increase

Frequency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
o
re

 A
ct

iv
it

y
 L

ev
el

Increase Threshold = 50%

Decrease Threshold = 30%

High Performance

Demand

Region

Low Performance

Demand

Region

Hysteresis

Region

127

of idle-active transitions in the cores. Since current OSs determine dynamic adaption

levels using core activity level, the replication of these user interactions in the benchmark

is critical. For comparison, Figure 7.3 shows average active core residencies of a six-

core AMD Phenom 2 processor across a wide range of desktop workloads. The left-hand

side of the figure illustrates the problem with many popular benchmark applications. The

benchmarks spend nearly 100% of the time with all cores active. From an idle power

management perspective little can be done to improve performance and power efficiency.

The center and right-hand side workloads are more challenging for idle power

management due to the frequent occurrence of idle phases. The SYSmark subtests are the

most challenging due to their large composition of interspersed idle and active phases.

Table 7.1: SYSmark 2007 Components

E-Learning Video Creation Productivity 3D

Adobe

- Illustrator

- Photoshop

 -Flash

Microsoft

- PowerPoint

Adobe

 - After Effects

 - Illustrator

 - Photoshop

Microsoft

 - Media Encoder

Sony

 - Vegas

Microsoft

 - Excel

 - Outlook

 - Word

 - PowerPoint

 - Project

Corel

 - WinZip

Autodesk

 - 3Ds Max

Google

 - SketchUp

Performance Loss for Vista Reactive Power Management [4]

8.8% 6.2% 9.5% 5.9%

128

Figure 7.3: Six-Core Phenom 2 Desktop Activity Levels

Figure 7.4 takes the active-idle analysis of SYSmark to a deeper level by showing the

core activity level within each subtest. Unlike traditional scientific and computing

benchmarks, core activity level varies greatly over time. The primarily single-thread E-

Learning and Productivity subtests are composed of single core active phases

interspersed with all cores idle. The frequent transitions between active and idle make

power management decisions difficult. Reacting too quickly to idle phases can induce

excessive performance loss as code execution is halted to allow transition of clocks,

voltage planes or component state. At the other extreme the 3D and Video Creation

workloads have large sections of all cores being active. These regions, also interspersed

with all-idle and one-active regions are critical for power sharing strategies. As the

86 86 82 81
75 73 77

68

52
41

35

9 9 9 11
2

2
2

2

3 4
5 8

4

5

3

3

22 17

5

2

5 4 4
3

3

5

2

4
5

4
3

9

10
12

26
20

46

6 10 28
24 26

7 16
16

10
14

9

10
5

6 2
6 13

9 19 29

30 34

34

18

44

69

46

61
64 58

83 78
64

23

50

31

7 10 14
7 5

12
5 3

14 14
24

4
11

30

5 7 11
3 4

16

54

32

56

0

10

20

30

40

50

60

70

80

90

100

p
o
v

ra
y
-r

tr
1

p
o
v

ra
y

sa
n

d
ra

_
p

ro
c_

ar
it

h

T
ru

e
C

ry
p

t

sa
n

d
ra

_
p

ro
c_

m
e
m

B
W

P
d
n

B
en

ch
2

sa
n

d
ra

_
p

ro
c_

m
m

ed
ia

P
d
n

B
en

ch
1

ci
n

eb
e
n
c
h
1

3
d
m

a
rk

0
6
-c

p
u
1

3
d
m

a
rk

0
6
-c

p
u
2

W
in

R
ar

p
cm

ar
k

v
a
n
ta

g
e

it
u
n

es
-m

p
3

S
Y

S
M

a
rk

-3
D

3
d
m

a
rk

-v
an

ta
g

e

3
d
m

a
rk

0
6
-g

t2

3
d
m

a
rk

0
6
-h

d
r2

3
d
m

a
rk

0
6
-h

d
r1

p
h
o

to
sh

o
p

-e
le

m
e
n
ts

it
u
n

es
-a

c
c

3
d
m

a
rk

0
6
-g

t1

S
Y

S
M

a
rk

-V
C

S
Y

S
M

a
rk

-E
L

S
Y

S
M

a
rk

-P
R

R
es

id
en

cy
(%

)

All Idle

1 Active

2 Active

3 Active

4 Active

5 Active

6 Active

129

workload/operating systems adds and removes threads from cores the resultant power

level changes drastically. The power difference between cores in the active versus idle

state is much greater than differences within the active state.

Figure 7.4: Utilization of Multiple Cores by SYSmark 2007 Benchmark

The effect of these frequent transitions on power and performance is significant. Bircher

et al [BiJo08] show that the slow reaction of the Vista DVFS algorithm leads to a

performance loss of 6%-10% for SYSmark 2007. It is shown that this performance loss

is due to a large portion of the benchmark operating at DVFS state with frequencies as

0

1

2

3

4

A
ct

iv
e

C
o
re

s

Time

E-Learning

0

1

2

3

4

A
ct

iv
e

C
o
re

s

Time

Video Creation

0

1

2

3

4

A
ct

iv
e

C
o
re

s

Time

Productivity

0

1

2

3

4

A
ct

iv
e

C
o
re

s

Time

3D

Outlook Excel

Media

Encode

Photoshop

After

Effects

Sketchup

3dsMax

Photoshop

Illustrator
Flash

Photoshop Flash

130

low as 1/3 of the maximum frequency. Similarly, power consumption is excessively high

due to the DVFS algorithm choosing high-power states for many of the frequent, idle

phases in the benchmark.

7.4 Periodic Power Phase Predictor – PPPP

While power management in operating systems like Windows/Linux is reactive, there

have been proposals to use predictive power management [IsBu06] [DuCa03] [DiSo08].

Isci [IsBu06] uses table-based predictors of memory operations/instruction, to direct

DVFS decisions for single-threaded workloads. Duesterwald et al. [DuCa03] examine

table-based predictor techniques to predict performance-related metrics (IPC, cache

misses/instruction and branch misprediction rates) of single-thread workloads, but not

power. Diao [DiSo08] uses machine learning to predict activity patterns. The

predictions are used to make policy decisions for entering core idle states. In contrast,

the periodic power phase predictor (PPPP) is proposed which makes use of table-based

prediction structures and the repetitive nature of power phases to predict performance

demand and/or power consumption. The predictor is shown in Figure 7.5. Like

traditional table-based predictors, the main components are: a global phase history

register (GPHR), pattern history table (PHT) and predicted level. Typically, table-based

predictors track sequences of events such as branch outcomes or IPC samples [DuCa03]

[IsBu06]. This predictor is distinct in that it tracks run-length-encoded sequences of core

active/idle phases. Activity in this case is defined as execution of architected

131

instructions. In APCI[Ac07] terminology that is popularly used for power management,

it is known as the C0 state. All other time is considered non-active or idle. Idle time is

explicitly defined as “executing” in a processor idle state via the HLT instruction or other

idle state entry method [Bk09]. This state is also known as the Cx state where x = 1 to N.

These non-C0 states are responsible for the largest power reductions due to the

application of clock and power gating. Large power changes or phases can be detected

by tracking core activity patterns. For this reason the PPPP is constructed to track core

activity patterns.

A diagram of the predictor is provided in Figure 7.5. The main feature of the predictor is

its ability to capture frequent, power-relevant events by tracking active/idle patterns.

Transitions to active or idle states and the resultant power level can be predicted by

tracking previous patterns. One of the most common events is the periodic timer tick

event used in many commercial operating systems [SiPa07]. This event occurs on a

regular interval to provide timing and responsiveness to the operating system scheduler.

When a core is otherwise idle, the timer tick produces an easily discernable pattern.

132

LengthTn LengthTn-1

Length2,

Level2

Length1,

Level1

LengthTn,

LevelTn

LengthTn-1,

LevelTn-1

LengthTn,

LevelTn

LengthTn-1,

LevelTn-1

LengthTn,

LevelTn

LengthTn-1,

LevelTn-1

Length4,

Level4

100% 4

GPHR Size = 2

GPHR Size = 2

LengthTn+2,

LevelTn+2

Tn+2

LengthTn+2,

LevelTn+2

Tn+2

LengthTn+2,

LevelTn+2

Tn+2

True True

V
al

id

P
en

d
in

g

L
ev

el

(W
at

ts
,U

ti
l%

)
Detected Pattern

T
im

eS
ta

m
p

Predicted

Phase

Most

Recent

Phase

C
o

n
fi

d
en

ce

1 2 3 4

Conf%

Conf%

Conf%

T/F

T/F

T/F

T/F

T/F

T/F

Time

G
P

H
T

 S
ize

Figure 7.5: Periodic Power Phase Predictor

For Windows operating systems, the boot strap processor remains idle for periods of 16

milliseconds interrupted by active periods lasting about 100 microseconds.

The predictor tracks the duration of the idle and active phases in the length and level

fields. As a pattern of active and idle period repeats the predictor updates the quality of

the prediction using the confidence field. When a pattern is first identified, it is copied to

the GPHT and assigned a confidence level of 100%. The correctness of the prediction is

assessed by comparing the predicted time and level of the next transition (timestamp

field) to the actual transition. If a misprediction in duration or level is found, the

confidence is reduced by a tunable percentage. If multiple mispredictions occur, the

133

confidence level will drop below a confidence limit. The net effect of these parameters is

that a prediction will be invalidated after three consecutive mispredictions. The valid and

pending fields are used to determine which predictor entries can be used for predictor

matches and which have outstanding predictions respectively. Multiple predictions can

be outstanding. If conflicting prediction exist at an evaluation point, the higher

confidence prediction is used. For equal confidence predictions, the lower index

prediction is used. Additional details for each predictor field are provided in Table 7.2.

An example of the PPPP tracking and predicting core utilization level is given in Figure

7.6.

Figure 7.6: Example of Program Phase Mapping to Predictor

1ms,

20%

4ms,

80%

Pattern 1ms
4ms

U
ti

li
za

ti
o

n

Time (ms)

20%

80%

Pattern
Pred.

Phase
2ms

2ms

Time (ms)

20%

80%

U
ti

li
za

ti
o

n

Pred.

Phase

Time

Stamp

Time

Stamp

4ms,

80%
1ms

2ms,

20%

2ms,

80%

2ms,

80%
2ms

134

Table 7.2: Periodic Power Phase Predictor Field Descriptions

Predictor

Field

Description

Detected

Pattern

Length,Level

Duration and level of phase pair. This is also the table index. When a

periodic phase is detected, it is used to index the prediction table.

Predicted

Phase

Length,Level

Predicted Phase at next transition. For utilization predictor this is activity

level. For power prediction this is the power level seen when this phase

previously occurred.

Timestamp

Records timestamp of when predicted phase change is to occur. This is

the most critical value produced by the predictor. It is used by the power

manager to schedule changes in power/performance capacity of the

system. This value allows for optimal selection of performance capacity

given the anticipated duration of operation at a particular performance

demand.

Confidence

“Quality” of phase as a function of past predictions and duration. The

confidence is used by the power manager to determine if a prediction will

be used or not. It is also used by the replacement algorithm to determine

if the phase will be replaced if the predictor is full. All newly detected

phases start with a confidence of 1. If the phase is subsequently

mispredicted, the confidence is reduced by a fixed ratio.

Valid Indicates if this entry has a valid phase stored with a “true” or “false.”

Pending
Indicates if this phase is predicted to occur again. This value is set “true”

on the occurrence of the phase and remains true until the phase prediction

expires.

7.5 Predicting Core Activity Level

This section provides power and performance results for the core and aggregate-level

periodic power phase predictor in comparison to a commercial reactive scheme. A

comparison is made in terms of prediction accuracy, prediction coverage, power and

performance. Also, a characterization of core activity phases is given.

135

First, prediction accuracy is considered. Accuracy is defined according to the,

commercial, reactive DVFS algorithm used in the Windows Vista operating system

[Vi07]. A correct prediction is one in which the selected DVFS frequency selection keeps

the processor within the target range of 30% to 50% activity.

The accuracy of the reactive scheme is determined by analyzing traces of core DVFS and

activity levels from a real system. If the selected frequency did not cause the core to have

an activity level between 30% and 50%, the selection is considered wrong. For the

predictive schemes, the activity level trace is played back through the predictor while

allowing it to select a frequency to meet the 30%-50% target. Since core activity level

changes according to core frequency, the resultant activity level must be scaled

accordingly. The amount of scaling is determined experimentally by measuring

performance of the SYSmark workload under a range of core frequencies. Performance,

and therefore activity level, scale 70% for each 100% change in core frequency.

Using this approach results are presented for SYSmark 2007 prediction accuracy in Table

7.3. DVFS hit rate is provided for three predictors. Core-level PPPP represents the

predictor applied to each core. Aggregate PPPP represents the predictor driven by the

total activity level. All target activity levels remain the same. A single predictor, driven

by the aggregate activity level (i.e. average of all cores) is used to select the next core

frequency. Core-level reactive represents the Windows Vista DVFS algorithm.

136

Table 7.3: SYSmark 2007 DVFS Hit Rate

Predictor E-Learning Productivity Video Creation 3D

Core-Level

PPPP
82.6% 73.8% 76.4% 72.7%

Aggregate

PPPP
26.8% 26.3% 40.2% 30.7%

Core-Level Reactive (Vista) 66.4% 65.2% 63.5% 59.7%

The limitations of reactive DVFS selection are evident. Due to frequent transitions

between high and low activity levels, the reactive scheme is only able to achieve the

correct frequency about 2/3 of the time. PPPP applied at the aggregate level is much

worse with an average of 31% accuracy. The best case is achieved with the core-level

PPPP

which averages 76%. The differences in the success of these predictors are a result

of prediction coverage and accuracy of the predicted phases. See Table 7.4. Coverage is

defined as percentage of the workload in which a prediction is available. A prediction

could be unavailable if the last observed activity pattern has not been seen before or has

caused too many mispredictions. The reactive scheme does not have coverage since it

does not predict. In contrast PPPP

has much lower prediction coverage, especially for the

aggregate predictor. The aliasing of multiple core phases obscures predictable behavior

to less than 3% for E-Learning and Productivity. Video Creation and 3D are slightly

better at 16% and 8% respectively. One possible reason is that these workloads have

larger portions of multi-threaded execution. The aggregate activity level is likely more

representative of core-level activity compared to the single-threaded E-Learning and

Productivity. Core-level PPPP

achieves the highest accuracy by having a large workload

137

coverage of 43% and accuracy over 95% in the covered portion. Outside of the covered

portions the predictor selects frequency according to the reactive algorithm.

Table 7.4: SYSmark 2007 Prediction Coverage

Predictor E-Learning Productivity Video Creation 3D

Core-Level

PPPP
57.0% 33.5% 43.0% 37.9%

Aggregate

PPPP
1.3% 2.3% 16.3% 8.0%

Core-Level Reactive (Vista) N/A N/A N/A N/A

To quantify the improved predictability of core-level versus aggregate PPPP, Table 7.5

presents a characterization of core active and idle durations for SYSmark 2007.

Durations group into the following ranges: < 10 milliseconds, 10-100 milliseconds, 100-

1000 milliseconds and > 1000 milliseconds. One of the major distinctions between core-

level and Aggregate is the high concentration of short phases, less than 10ms for

CoreTotal. Just as in the example shown in Figure 1.4, these short phases are largely a

result of misalignment of the core-level activity. In particular, the most common phases

are in the 10-100ms range. This is caused by the timer tick, scheduling and power

adaptation intervals for the Windows operating systems.The timer tick normally occurs

on 16ms boundaries. Thread creation and migration events also occur on these

boundaries. Power adaptations (DVFS) occur on 100ms boundaries. Therefore, idle

phases are frequently interrupted by these events. Similarly, active phases are often

terminated by threads being migrated to other cores on these same boundaries. Any

misalignment of these events between cores causes the effective activity durations to be

138

shorter and less predictable. Further evidence of these common 10-100ms phases is

given in Figure 7.7 which shows the frequency distribution of active and idle phases

across SYSmark 2007.

Table 7.5: Core Phase Residency by Length

E-Learning Video Creation

Phase Length Core Aggregate Core Aggregate

Less Than 10 ms 11% 93% 44% 82%

10 - 100 ms 49% 7% 27% 2%

100 - 1000 ms 10% 0% 14% 9%

Greater Than 1000 ms 30% 0% 16% 7%

Productivity 3D

Phase Length Core Aggregate Core Aggregate

Less Than 10 ms 55% 97% 55% 97%

10 - 100 ms 30% 3% 30% 3%

100 - 1000 ms 5% 0% 5% 0%

Greater Than 1000 ms 11% 0% 11% 0%

Active and idle phase as considered as a group since both are relevant for prediction. Idle

phases must be predicted in order to anticipate how long a power surplus will be

available. Similarly, active phase must be predicted to anticipate durations of power

deficits. In both cases the predicted durations is needed in order to weigh the power and

performance cost of transitioning to low power states or changing the DVFS operating

point. Several local maximums are present due to the periodic nature of the interaction

between power management, OSs and system hardware. By removing or varying the

intensity of these various events and observing the change in frequency distribution, the

period length may be related to its source. Note the prevalence of phases in the 10-15ms

range that corresponds to the OS scheduling interval. Also, consider the spikes at 100ms,

139

which corresponds to the DVFS scheduling interval. Additional, longer-duration

maximums occur in the 200ms and higher range. These correspond to GUI interaction

and I/O delays occurring in the SYSmark benchmark.

Next the resultant power and performance impact of the core-level PPPP

versus reactive

DVFS selection is considered. Aggregate PPPP

is not considered due its poor prediction

accuracy. Table 7.6 presents power and performance results for the two schemes. Power

and performance are estimated using the measured and predicted DFVS, active and idle

states shown in Table 7.7. On average, power is reduced by 5.4% while achieving a

speedup of 3.8%. This improvement is caused by PPPP

more frequently selecting high

frequencies for active phases and low frequencies for performance-insensitive idle

phases. This shift can be seen in the active residencies of all subtests. The 2.4GHz –

Active state increases by 0.6 to 2.5 percentage points. Similarly, the active time in lower

frequencies is reduced an average of 0.76 percentage points. The performance impact of

selecting a low frequency for an active phase can be large. For example, selecting

800MHz rather than 2.4GHz yields a performance loss of 47% ((1-0.8GHz/2.4GHz) x

70%). Therefore, it takes only a small change in residency to drastically impact

performance. Also, the impact on performance is larger due to active time representing

only an average of 17% total time. This magnifies the performance impact by about 6x

(1/0.17). The net effect on active frequency is an increase of 144 MHz from 1.55GHz to

1.69GHz. Note that though frequency increases by 9.3%, performance increases only

140

3.8% due to limited frequency scaling of the workload (70%) and reduced total time in

the active state.

Figure 7.7 Core-Level Phase Length Probability Distributions

Next, power savings is considered. Though it is possible to bias a reactive DVFS

algorithm to achieve performance comparable to a predictive algorithm, it is not possible

to do so without increasing power consumption drastically. Prediction allows DVFS

selection to select the “correct” frequency for both performance and power savings.

0%

6%

R
es

id
en

cy

E-Learning

0%

6%

R
es

id
en

cy

Video

Creation

0%

6%

R
es

id
en

cy

Productivity

0%

6%

1 10 100 1000

R
es

id
en

cy

Phase Length (ms)

3D

Scheduling

Quantum

16ms

DVFS

Change

Interval

100ms

141

Table 7.6: SYSmark 2007 Power and Performance Impact of PPPP

E-Learning Productivity

Predictive

(PPPP)

Reactive

(Vista)

Predictive

(PPPP)

Reactive

(Vista)

Power (W) 16.6 18.2 14.3 15.1

Power Savings 8.3% 5.3%

Delay (sec) 924 963 585 607

Speedup 4.2% 3.7%

Energy (KJ) 15.4 17.5 8.4 9.2

Energy x Delay(KJs) 14.2×10
3
 16.9×10

3
 4.9×10

3
 5.6×10

3

Energy x Delay(KJs
2
) 13.2×10

6
 16.2×10

6
 2.9×10

6
 3.4×10

6

Energy Savings 12.3% 8.7%

Video Creation 3D

Predictive

(PPPP)

Reactive

(Vista)

Predictive

(PPPP)

Reactive

(Vista)

Power (W) 18.6 19.5 25.9 26.6

Power Savings 4.7% 2.9%

Delay (sec) 1129 1172 548 568

Speedup 3.8% 3.6%

Energy (KJ) 20.9 22.8 14.2 15.1

Energy x Delay(KJs) 23.6×10
3
 26.7×10

3
 7.8×10

3
 8.6×10

3

Energy x Delay(KJs
2
) 26.7×10

6
 31.3×10

6
 4.3×10

6
 4.9×10

6

Energy Savings 8.2% 6.3%

142

Table 7.7: SYSmark 2007 P-State and C-State Residency of PPPP versus Reactive

E-Learning Productivity

Predictive

(PPPP)

Reactive

(Vista)

Predictive

(PPPP)

Reactive

(Vista)

2.4GHz - Active 5.4% 4.6% 2.9% 2.4%

2.4GHz - Idle 7.1% 17.4% 4.4% 9.6%

1.6GHz - Active 1.2% 1.4% 0.8% 0.8%

1.6GHz - Idle 5.5% 9.4% 3.8% 6.2%

1.2GHz - Active 1.1% 1.2% 1.2% 1.2%

1.2GHz - Idle 6.9% 9.8% 6.6% 9.7%

0.8GHz - Active 3.2% 4.5% 3.8% 4.7%

0.8GHz - Idle 69.5% 51.8% 76.5% 65.3%

Active Frequency 1.72 GHz 1.56 GHz 1.47 GHz 1.34 GHz

Idle

Frequency
1.01 GHz 1.24 GHz 0.94 GHz 1.07 GHz

Video Creation 3D

Predictive

(PPPP)

Reactive

(Vista)

Predictive

(PPPP)

Reactive

(Vista)

2.4GHz - Active 6.8% 5.3% 17.5% 15.0%

2.4GHz - Idle 5.7% 12.4% 7.8% 17.0%

1.6GHz - Active 2.7% 3.2% 3.9% 5.1%

1.6GHz - Idle 5.6% 9.6% 4.6% 6.7%

1.2GHz - Active 3.8% 4.8% 2.6% 3.1%

1.2GHz - Idle 9.2% 13.8% 7.3% 9.4%

0.8GHz - Active 3.7% 4.8% 4.7% 6.9%

0.8GHz - Idle 62.3% 46.1% 51.6% 36.7%

Active Frequency 1.65 GHz 1.51 GHz 1.92 GHz 1.77 GHz

Idle

Frequency
1.01 GHz 1.20 GHz 1.07 GHz 1.32 GHz

143

In this case the predictor achieves a 3.8% performance increase while reducing power

consumption by 5.4%. The primary cause is a shift in idle frequency selections away

from the high-performance, high-leakage states. Residency in the most inefficient state,

2.4GHz – Idle, is reduced by an average of 7.8 percentage points. Residency in other idle

states above the minimum frequency also decreased, but by a smaller 3.1 percentage

points. This increases idle residency in the minimum frequency idle state of 800MHz by

an average of 15%. Average idle frequency decreases by 200MHz from 1.2GHz to

1.0GHz.

7.6 Predicting Power Levels

The second application of periodic power phase prediction is for predicting core power

consumption. Predicting power levels provides opportunities for increased performance

and efficiency. Existing power control systems such as power capping[Po10] and turbo

boost [ChJa09] apply power and performance limits statically based on user-specified or

instantaneous power consumption. Knowing power levels a priori could increase

performance by avoiding adaptations for short duration phases. For example, a core that

encounters a short, high-power phase of execution may cause the power controller to

reduce its or other processors’ frequency. If the controller could know that the phase

would be too short to cause a power or temperature violation, the reduction in

performance could be avoided.

144

To this end PPPP is applied to predict the core-level and aggregate power consumption.

Results are compared to a last value predictor also at the core and aggregate level. Core-

level power is measured using the PMC-based power model. The model allows fine-

grain, power management and temperature-aware estimation of core power.

Rather than using core activity level to predict core activity level, it is used to cross

predict power level. The predicted activity-level in the predictor is replaced by the

modeled core power level. The prediction table index remains as sequences of core

activity levels. This approach provides better pattern matching as variations in

temperature and application of DVFS tends to hide otherwise discernable patterns.

Figure 7.8 Prediction Accuracy of Core Power for Various Predictors

Figure 7.8 shows the weighted average percent accuracy of the periodic power phase

predictor compared to a last-value predictor. Weighted average is chosen since SYSmark

61.4 62.2

81.2

71.9

56.9

68.6

82.7

69.0

77.7 76.6

91.6

86.4

81.5

85.6

92.9

87.0

50

55

60

65

70

75

80

85

90

95

100

E-Learning VideoCreation Productivity 3D

A
cc

u
ra

cy
(%

)

Aggregate LastValue Aggregate PPPP

Core-Level LastValue Core-Level PPPP

145

2007 power consumption contains many idle, low-power phases. In these phases, a small

error in absolute terms yields a large percentage error. Therefore, error values are scaled

by the magnitude of measured power sample compared to the maximum observed. For

example, a 10% error on a 5W sample has half the impact of a 10% error on a 10W

sample. For all subtests, the core-level versions of the predictors outperformed the

aggregate versions. The best overall performance is 86% accuracy for the periodic core-

level predictor compared to 83% for the core-level version of the last-value predictor.

The benefit of core-level prediction of power is less pronounced than for prediction of

activity level. This is due to the smaller dynamic range of power consumption compared

to activity level. Though activity levels regularly vary from 0% to 100%, power levels

remain in a much smaller range of approximately 25% to 75%.

7.7 Summary

This section presents the concept of core-level phase prediction and its application to

dynamic power management. By observing changes in performance demand and power

consumption at the core-level, it is possible to perceive predictable phase behavior.

Prediction of phases allows power management to avoid over or under provisioning

resources in response to workload changes. Using this concept the PPPP

is developed. It

is a simple, table-based prediction scheme for directing DVFS selection. It is applied to

the SYSmark2007 benchmark suite and attain significant performance and power

improvements. Compared to the reactive DVFS algorithm used by Windows Vista,

146

performance is increased by 5.4% and while power consumption is reduced by 3.8%. We

show that processor power can be predicted by PPPP

with accuracy 4.8% better than a

last-value predictor.

Predictive schemes such as PPPP are the next step in improving performance and

efficiency of systems employing dynamic power management. As it was demonstrated in

the pursuit of higher single-threaded processor performance, the highest possible

performance is achieved when costly phase changes can be predicted. Prediction allows

the use of more aggressive power saving techniques since excessive performance loss can

be avoided.

147

Chapter 8 Related Research

This section summarizes related research in the areas relating to predictive processor

power management. Specifically, performance counter-driven power models, system-

level power characterization and predictive power management are covered.

8.1 Performance Counter-Driven Power Models

Contemporary research in the area of performance counter-driven power modeling has

focused primarily on the single largest consumer, the processor [LiJo03] [Be00] [IsMa03]

[CoMa05] [BrTiMa00]. System-level power modeling [HeCe06] is mostly focused on

power consumption within a single subsystem [Ja01] [ZeSo03] [KiSu06] [GuSi02].

Consistent throughout processor power modeling is the theme that power consumption is

primarily determined by the number of instructions retired per cycle. Li et al [LiJo03]

present a simple linear model for power consumption by operating system services. The

resultant models are a function of only IPC. Their modeling only considers operating

system routines and requires a separate model for each operating system routine. Most

importantly, their model is simulation-based and consequently does not correlate well

with power consumption of actual processors. In contrast, the models in this dissertation

is based on direct, in-system measurement and shows that power depends more on

fetched µop/cycle rather than IPC. Bellosa [Be00] uses synthetic workloads to

148

demonstrate a correlation between observable performance events and power

consumption. He shows that a correlation exists for: µops/sec, fµops/sec, L2

accesses/sec and memory accesses/sec. Since only synthetic workloads are characterized,

these results are not representative of realistic workloads. The most closely related work

is by Isci et al [IsMa03]. They build a comprehensive power model based on utilization

factors of the various components of the processor. Using 22 performance monitoring

counters they model average power consumption of SPEC2000 workloads within 5%.

The models in this dissertation yields similar accuracy, yet with only two PMC metrics

that aggregate power consumption across the numerous processor functional units. A

major limitation of all of these contemporary works is the lack of awareness of power

management and temperature effects. The dissertation models accurately account for

power fluctuations due to clock gating, DVFS and temperature variation.

Existing studies in system-level power modeling [Ja01] [ZeSo03] [KiSu06] have relied

on events local to the subsystem. The model in this dissertation is the first to encompass

complete system power using only events local to the processor. The most closely

related work by Heath [GuSi02], models CPU, network and disk power using operating

system counters. This model does not account for memory and chipset power. Since it

relies on comparatively high-overhead operating system routines, the run-time

performance cost is higher compared to the dissertation model that uses only fast, on-chip

performance counters.

149

8.2 System-Level Power Characterization

Existing workload power studies of computing systems consider the various levels:

microarchitecture [IsMa03] [Be00] [NaHa03], subsystem [BoEl02] [MaVa04] [FeGe05-

1], or complete system [ChAn01]. This disseration targets the subsystem level and

extends previous studies by considering a larger number of subsystems. Unlike existing

subsystem studies that analyze power on desktop or mobile uniprocessor systems, this

dissertation considers multi-core, multi-socket, desktop, mobile and server systems.

Studies at the microarchitecture level [IsMa03] [Be00] utilize performance monitoring

counters to estimate the contribution to microprocessor power consumption due to the

various functional units. These studies only consider uniprocessor power consumption

and use scientific workloads only. Since power is measured through a proxy it is not as

accurate as direct measurement. Natarajan [NaHa03] performs simulation to analyze

power consumption of scientific workloads at the functional unit level.

At the subsystem level, [BoEl02] [MaVa04] [FeGe05-1] consider power consumption in

three different hardware environments. Bohrer [BoEl02] considers CPU, hard disk, and

combined memory and I/O in a uniprocessor personal computer. The workloads

represent typical webserver functions such as http, financial, and proxy servicing. This

disseration adds multiprocessors, and considers memory and I/O separately. Mahesri and

150

Vardan [MaVa04] perform a subsystem level power study of a Pentium M laptop. They

present average power results for productivity workloads. In contrast, this dissertation

considers a server-class SMP running a commercial workload. Feng [FeGe05-1]

performs a study on a large clustered system running a scientific workload. As part of a

proposed resource management architecture, Chase [ChAn01] presents power behavior at

the system level. Lacking in all of these studies is a consideration of power phase

duration. Duration is a critical aspect since it directs power adaptions. An effective

adaptation scheme must choose adaptations that are appropriate to the expected duration

of the event. For example, since there is a performance and energy cost associated with

DVFS, changes to voltage/frequency should only be performed if the system can

amortize those costs before the next change is required.

8.3 Predictive Power Adaptation

While most existing power management schemes are reactive, there are a few related

proposals that use predictive power management [IsBu06] [DuCa03] [DiSo08]. Isci

[IsBu06] uses table-based predictors of memory operations/instruction, to direct DVFS

decisions for single-threaded workloads. Duesterwald et al. [DuCa03] examine table-

based predictor techniques to predict performance-related metrics (IPC, cache

misses/instruction and branch misprediction rates) of single-thread workloads, but not

power. Diao [DiSo08] uses machine learning to predict activity patterns. The

predictions are used to make policy decisions for entering core idle states. In contrast the

151

prediction scheme in this dissertation makes use of table-based prediction structures and

the repetitive nature of power phases to predict performance demand and/or power

consumption. Further, the validation of the predictor is performed using realistic,

representative workloads. These workloads contain complex power management events

that are not present in the simple workloads used in the contemporary research. These

events are critical to a practical power management schemed since they induce power and

performance effects larger than those seen in simple workloads.

Outside the predictive adaptation realm, there are numerous proposals for increasing

energy efficiency and staying within operating limits. To increase energy efficiency

studies have applied adaptation at the processor level [LiMa06] [LiBr05] [WuJu05]

[Vi07] [PaSt06] [KoGh05] [KoDe04] and system level [MeGo09] [RaLe03] [BoEl02].

To stay within defined operating limits studies have applied adaptation at the processor

level [HaKe07] [RaHa06] [ChJa09] [IsBu06] [McPo06] and complete system level

[LeWa07] [RaLe06] [ChDa05] [ChAn01] [Po10] [FaWe07] [WaCh08] [MiFr02].

8.4 Deadline and User-Driven Power Adaptation

In the embedded and real-time computing domains power management is performed

under a different set of requirements. Rather than focusing on reduction of average or

peak power, computation deadlines are more critical. These systems contain various

components and processes with critical deadlines for computation. For example, network

devices implement buffers to allow the network interface to queue transactions. This

152

frees the main processor to service other subsystems in an uninterrupted manner.

However, since the buffering is finite, the main processor must service and empty the

buffer with the deadline or connectivity may be lost. To reduce energy consumption,

several researchers [LuCh00] [KrLe00] [OkIs99] [PeBu00] [ShCh99] [PiSh01] [PoLa01]

propose operating the processor at the minimum voltage and frequency that satisfies the

computation deadlines as indicated by the kernel or application software. The limitation

of this approach is that the deadline must be articulated in the kernel or application

software. Other approaches infer deadlines through measurement and/or classification

[GoCh95] [PeBu98] [WeWe94] [FlRe01] [LoSm01]. Measurement-based feedback can

also be done using not-traditional metrics. Shye [ShSc08] [ShOz08] shows that user

satisfaction can be correlated to performance monitoring counters and biometric sensors.

Using these metrics, processor performance can be adjusted to the minimum level that

satisfies the user.

153

Chapter 9 Conclusions and Future Work

9.1 Conclusions

The widespread application of dynamic power management has provided the opportunity

for computing systems to attain high performance and energy efficiency across a wide

range of workloads. Practically, systems do not operate optimally due to the lack of

effective, power management, control schemes. This is largely due to a lack of run-time

power accounting and the use of reactive power management on workloads with widely

varying performance and power characteristics. The objective of this dissertation is to

improve the effectiveness of dynamic power management by addressing these

limitations. This is achieved in the following contributions:

1) Fine-Grain Accounting of Complete System Power Consumption

Using a small set of widely available performance events including IPC, cache misses

and interrupts, power models are developed by measuring power consumption on actual

systems. These linear and polynomial models are created using regression techniques

that iteratively adjust coefficients to minimize model error. This novel approach

improves upon existing research by finding that complex structures such as processors

and chipsets can be accurately represented by tracking their dominant performance

events. Unlike existing research that primarily relies on retired instruction or

154

comprehensive performance events, this approach relies on speculative events. This

approach provides higher accuracy with many fewer events to track. For a state-of-the-

art multi-core processor, these simple models achieve average error rates less than 1%.

Through an analysis of power and performance for complete systems it is discovered that

the performance events local to the processor can also predict power consumption in the

complete system. This trickle-down concept is applied to allow accurate modeling of

memory controllers, system memory, caches, chipsets, disks and I/O bridges using only

performance events in the cpu. This reduces complexity and measurement overhead by

containing all run-time measurement in low-latency on-chip performance counters.

2) Power and Performance Analysis of Computing Systems

To inform the development of power accounting and management schemes, this

dissertation presents an extensive analysis of power and performance of server, desktop

and mobile systems. It is found that the largest variation in power and performance

occurs in processors and the subsystems most closely coupled to them, such as caches

and memory controllers. The cause is largely dictated by the application of power saving

techniques such as clock gating and dynamic voltage and frequency scaling. Compared

to power variations due to instruction or transactions streams, variation due to power

management is much larger.

Additionally, this dissertation presents a new way of analyzing power consumption.

Unlike existing research that focuses on average power consumption, this study considers

155

the duration of power and performance phases. All power management schemes incur an

energy and performance penalty when the system transitions from one adaptation level to

another. To avoid costly transitions, adaption schemes must know how and when to

adapt. This new approach leads to the discovery of frequently repeating power and

performance patterns within workloads. Of these patterns, the most dominant and

predictable is the scheduling quanta of operating systems. Since active-idle and idle-

active transitions frequently occur on these boundaries, they serve as strong indicators of

phase changes.

3) Predictive Power Management

This dissertation presents the concept of core-level phase prediction and its application to

dynamic power management. By observing changes in performance demand and power

consumption at the core-level, it is possible to perceive predictable phase behavior.

Prediction of phases allows power management to avoid over or under provisioning

resources in response to workload changes. Using this concept the PPPP

is developed. It

is a simple, table-based prediction scheme for directing DVFS selection. The predictor is

applied to the SYSmark2007 benchmark suite and achieves significant performance and

power improvements. Compared to the reactive DVFS algorithm used by Windows

Vista, performance is increased by 5.4% and while power consumption is reduced by

3.8%.

156

9.2 Future Work

Run-time energy accounting and predictive power management are promising tools for

improving the energy efficiency and performance of computing systems. This

dissertation has demonstrated the initial implementation of these tools at improving

processor efficiency and performance. Listed below are a few similar research areas that

are likely to yield new, valuable discoveries.

Power Managing Cloud Computing Resources

The shift away from desktop computing to cloud computing is increasing the opportunity

for predictive power management. A typical desktop system has about sixty active

processes, with less than ten of them actively consuming most computing resources. In

contrast, cloud computing servers combine hundreds of active processes from many

clients. Each of the processes has phase behavior that is independent of the others. This

combination of heterogeneous tasks makes existing reactive power management difficult

since the active-idle patterns are an aggregation of multiple independent patterns. A

significant power savings opportunity exists in accounting for and predicting the effective

usage pattern of cloud computing servers.

Functional Unit Activity Prediction

The need to increase power efficiency is pushing microarchitectural power management

beyond the core-level to individual functional units. To save power during program

157

execution, portions of pipelines or functional units can be effectively resized through

clock gating and power gating when not needed. The challenge is to apply these power

saving adaptations only when the transition cost can be amortized by long idle phases.

By defining prediction metrics for each functional unit, it is possible to detect and predict

the critical long-duration idle phases.

Process-Level Power Accounting

The entirety of this dissertation and other performance-counter power modeling research

focuses on attributing power to a particular hardware thread or core. The limitation of

this approach is that process scheduling and migration can impact the ability to discern

unique program phases. It is likely that tracking power and phase history at the process-

level will reduce aliasing thus improving predictability.

Scheduling using On-line Power and Performance Models

Another application of power accounting is for the direction of scheduling decisions. By

introducing performance models that are power-aware, optimal scheduling and power

management decisions can be made. The current state-of-the-art architectural power

adaptations provide a range of throughput and latency at the processor core-level.

Expressing those impacts as run-time power and performance models would allow major

improvements in energy efficiency and performance.

158

Bibliography

[Ac07] Advanced Configuration & Power Interface. http://www.acpi.info

(November 2007).

[Ag08] Agilent Technologies. 1146A 100 kHz /100A AC/DC Current Probe.

http://www.agilent.com, April 2008.

[An73] F. J. Anscombe. Graphs in Statistical Analysis. American Statistician,

pages 17-21, February 1973.

[Be00] F. Bellosa. The Benefits of Event-Driven Energy Accounting in Power-

Sensitive Systems. In Proceedings of the 9th Workshop on ACM SIGOPS European

Workshop: Beyond the PC: New Challenges for the Operating System (Kolding,

Denmark, September 2000), 37-42.

[Bk09] BIOS and Kernel Developer’s Guide for AMD Family 10h Processor.

http://www.amd.com. November 2009.

[BiVa05] W. L. Bircher, M. Valluri, J. Law, and L. John. Runtime identification of

microprocessor energy saving opportunities. In Proceedings of the 2005 International

Symposium on Low Power Electronics and Design (San Diego, California, August 2005),

275-280.

159

[BiJo06-1] W. L. Bircher and L. John. Complete System Power Estimation: A

Trickle-Down Approach based on Performance Events. In IEEE International

Symposium on Performance Analysis of Systems and Software (San Jose, California,

April 2007), 158-168.

[Bi06] W. L. Bircher. Measurement Based Power Phase Analysis of a

Commercial Workload. 2
nd

 IEEE Workshop on Unique Chips and Systems (Austin,

Texas, March 2006).

[BiJo06-3] W. L. Bircher and L. John. Power Phase Availability in a Commercial

Server Workload. In Proceedings of the 2006 International Symposium on Low Power

Electronics and Design (Tegernsee, Germany, October 2006), 350-353.

[BiJo08] W. L. Bircher and L. John. Analysis of Dynamic Power Management on

Multi-Core Processors. In Proceedings of the 22
nd

 Annual International Conference on

Supercomputing (Kos, Greece, June 2008), 327-338.

[BiJo10-1] W. L. Bircher and L. John. Complete System Power Estimation using

Processor Performance Events. Under Review at IEEE Transactions on Computers

(October 2010).

[BiJo10-2] W. L. Bircher and L. John. Predictive Power Management for Multi-Core

Processors. In Workshop on Energy Efficient Design (Saint-Malo, France, June 2010),

327-338.

160

[Bl07] Blade Server Technology Overview. http://www.blade.org/techover.cfm

(March 2007).

[BoEl02] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C.

McDowell, and R. Rajamony. The Case For Power Management in Web Servers. IBM

Research, Austin TX, 2002.

[BrTiMa00] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations, In Proceedings of the 27
th

Annual International Symposium on Computer Architecture, (Vancouver, British

Columbia, Canada, June 2000), 83-94.

[ChJa09] J. Charles, P. Jassi, N. Ananth, A. Sadat, and A. Fedorova. Evaluation of

the Intel® Core™ i7 Turbo Boost feature. In Proceedings of the 2009 IEEE International

Symposium on Workload Characterization (Austin, Texas, October 2009), 188-197.

[ChAn01] J. Chase, D. Anderson, P. Thakar, and A. Vahdat. Managing Energy and

Server Resources in Hosting Centers. In Proceedings of the 18th ACM Symposium on

Operating System Principles (Chateau Lake Louise, Banff, Alberta, Canada, October

2001), 103-116.

[ChDa05] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam,

Managing Server Energy and Operational Costs in Hosting Centers. In Proceedings of

161

the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems (Banff, Alberta, Canada, June 2005), 303-314.

[CoMa05] G. Contreras and M. Martonosi. Power Prediction for Intel XScale

Processors Using Performance Monitoring Unit Events. In Proceedings of the 2005

International Symposium on Low Power Electronics and Design (San Diego, California,

August 2005), 221-226.

[DhSm03] A. Dhodapkar and J. Smith. Comparing program phase detection

techniques. In Proceedings of the 36
th

 Annual International Symposium on

Microarchitecture (San Diego, California, December 2003), 217-228.

[DiSo08] Q. Diao and J. Song. Prediction of CPU Idle-Busy Activity Pattern. In

Proceedings of the International Symposium on High-Performance Computer

Architecture (Salt Lake City, Utah, February 2008), 27-36.

[DuCa03] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and

Predicting Program Behavior and its Variability. In Proceedings of the 12
th

 International

Conference on Parallel Architectures and Compilation Technique (New Orleans,

Louisiana, September 2003), 220-231.

[Po10] Dynamic Power Capping TCO and Best Practices White Paper.

http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA2-3107ENW.pdf (May 2010).

162

[FaWe07] X. Fan, W. Weber, and L. Barroso. A. Power provisioning for a

warehouse-sized computer. In Proceedings of the 34th Annual International Symposium

on Computer Architecture (San Diego, California, June 2007), 13-23.

[FeGe05-1] X. Feng, R. Ge, and K. W. Cameron. Power and Energy Profiling of

Scientific Applications on Distributed Systems. In Proceedings of the 19
th

 IEEE

International Parallel & Distributed Processing Symposium (Denver, Colorado, April

2005), 34-50.

[GaJo10] K. Genesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu and L. John.

System-level Max Power (SYMPO) – A Systematic Approach for Escalating System-

Level Power Consumption using Synthetic Benchmarks. In Proceedings of the 2010

International Conference on Parallel Architectures and Compilation Techniques

(Vienna, Austria, June 2010), 19-28.

[GuSi02] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M.

Kandemir, T. Li, and L. K. John. Using Complete Machine Simulation for Software

Power Estimation: The SoftWatt Approach. In Proceedings of the 8th International

Symposium on High-Performance Computer Architecture (Boston, Massachusetts,

February 2002), 141-150.

[HaKe06] H. Hanson and S. W. Keckler. Power and Performance Optimization: A

Case Study with the Pentium M Processor. 7th International Austin Center for Advanced

Studies (IBM) Conference (Austin, Texas, February 2006).

163

[HaKe07] H. Hanson, S.W. Keckler, K. Rajamani, S. Ghiasi, F. Rawson, and J.

Rubio. Power, Performance, and Thermal Management for High-Performance Systems.

In Proceedings of The Third Workshop on High-Performance, Power-Aware Computing,

held in conjunction with 21st Annual International Parallel & Distributed Processing

Symposium (Long Beach, California, March 2007).

[HeCe06] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, and R.

Bianchini. Mercury and Freon: Temperature Emulation and Management in Server

Systems. In Proceedings of the 12
th

 International Conference on Architectural Support

for Programming Languages and Operating Systems (San Jose, California, October

2006), 106-116.

[Am07] Inside Barcelona: AMD's Next Generation http://www.realworldtech.com

. November 2007.

[In04] Intel Corporation. IA-32 Architecture Optimization Reference Manual.

2004.

[In06] Intel Software Network. Thermal Protection And Monitoring Features: A

Software Perspective. www.intel.com/cd/ids/developer/asmona/eng/newsletter, February

2006.

164

[IsMa03] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End

Processors: Methodology and Empirical Data. In 36
th

 International Symposium on

Microarchitecture (San Diego, California, December 2003), 93-104.

[IsMa06] C. Isci and M. Martonosi. Phase Characterization for Power: Evaluating

Control-Flow-Based and Event-Counter-Based Techniques. In Proceedings of the

Twelfth International Symposium on High-Performance Computer Architecture (Austin,

Texas, February 2006), 122-133.

[IsBu06] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An

Analysis of Efficient Multi-Core Global Power Management Policies: Maximizing

Performance for a Given Power Budget. In Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture (Orlando, Florida, December 2006), 347-

358.

[IsBu06] C. Isci, G. Contreras, and M. Martonosi. Live, Runtime Phase Monitoring

and Prediction on Real Systems with Application to Dynamic Power Management. In

Proceedings of the 39
th

 Annual IEEE/ACM International Symposium on

Microarchitecture (Orlando, Florida, December 2006), 359-370.

[Ja01] J. Janzen. Calculating Memory System Power for DDR SDRAM. Micro

Designline, Volume 10, Issue 2, 2001.

165

[JoMa01] R. Joseph and M. Martonosi. Runtime Power Estimation in

HighPerformance Microprocessors. In Proceedings of the 2001 International Symposium

on Low Power Electronics and Design (Huntington Beach, California, 2001), 135-140.

[KiSu06] Y. Kim, S. Gurumurthi, and A. Sivasubramaniam. Understanding the

performance-temperature interactions in disk I/O of server workloads. In Proceedings of

the Twelfth International Symposium on High-Performance Computer Architecture

(Austin, Texas, February 2006), 176- 186.

[KoGh05] R. Kotla, S. Ghiasi, T. Keller, and F. Rawson. Scheduling Processor

Voltage and Frequency in Server and Cluster Systems. In Proceedings of the First

Workshop on High-Performance Power-Aware Computing in conjunction with

International Parallel and Distributed Processing Symposium (Denver, Colorado, April

2005).

[KoDe04] R. Kotla, A. Devgan, S. Ghiasi, T. Keller, and F. Rawson. Characterizing

the Impact of Different Memory-Intensity Levels. In Proceedings of the 7th Annual IEEE

Workshop on Workload Characterization (Austin, Texas, October 2004), 3-10.

[La10] National Instruments LabVIEW. http://www.ni.com/labview. 2010.

[LaSc04] J. Lau, S. Schoenmackers, and B. Calder. Structures for Phase

Classification. In Proceedings of the 2004 IEEE International Symposium on

Performance Analysis of Systems and Software (Austin, Texas, March 2004), 57-67.

166

[Pl08] Report to Congress on Server and Data Center Energy Efficiency: Public

law 109-431, Lawrence Berkeley National Laboratory, 2008.

[LeSk05] K. Lee and K. Skadron. Using Performance Counters for Runtime

Temperature Sensing in High-Performance Processors. In Proceedings of the First

Workshop on High-Performance Power-Aware Computing in conjunction with

International Parallel and Distributed Processing Symposium (Denver, Colorado, April

2005).

[LeWa10] J. Lee, E. Wang, H. Ghasemi, W. L. Bircher, Y. Cao and N. Kim.

Workload-Adaptive Process Tuning Strategy for Power-Efficient Multi-Core Processors.

In Proceedings of the 2010 International Symposium on Low Power Electronics and

Design (Austin, Texas, August 2010), 225-230.

[LeWa07] C. Lefurgy, X. Wang, and M. Ware. Server-level power control. In

Proceedings of the 4
th

 IEEE International Conference on Autonomic Computing

(Jacksonville, Florida, June 2007), 4.

[LiMa06] J. Li and J. Martinez. Dynamic Power-Performance Adaptation of Parallel

Computation on Chip Multiprocessors. In Proceedings of the 12th International

Symposium on High-Performance Computer Architecture (Austin, Texas, February

2006), 77-87.

167

[LiBr05] Y. Li, D. Brooks, Z. Hu, and K. Skadron. Performance, Energy, and

Thermal Considerations for SMT and CMP Architectures. In Proceedings of the 11
th

International Symposium on High-Performance Computer Architecture (San Francisco,

California, February 2005), 71-82.

[LiJo03] T. Li and L. John. Run-Time Modeling and Estimation of Operating

System Power Consumption. In Proceedings of the 2003 ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer Systems (San

Diego, California, June 2003), 160-171.

[Pe06] Linux Perfctr Kernel Patch Version 2.6, user.it.uu.se/~mikpe/linux/perfctr,

October 2006.

[MeGo09] D. Meisner, B. Gold, and T. Wenisch. PowerNap: Eliminating Server Idle

Power. In Proceedings of the 14
th

 International Conference on Architectural Support for

Programming Languages and Operating Systems (Washington, DC, March 2009), 205-

216.

[MaDo09] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical Power Consumption

Analysis and Modeling for GPU-based Computing. In Proceedings of the ACM SOSP

Workshop on Power Aware Computing and Systems (HotPower) 2009, (Big Sky,

Montana, October 2009).

168

[MaVa04] A. Mahesri and V. Vardhan. Power Consumption Breakdown on a

Modern Laptop, In Proceedings of the 4
th

 International Workshop on Power-Aware

Computing Systems (Portland, Oregon, December 2004), 165-180.

[McPo06] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican, W. Parks,

and S. Naffziger. Temperature Control on a 90-nm Itanium Family Processor. IEEE

Journal of Solid State Circuits, Vol. 41, No. 1, January 2006.

[Mc04] Conversation with Gregg McKnight, IBM Distinguished Engineer, xSeries

Division. September 2004.

[MiFr02] R. J. Minerick, V. W. Freeh, and P. M. Kogge. Dynamic Power

Management Using Feedback. In Proceedings of the 3
rd

 Workshop on Compilers and

Operating Systems for Low Power (COLP’02) (Charlottesville, Virginia, September

2002).

[NaHa03] K. Natarajan, H. Hanson, S. Keckler, C. Moore, and D. Burger.

Microprocessor Pipeline Energy Analysis, In Proceedings of the 2003 IEEE International

Symposium on Low Power Electronics and Design (Seoul, Korea, August 2003), 282-

287.

[Ni08] National Instruments Data Acquisition Hardware.

http://www.ni.com/dataacquisition/ (April 2008).

169

[Os06] Open Source Development Lab, Database Test 2, www.osdl.org, February

2006.

[PaSt06] V. Pallipadi and A. Starikovskiy. The On Demand Governor: Past, Present

and Future. In Proceedings of the Linux Symposium (Ottawa, Canada, July 2006), 223-

238.

[PS06] PostgreSQL, www.postgresql.org, October 2006.

[Vi07] Processor Power Management in Windows Vista and Windows Server

2008. http://www.microsoft.com (November 2007).

[RaHa06] K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, and F. Rawson. Application-

Aware Power Management. In Proceedings of the 2006 IEEE International Symposium

on Workload Characterization (San Jose, California, October 2006), 39-48.

[RaLe03] K. Rajamani and C. Lefurgy. On Evaluating Request- Distribution

Schemes for Saving Energy in Server Clusters. In Proceedings of the 2003 IEEE

International Symposium on Performance Analysis of Systems and Software (Austin,

Texas, March 2003), 111-122.

[RaIb07] K. Ramani, A. Ibrahim, and D. Shimizu. PowerRed: Flexible Modeling

Framework for Power Efficiency Exploration in GPUs. In Proceedings of the First

Worskshop on General Purpose Processing on Graphics Processing Units (GPGPU)

(Boston, Massachusetts, October 2007).

170

[RaLe06] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-Level Power

Management for Dense Blade Servers. In Proceedings of the

33
rd

 International

Symposium on Computer Architecture (Boston, Massachusetts, June 2006), 66-77.

[SiPa07] S. Siddah, V. Pallipadi, and A. Van de Ven. Getting Maximum Mileage

Out of Tickless. In Proceedings of the 9
th

Linux Symposium (Ottawa, Canada, June 2007),

201-207.

[Sp00] SPEC CPU 2000 Version 1.3, www.spec.org/cpu2000, October 2006.

[Sp06] SPEC CPU 2006 Version 1.1, www.spec.org/cpu2006, October 2006.

[Sj06] SPECjbb 2005 Version 1.07, www.spec.org/jbb2005, October 2006.

[Sp02] B. Sprunt. Pentium 4 Performance Monitoring Features, Micro, July-

August, pp 72-82, 2002.

[Se06] Texas Instruments. INA168 High-Side Measurement Current Shunt

Monitor. ti.com, May 2006.

[Sm07] Business Applications Performance Corporation. SYSmark 2007 an

Overview of SYSmark 2007 Preview, May 2008.

[3d06] Futuremark. 3DMark06 Whitepaper v1.02, January 2006.

171

[WaCh08] X. Wang and M. Chen. Cluster Level Feedback Power Control for

Performance Optimization. In Proceedings of the 14
th

 International Symposium on High-

Performance Computer Architecture (Salt Lake City, Utah, February 2008), 101-110.

[Mm05] Windows Multimedia: timeEndPeriod(). http://msdn.microsoft.com/en-

us/library/ms713415(VS.85).aspx (November 2008).

[WuJu05] Q. Wu, P. Juang, M. Martonosi, L. Peh, and D. Clark. Formal control

techniques for power-performance management. IEEE Micro, 25, 5 (September/October

2005).

[ZeSo03] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthyy, and R.

Wang. Modeling Hard-Disk Power Consumption. File and Storage Technologies 2003.

 [ShSc08] A. Shye, Y. Pan, B. Scholbrock, J.S. Miller, G. Memik, P.A. Dinda and

R.P. Dick. Power to the People: Leveraging Human Physiological Traits to Control

Microprocessor Frequency Learning and Leveraging the Relationship between

Architecture-Level Measurements and Individual User Satisfaction. In Proceedings of

41st IEEE/ACM International Symposium on Microarchitecture, (Lake Como, Italy,

November 2008), 188-199.

[ShOz08] A. Shye, B. Ozisikyilmaz, A. Mallik, G. Memik , P.A. Dinda , R.P. Dick

and A.N. Choudhary. Learning and Leveraging the Relationship between Architecture-

Level Measurements and Individual User Satisfaction. In Proceedings of the 35th

172

International Symposium on Computer Architecture, (Beijing, China, June 2008), 427-

438.

[LoSm01] J. Lorch and A.J. Smith. Improving dynamic voltage scaling algorithms

with PACE. In Proceedings of the 2001 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems (Cambridge, Massachusetts, June

2001), 50-61.

[KrLe00] C.M. Krishna and Y-H Lee. Voltage-Clock-Scaling Adaptive Scheduling

Techniques for Low Power Hard Real-Time Systems. In Proceedings of the 6
th

 IEEE

RealTime Technology and Applications Symposium (Washington, District of Columbia,

May 2000), 1586 - 1593.

[OkIs99] T. Okuma, T. Ishihara, and H. Yasuura. Real-Time Task Scheduling for a

Variable Voltage Processor. In Proceedings of the 12
th

 International Symposium on

System Synthesis (San Jose, California, November 1999), 87-94.

[PeBu00] T. Pering, T. Burd, and R. Brodersen. Voltage Scheduling in the lpARM

Microprocessor System. In Proceedings of the International Symposium on Low Power

Electronics and Design (Vancouver, British Columbia, June 2000), 96-101.

[ShCh99] Y. Shin and K. Choit. Power Conscious Fixed Priority Scheduling for

Hard Real-Time Systems. In Proceedings of the 36
th

 Annual Design Automation

Conference (Atlanta, Georgia, October 1999), 134-139.

173

[PiSh01] P. Pillai and K. G. Shin. Real-time Dynamic Voltage Scaling for Low-

Power Embedded Operating Systems. In Proceedings of the 18th Symposium on

Operating System Principles (Chateau Lake Louise, Banff, October 2001),89-102.

[PoLa01] J. Pouwelse, K. Langendoen, and H. Sips. Voltage scaling on a low-power

microprocessor. In Proceedings of the 7
th

International Conference on Mobile Computing

and Networking (Rome, Italy, July 2001), 251-259.

[GoCh95] K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms for

Dynamic Speed-Setting of a Low-Power CPU. In Proceedings of the First International

Conference on Mobile Computing and Networking (Berkeley, California, November

1995), 13-25.

[PeBu98] T. Pering, T. Burd, and R. Brodersen. The Simulation and Evaluation of

Dynamic Voltage Scaling Algorithms. In Proceedings of International Symposium on

Low Power Electronics and Design (Monterey, California, June 1998), 76-81.

[WeWe94] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for

Reduced CPU Energy. In Proceedings of the First Symposium of Operating Systems

Design and Implementation (Monterey, California, November 1994), 13-23.

[FlRe01] K. Flautner, S. Reinhardt, and T. Mudge. Automatic Performance-Setting

for Dynamic Voltage Scaling. In Proceedings of the 7
th

International Conference on

Mobile Computing and Networking (Rome, Italy, July 2001), 260-271.

174

Vita

William Lloyd Bircher was born in Wichita, Kansas on December 14
th

, 1973 to Mr.

William Mark Bircher and Catherine Ann Bircher. After living in Kansas for thirteen

years, he moved to Fort Worth, Texas with his family. In the Fall of 1992 he began his

undergraduate studies in the College of Engineering at the University of Texas at

Arlington. He received a Bachelor of Science in Electrical Engineering in 1997. After

graduation he joined Compaq Computer Corporation developing system firmware code.

In 2000 he joined International Business Machines also as a firmware code developer.

That same year he enrolled at the University of Texas at Austin to begin graduate studies

in computer engineering as a part-time student. In 2004 he married Sara Marie Smith. In

May 2006 he received a Master of Science degree in Electrical and Computer

Engineering. Lloyd’s graduate education was supported by International Business

Machines and Advanced Micro Devices.

Email Address: lloydbircher@gmail.com

This manuscript was typed by William Lloyd Bircher.

