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Energy consumption by computing systems is rapidly increasing due to the growth of 

data centers and pervasive computing.  In 2006 data center energy usage in the United 

States reached 61 billion kilowatt-hours (KWh) at an annual cost of 4.5 billion USD 

[Pl08].  It is projected to reach 100 billion KWh by 2011 at a cost of 7.4 billion USD.  

The nature of energy usage in these systems provides an opportunity to reduce 

consumption.   

Specifically, the power and performance demand of computing systems vary widely in 

time and across workloads.  This has led to the design of dynamically adaptive or power 

managed systems.  At runtime, these systems can be reconfigured to provide optimal 

performance and power capacity to match workload demand.  This causes the system to 

frequently be over or under provisioned.  Similarly, the power demand of the system is 

difficult to account for.  The aggregate power consumption of a system is composed of 

many heterogeneous systems, each with a unique power consumption characteristic.    

This research addresses the problem of when to apply dynamic power management in 

multi-core processors by accounting for and predicting power and performance demand 
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at the core-level.  By tracking performance events at the processor core or thread-level, 

power consumption can be accounted for at each of the major components of the 

computing system through empirical, power models.  This also provides accounting for 

individual components within a shared resource such as a power plane or top-level cache.  

This view of the system exposes the fundamental performance and power phase behavior, 

thus making prediction possible. 

This dissertation also presents an extensive analysis of complete system power 

accounting for systems and workloads ranging from servers to desktops and laptops.  The 

analysis leads to the development of a simple, effective prediction scheme for controlling 

power adaptations.  The proposed Periodic Power Phase Predictor (PPPP) identifies 

patterns of activity in multi-core systems and predicts transitions between activity levels.  

This predictor is shown to increase performance and reduce power consumption 

compared to reactive, commercial power management schemes by achieving higher 

average frequency in active phases and lower average frequency in idle phases. 
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Chapter 1  Introduction 

Computing systems have a wide range of design objectives.  Metrics such as 

performance, power and cost must be carefully managed in order to meet these 

objectives.  While some parameters are fixed at design time, others such as performance 

and power consumption may be dynamically adjusted at run-time.  This allows a system 

to be optimal across a wider range of workloads and usage scenarios.  This dynamic 

optimization, commonly known as dynamic power management, allows performance to 

be exchanged for power savings.  The amount of savings is constrained by the system 

objectives.  For example, systems with quality of service (QoS) requirements can allow 

power and performance to be reduced only as long as the service demands are met.  

Mobile systems powered by batteries must be optimized to deliver the highest 

performance/Watt in order to maximize usage time.  Compute-cluster performance 

capacity must be modulated to match demand so that performance/cost is maximized.  

Adaptation within these scenarios requires accurate, run-time measurement of 

performance and power consumption.  Run-time measurement of power and performance 

allow tradeoffs to be made dynamically in response to program and usage patterns.     

1.1 Attributing Power in Multi-Core Systems 

Multi-core and multi-threaded systems present significant challenges to power 

measurement.  While performance is readily measurable at the core and program-level, 
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power is more difficult.  Invariably power is delivered to multiple cores or system 

components through a shared power plane.  Power consumption by individual cores or 

programs cannot be observed.  Consider Figure 1.1.  The power consumption of a multi-

core, multi-programmed system simultaneously executing four distinct workloads is 

shown.  These four workloads have power and performance characteristics that require 

distinct adaptations to meet system objectives.  Core 1 has the computationally efficient 

ray-tracing workload, povray that scales performance nearly perfectly with core 

frequency.  This is important for power management since controlling adaptations such 

as frequency scaling requires accounting for the potential benefit or cost of changing 

frequency.  In contrast cores 0, 2 and 3 are running applications that are sensitive to 58%-

80% of the change in core frequency.  This difference in frequency sensitivity leads to 

varying optimization points for dynamic adaptation.  Similarly, the power consumption 

of each workload is distinct.  The highly efficient povray is able to consistently utilize 

more than 2/3 of the execution pipelines.  This high utilization and concentration of 

floating point instructions, leads to high power consumption.  At the other extreme, the 

gcc compiler application is only able to utilize 1/3 of the execution pipelines using 

integer instructions exclusively.  In addition to differences in steady state power 

consumption, these workloads have different phase behavior.  While povray and gcc have 

stable power consumption patterns, 3Dsmax and Sketchup (3D rendering) exhibit drastic 

variations in power consumption over time.  Frequent changes in power consumption 
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increases the overhead of adaptation since transition costs cannot be amortized in the 

short duration phases. 

 

Figure 1.1 CPU Core-Level Power Accounting 

The problem of multiple programs sharing power resources is not limited to processors.  

Attributing power consumption by a program within an entire system presents a similar 

challenge.  Consider Figure 1.2, which illustrates power consumption for of a modern 

laptop computer system across a range of critical workloads.  Similar to CPU cores, the 

power consumption in memory, chipsets, graphics and hard disks varies drastically across 

workloads.  Effective power management requires that power be attributable to programs 

across the entire system so that power performance tradeoffs can be made. 
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Figure 1.2 System-Level Power Accounting 

1.2 When to Adapt 

Due to the difficulty in observing program phases in shared power plane environments, 

existing power management schemes rely on reaction when performing adaptation.  This 

pragmatic approach leads to sub-optimal performance and power consumption.  Consider 

the case of the Windows Vista operating system using Dynamic Voltage and Frequency 

Scaling (DVFS).  To reduce power consumption during low utilization phases, the 

operating system power manager reduces voltage and frequency of cores when CPU core 

activity level drops below a fixed threshold.  The manager periodically samples core 

activity level and adjusts the DVFS operating point accordingly.  This reactive approach 

results in frequent over and under provisioning of performance and power, especially for 

“bursty” workloads.  Consider Table 1.1, which shows DVFS residency for a recent 
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suboptimal from a power and performance perspective.  Though the CPU is capable of 

drastically reducing idle power by operating at less than maximum frequency, it 

frequently does not.  On average 41% of idle time is spent at a higher than necessary 

frequency and voltage.  Similarly, performance is reduced by operating at less than the 

maximum frequency for 70% of the time.  This can greatly impact performance due to 

the large increases in runtime that can eliminate energy efficiency gains from reduced 

voltage and frequency.     

To improve performance and efficiency, adaptation must be performed with an accurate 

estimate of future demand.  This prevents costly adaptations from being applied when 

program phase are too short to amortize the performance and energy cost of adaptation.  

To this end a predictive power manager is proposed.  

 Table 1.1 Windows Vista Reactive DVFS  

 E-Learning Productivity Video Creation 3D 

2.4GHz - Active 4.6% 2.4% 5.3% 15.0% 

2.4GHz - Idle 17.4% 9.6% 12.4% 17.0% 

1.6GHz - Active 1.4% 0.8% 3.2% 5.1% 

1.6GHz - Idle 9.4% 6.2% 9.6% 6.7% 

1.2GHz - Active 1.2% 1.2% 4.8% 3.1% 

1.2GHz - Idle 9.8% 9.7% 13.8% 9.4% 

0.8GHz - Active 4.5% 4.7% 4.8% 6.9% 

0.8GHz - Idle 51.8% 65.3% 46.1% 36.7% 

Active Frequency 1.56 GHz 1.34 GHz 1.51 GHz 1.77 GHz 

Idle Frequency 1.24 GHz 1.07 GHz 1.20 GHz 1.32 GHz 
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1.3 Power Variation is Periodic 

The major challenge in predictive power management is detecting patterns of usage that 

are relevant for power adaptations.  Fortunately, the most critical usage metric in modern 

computing systems is architecturally visible, namely CPU active/idle state usage.  CPU 

active and idle states have been shown to be highly correlated to power and performance 

demand in complete systems [BiJo06-1].   This allows power and performance demand in 

the complete system to be tracked and predicted, using only CPU metrics.   

Since the predicted metrics are contained within the CPU, patterns are easily detectable.  

Consider Figure 1.3.  It shows active and idle usage patterns during the playback of a 

Blu-Ray video.  Due to the requirement for regular, periodic frame updates, the CPU 

active and idle patterns are also regular.  Note the active decrypt/render phases that 

typically last about 10ms.  This corresponds to the execution time to decrypt and render 

about six frames of video.  In addition to these workload-dependent phases, there are also 

operating system induced phases.  Interspersed with the long active phases are numerous, 

short, 1ms phases.  These phases are composed of slightly less than 100us active phases 

followed by 1ms idle phases.  The active phases are caused by the operating system 

scheduler waking the CPU to check for threads that are ready to execute.  The regular 

patterns are ideal for prediction. 
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Figure 1.3 Core Activity Patterns – Blu-Ray Playback 

Detecting patterns at the CPU-level is also advantageous since it allows component-level 

patterns to be discerned from aggregate patterns.  Consider Figure 1.4.  The top figure 

shows total CPU power consumption for a multi-core processor.  The core-level power 

consumption is shown in the subsequent four figures.  Though the individual cores have a 

regular, easily detectable pattern, the aggregate power obscures much of the periodic 

behavior.  This concept extends to the complete system in which individual core or thread 

usage patterns induce similar patterns in shared resources such as memory or I/O devices.  

Tracking and predicting CPU usage patterns provides the opportunity to more effectively 

adapt power and performance to match demand of the complete system. 
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Figure 1.4 Thread and Aggregate Power Patterns 
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4. Design a predictive power management scheme to improve performance and 

power efficiency. 

1.5 Thesis Statement 

Complete system power consumption of a multi-core system can be accurately estimated 

by tracking core-level CPU performance events.  These estimates may be used to predict 

changes in power and performance of the system.  Compared to commercial, reactive 

power managers this predictive power manager yields higher performance and lower 

power. 

1.6 Contributions 

This dissertation makes several contributions in the areas of modeling methodology, 

power models, measurement-based workload characterization and novel power 

management strategies. 

a) A methodology for constructing power models based on performance events.  The 

methodology is shown to be effective across CPU architectures, system categories 

and workloads. 

b) A simple, accurate model for CPU power based on performance counters.  The 

model is constructed by applying linear-regression to power and performance 

measurements captured on an actual system.  The model demonstrates the need to 

account for speculative execution when modeling power consumption. 
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c) The concept of trickle-down power events is presented.   By identifying CPU 

performance events that trickle-down to other subsystems, a complete-system 

power model based on CPU performance counters.  Power for subsystems 

including memory, chipsets and disk are modeled using events directly 

measureable in the CPU.   

d) A characterization of complete-system power consumption for server, desktop 

and mobile platforms is presented.  The impacts of workloads, power 

management and temperature are quantified.  Statistical characterization of power 

amplitude and duration is provided for numerous subsystems. 

e) An analysis of the performance impacts on power management for multi-core 

processors.  Performance loss due to power management of shared resources is 

considered.  Certain workloads are found to be more sensitive to power 

management.  Negative interactions between operating systems are shown to 

reduce performance and power efficiency. 

f) A predictive power manager is proposed for controlling DVFS in a multi-core 

processor.  By identifying and anticipating patterns of power consumption, the 

manager is able to improve performance and efficiency. It is compared to the 

commercial, reactive scheme used in Windows Vista. 
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1.7 Organization 

This dissertation is organized as follows: 

 Chapter 2 describes the methodology for measuring power and performance 

events within a range of system types and subsystems ranging from CPUs to hard drives.  

Techniques are provided for isolating and measuring dynamic and static power within 

actual computing systems. 

 Chapter 3 presents an analysis of processor performance events that correlate to 

power consumption.  These findings direct the construction of a simple, speculation-

aware power model based on a small number of performance events.  A formal 

methodology for developing performance counter power models is presented.   

 Chapter 4 provides a broad analysis of subsystem-level power consumption across 

a wide range of workloads including scientific computing, commercial transaction 

processing, desktop productivity, content creation and consumption.  Power is considered 

in relative terms comparing across each subsystem.  To inform power management 

decisions, power phase behavior is considered in terms of duration and amplitude. 

 Chapter 5 presents an extensive number of system power models based upon 

processor performance counters.  The motivation behind the composition of each model 

is provided.  Accuracy statistics and measure versus modeled time-domain comparisons 

are given. 
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 Chapter 6 explores the power and performance impact of dynamic power 

management.  Detailed analysis of the relationship between power adaptations such as 

clock gating and DVFS and performance are provided.  The sub-optimal nature of a 

commercial DVFS scheme is explored and explained. 

 Chapter 7 presents the Period Power Phase Predictor for control DVFS power 

management actions.  The predictor is compared to a state-of-the-art commercial DVFS 

scheme in terms of performance and power consumption.  Results are presented for a 

desktop productivity workload that contains a high-level of power phase transitions.    

 Chapter 8 summarizes previous contributions in the area performance counter 

power modeling and predictive power management.  Chapter 9 describes conclusions 

topics of future research.  
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Chapter 2  Methodology 

The development of power models based on performance events requires the 

measurement of power and performance on systems running a wide range of workloads.  

This chapter describes the methodology for measuring power and performance events on 

actual systems (not simulation) running realistic workloads.  The first section describes 

techniques and equipment for in-system measurement of power across a range of systems 

and components.  The compositions of three systems are defined: server, desktop and 

laptop.  The second section shows how system parameters such as temperature, voltage 

and frequency can be manipulated to expose and quantify underlying properties of 

systems.  The third section describes how performance monitoring counters (PMC) can 

be tracked in a manner that has minimal impact on the observed system. The last section 

describes which workloads are preferred for power management analysis and why.   

2.1 Measuring System and Component Power 

To measure power consumption, a range of instrumentation methodologies are used.  

Each methodology is designed to match measurement requirements while conforming to 

the constraints of the measured system.  The systems and measurement requirements are: 

1) aggregate CPU power in a desktop system, 2) subsystem-level power in a server 

system, 3) subsystem-level power in a mobile system. 
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2.1.1 Aggregate CPU Power Measurement 

CPU power consumption is measured using a clamp-on current probe.  The probe, an 

Agilent 1146A [Ag08], reports current passing through its sensor by detecting the 

magnitude and polarity of the electromagnetic field produced by the sampled current.  

This type of measurement simplifies instrumentation since the observed conductors do 

not have to be cut to insert current sensing resistors.  The drawback of this approach is 

that only wire-type conductors can be sampled.  It is not possible to sample conductors 

embedded in the printed circuit board.  For the target system this restricts power 

measurement to the input conductors of the processor voltage regulator module (VRM).  

As a result, a portion of the reported power consumption is actually attributed to the 

inefficiency of the VRM.  These modules have an efficiency of 85%-90%.  The reader 

should consider the 10%-15% loss when comparing results to manufacturer reported 

power consumption.  The voltage provided by the current probe is sampled at 10 KHz by 

a National Instruments AT-MIO-16E-2 data acquisition card[Ni08].  The LabVIEW 

software tool [La10] can interpret the voltage trace or as in this case it is written to a 

binary file for offline processing.  The details of the system are described below in Table 

2.1.   

Table 2.1 Desktop System Description 

System Parameters 

Single Pentium 4 Xeon 2.0 GHz, 512KB L2 Cache, 2MB L3 Cache, 400 MHz FSB 

4 GB PC133 SDRAM Main Memory 

Two 16GB Adaptec Ultra160 10K SCSI Disks 

Redhat Linux 
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2.1.2 Subsystem-Level Power in a Server System 

To study component-level server power, the aggregate CPU power measurement 

framework is used and extended to provide additional functionality required for 

subsystem-level study.  The most significant difference between the studies of CPU level 

versus subsystem level is the requirement for simultaneously sampling multiple power 

domains.  To meet this requirement the IBM x440 server is used which provides separate, 

measureable power rails for five major subsystems.  It is described in Table 2.2. 

Table 2.2 Server System Description 

System Parameters 

Four Pentium 4 Xeon 2.0 GHz, 512KB L2 Cache, 2MB L3 Cache, 400 MHz FSB 

32MB DDR L4 Cache 

8 GB PC133 SDRAM Main Memory 

Two 32GB Adaptec Ultra160 10K SCSI Disks 

Fedora Core Linux, kernel 2.6.11 

By choosing this server, instrumentation is greatly simplified due to the presence of 

current sensing resistors on the major subsystem power domains.  Five power domains 

are considered: CPU, chipset, memory, I/O, and disk.  The components of each 

subsystem are listed in Table 2.3. 

Table 2.3 Subsystem Components 

Subsystem Components 

CPU Four Pentium 4 Xeons 

Chipset Memory Controllers and Processor Interface Chips 

Memory System Memory and L4 Cache 

I/O I/O Bus Chips, SCSI, NIC 

Disk Two 10K rpm 32G Disks 
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Power consumption for each subsystem (CPU, memory, etc.) can be calculated by 

measuring the voltage drop across each current sensing resistor.  In order to limit the loss 

of power in the sense resistors and to prevent excessive drops in regulated supply voltage, 

the system designer used a particularly small resistance.  Even at maximum power 

consumption, the corresponding voltage drop is in the tens of millivolts.  In order to 

improve noise immunity and sampling resolution we design a custom circuit board [Bi06] 

to amplify the observed signals to levels more appropriate for the measurement 

environment.  The printed circuit board is shown in Figure 2.1.  This board provides 

amplification for eight current measurement channels.  The board also provides BNC-

type connecters to allow direct connection to the data acquisition component.  The entire 

measurement framework is shown in Figure 2.2. 

 

Figure 2.1 Current Sense Amplification PCB 
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The main components are subsystem power sensing, amplification (current probe), data 

acquisition, and logging.  Subsystem power sensing is provided by resistors onboard the 

x440 server.  The voltage drop across the resistors is amplified by the custom circuit 

board.  The amplified signals are captured by the data acquisition card.  Finally, the host 

system, running LabVIEW, logs the captured data to a file for offline processing. 

 

Figure 2.2 Power Measurement Environment 

2.1.3 Subsystem-Level Power in a Mobile System 

Power measurement at the subsystem-level in a mobile system presents unique 

opportunities and challenges not typically encountered in desktop or server systems.  Due 

to the requirement for low power consumption and long battery-life, mobile systems 

implement an extensive array of power saving features.  These features require isolation 

of power delivery so subsystems can be managed independently.  This isolation allows 
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power to be measured at a finer grain than desktop/server systems that have a larger 

degree of sharing across subsystems.  It also leads to a wider range of power levels across 

subsystems.  High-power CPU subsystems may typically consume tens of Watts while 

low-power chipsets may only consume a Watt or less.  The measurement of different 

ranges of power requires different approaches in order to maximize accuracy and 

minimize perturbation.  To this end a system specifically designed for power analysis is 

used.  The system is used by a major CPU manufacturer [Bk09] in the validation of 

processors and chipsets.  Depending on the expected power levels for a given subsystem 

an inline current sensing resistor is implemented.  High current subsystems use low value 

resistors in the range of just a few milliohms.  Low current subsystems use resistors in the 

range of a few hundred milliohms.  This approach allows the observed voltage drop due 

to current flow to always be within the maximum accuracy range of the data acquisition 

device.  It also reduces the impact measurement has on the system.  If the voltage drop 

due to the sensor is too large, the effective voltage delivered to the subsystem could be 

out of the subsystem’s operating range.  The system characteristics and measureable 

subsystems are listed below in Table 2.4. 
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Table 2.4 Laptop System Description 

Processor(s) Dual-core 45nM 2.0GHz 
Memory 4GB DDR3-1066 

Power 

Management 

CPU Clock Gating and DVFS 
DRAM Power Down and Self Refresh 

Chipset Link Disconnect 
Harddrive Spin Down and ATA modes 

Graphics Processor Clock Gating 
Graphics RS780 

Observable 

Subsystems 

CPU 
Chipset 
Memory 

Memory Controller 
GPU 
Disk 

2.2 Controlling Temperature, Voltage and Frequency 

The development of power and performance models that are sensitive to temperature, 

voltage and frequency requires those parameters to be independently controlled.  To this 

en`d, multiple techniques are employed.  The most difficult parameter to control is 

temperature.  Temperature has a major impact on power consumption due to its 

exponential relationship with leakage power.  Depending on the intensity, instruction mix 

and data use pattern of workloads, temperature and therefore power varies drastically.  To 

eliminate this effect a closed loop temperature controller is used to regulate processor 

package temperature.  The controller regulates temperature within 0.1 degree Celsius 

from 20C to 100C.  It circulates chilled, 20C water to remove heat from the processor 

package.  Fine-grain control of temperature is provided by a Peltier-effect thermoelectric 

cooler.  This device can rapidly add or remove heat from the processor package 

depending on demand.  Workloads that naturally heat the processor above the setpoint, 
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cause the controller to remove the excessive heat.  Workloads operating below the 

setpoint cause it to add heat.  The controller is able to dynamically adjust the heating or 

cooling load with changes in the workload.  This fine-grain control of temperature 

provides two important abilities: isolation of leakage from switching power and 

development of temperature sensitive leakage model. 

Voltage and frequency control are provided through architectural interfaces provided in 

the processor.  Recent processors [Bk09] provide architectural control of processor core 

frequency and voltage through model specific registers.  This interface allows system-

level code to create arbitrary combinations of voltage and frequency operating points for 

DVFS and clock gating functions.  Fixing voltage and scaling frequency allows 

calculation of leakage power.  See Figure 2.3.  Fixing frequency and scaling voltage and 

temperature allows the derivation of voltage and temperature-dependent leakage models. 

 

Figure 2.3 Leakage Power Determination 
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2.3 Performance Counter Sampling 

To sample performance monitoring counters a small kernel that provides periodic 

sampling of processor performance counters is developed.  This kernel uses a device 

driver to provide ring-0 access to user-mode applications.  This approach is preferred 

over existing user-mode performance counter libraries as it affords more precise control 

of sampling and lower overhead.  In all experiments, the worst-case sampling overhead 

(% CPU time sampling) for performance counter access averages less than 1% for 

sampling intervals as low as 16ms.  In addition to the performance impact of counter 

sampling, there is a power impact which must be minimized.  A common problem with 

periodically scheduled code, such as performance counter sampling, is excessive 

scheduler activity.  This activity causes CPUs to frequently exit the idle state to service 

interrupts, thus increasing power consumption.  The sampling kernel avoids this issue by 

explicitly requesting a scheduling interval that exactly matches the required sampling 

interval.  As a result the scheduler only runs enough to schedule the performance counter 

sampling events and background operating system activity. 

2.4 Workloads 

Workload selection is a critical part of dynamic power management analysis.  The focus 

on power accounting and prediction requires workloads with widely varying power and 

performance levels.  Unlike microarchitectural analysis that considers phases within an 
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instruction stream lasting only a few microseconds, dynamic power management must 

also consider long duration phases ranging from hundreds to millions of microseconds.  

These phases, caused by events such as thread migrations, context switches or device 

interrupts provide greater opportunity (and challenge) for power management due to the 

longer time for amortizing adaptation costs.  To this end, this dissertation analyzes power 

consumption, modeling and prediction across over sixty distinct subtests.  The workloads 

and their characteristics are listed in Table 2.5.   

Table 2.5 Workload Description 

Name 

[Subtest Count] 

Workload 

Type 

Subsystem 

Target 

Phase Behavior Systems 

Analyzed 

SPEC CPU 2000 

[26] 

Scientific CPU 

DRAM 

Instruction Server 

Desktop 

Laptop 

SPEC CPU 2006 

[29] 

Scientific CPU 

DRAM 

Instruction Server 

Desktop 

Laptop 

SPECjbb 2005 

[1] 

Transaction 

Processing 

CPU 

DRAM 

Instruction Server 

DBT-2 

[1] 

Database I/O 

Disk 

Instruction 

Active-Idle 

Power Management 

Server 

SYSmark 2007 

[4] 

Productivity CPU 

DRAM 

I/O 

Disk 

Instruction 

Active-Idle 

Threadedness 

Power Management 

Desktop 

Laptop 

3DMark 2006 

[6] 

3D Gaming Graphics 

CPU 

DRAM 

Instruction 

Active-Idle 

Power Management 

Laptop 

Idle 

[1] 

Idle CPU Active-Idle Server, 

Desktop 

Laptop 

To develop power models for active execution (non-idle) the SPEC CPU 2000, 2006 and 

SPECjbb 2005 workloads are used [Sp00] [Sp06] [Sj06].  These workloads contain 
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instruction streams that exercise a wide range of intensities in the CPU and memory 

subsystems.  They include integer and floating centric workloads.  Within these two types 

the focus varies from workloads completely bound by CPU execution speed to those 

bound be memory access latency and throughput.  These benchmarks provide sufficient 

information to develop active power models for CPU and memory.  The limitation is that 

they operate in an unrealistic fully-active mode utilization only the CPU and memory 

subsystems.  Unlike real usage scenarios, these workloads do not frequently transition 

between the active and idle states or exercise disk, graphics or I/O subsystems. 

To address this limitation the DBT-2, SYSmark 2007 and 3DMark 2006 benchmarks are 

included.  These workloads emulate real usage scenarios by including user-input and 

system interactions.  DBT-2 [Os06] is intended to approximate the TPC-C transaction 

processing benchmark.  This workload does not require network clients, but does use 

actual hard disk access through the PostgreSQL [PS06] database.  SYSmark 2007 [Sm07] 

is implemented using simulated user input through the application GUI (graphical user 

interface).  The numerous delays required for GUI interaction causes many idle phases 

across the subsystems.  This causes a large degree of active-idle and idle-active 

transitions, thread migrations and power management events.  3DMark06 [3d06] contains 

six subtests covering CPU and graphics-intensive workloads.  Additionally, systems are 

characterized in the idle state.  This sets a baseline for power consumption and represents 

common usage patterns.  
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Chapter 3  Modeling CPU Power using 

Performance Monitoring Counters 

Effective power management requires fine-grain accounting of power within complex, 

computing systems.  Since these systems contain multiple components sharing power 

resources, it is difficult to attribute power to individual components.  It has been shown 

that performance-relevant events are strong predictors of power consumption.  Due to the 

widespread availability of on-chip performance monitoring facilities, it is possible to 

develop accurate, run-time power models based upon performance events.  This chapter 

demonstrates the effectiveness of these at CPU power accounting.  Models are shown 

ranging from simple three-term linear to polynomial models that account for power 

management and workload effects such voltage, frequency and temperature.  The chapter 

concludes with a formal definition of the model building methodology. 

3.1 Correlation of Performance Counters to Power 

While past research [LiJo03] [Be00] and intuition suggest that instructions/cycle (IPC) 

alone can account for CPU power, this study considers a larger array of metrics for 

building models.  Correlation coefficients were calculated for all twenty-one observed 

PMCs.  Initially, we attempted to find correlation across multiple sample points in a 

single workload trace.  However, it was found that minor discrepancies in alignment of 
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the power trace to the PMC trace could cause large variations in correlation.  Since there 

is such a large set of workloads each workload is used as a single data point in the 

correlation calculation.  For each metric the average rate across each workload is 

determined. For most, the metrics are converted to event/cycle form, but a few are in 

other forms such as hit rates.  Additional derived metrics are included such as completed 

µops/cycle (retired + cancelled µops).  A subset of the correlation results can be seen in 

Table 3.1. 

Table 3.1. Intel Pentium 4, High and Low Correlation Performance Metrics 

Metric Correlation 

Speculatively Issued µops/Cycle 0.89 

Fetched µops/Cycle 0.84 

Retired Instructions/Cycle 0.84 

Completed µops/Cycle 0.83 

Loads/Cycle 0.80 

Retired µops/Cycle 0.79 

Branches/Cycle 0.78 

Stores/Cycle 0.64 

Mispredicted Branches/Cycle 0.41 

Level 2 Cache Misses/Cycle -0.33 

Cancelled µops/Cycle 0.33 

Level 2 Cache Hits/Cycle 0.31 

Bus Accesses/Cycle -0.31 

Trace Cache Issued µops/Cycle 0.32 

Bus Utilization -0.31 

Floating Point ops/µop -0.22 

Prefetch Rate 0.17 

Trace Cache Build µops/Cycle -0.15 

Instruction TLB Hits/Cycle -0.09 

Trace Cache Misses/Cycle -0.09 

Instruction TLB Misses/Cycle -0.04 
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As expected IPC-related metrics show strong correlation.  One of the more unexpected 

findings is the weak negative correlation of floating point instruction density (ratio of all 

dynamic instructions).  This is in contrast to past findings [Be00] that show a strong 

correlation between floating point operations per second and power.  Later in section 3.3 

an explanation is provided.  Another unexpected result is the lack of correlation to data 

prefetch rate. 

This research shows that rather than considering only IPC, a more accurate model can be 

constructed using a metric that encompasses power consumed due to speculation.  Figure 

3.1 shows the average number of µops for the SPEC 2000 benchmarks that are fetched, 

completed and retired in each cycle.  Table 3.2 shows the portions of fetched µops that 

complete or retire, for each of the twenty-four benchmarks.   

Table 3.2 Percent of Fetched µops Completed/Retired – SPEC CPU 2000 

Name %Complete %Retire Name %Complete %Retire 

gzip 92.7 69.8 wupwise 97.0 91.0 

vpr 85.3 60.0 swim 99.9 99.7 

gcc 94.2 77.7 mgrid 99.1 98.6 

mcf 63.0 31.5 applu 98.7 96.6 

crafty 94.6 78.4 equake 96.8 93.5 

bzip2 92.0 72.1 sixtrack 99.2 97.8 

vortex 98.0 95.0 mesa 92.1 75.2 

gap 92.8 73.5 art 84.9 77.5 

eon 91.7 81.5 facerec 95.5 90.5 

parser 90.1 69.0 ammp 94.8 88.5 

twolf 85.2 55.2 fma3d 97.0 94.3 

   lucas 99.9 95.9 

   apsi 97.1 93.6 

Integer Avg. 88.7 69.4 Float Avg. 96.3 91.7 
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The first bar in Figure 3.1 “Fetch” shows the number of µops that are fetched from the 

Trace Cache in each cycle.  The second bar “Complete” shows the sum of µops that are 

either retired or cancelled each cycle.  Cancelled µops are due to branch misprediction.  

The third bar, “Retire”, shows only µops that update the architectural state.  This figure 

shows that the processor fetches 21.9% more µops than are used in performing useful 

work.  Therefore, a more accurate power model should use the number of µops fetched 

per cycle instead of the number retired.  Table 3.3 provides a comparison of linear 

regression power models based on these three metrics.  

 

Figure 3.1. Average µOps/cycle - SPEC CPU 2000 

3.2 IPC Related Power Models 

Twenty-one processor performance metrics are examined for their correlation to power 

consumption.  The most correlated metrics are all similar to (retired) instructions per 

cycle.   Using this finding as a guide numerous linear models are constructed using 

regression techniques.  Power is calculated as the sum of a positive constant α0 and the 
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product of another positive constant α1 and a performance metric metric1.  An example is 

shown in Equation 3.1.   

����� = 	∑ 	
 ×��
���
 + 	
�� ×��
���
�� …	� ×��
����
�

��  

Results for seven of the best models are listed below in Tables 3.3, 3.4 and 3.6.  Tables 

3.3 and 3.6 support the hypothesis that fetched µops are the most representative of IPC 

type metrics.  The worst of these metrics is the familiar IPC.  This is caused by the lack 

of a one-to-one mapping of instructions to µops.  Many x86 instructions map to a 

sequence of µops.  For example, a single ADD instruction that uses memory as its source 

and destination is actually composed of three µops.  The first µop loads a value from 

memory, the second adds a register or immediate to the value from memory and the third 

stores the result back to memory.  Alternatively, an ADD instruction that does not use 

memory as an operand has a one-to-one mapping of instruction to µop.  Assuming all 

µops consume the same amount of power, the instruction that uses memory would 

consume three times as much power. 

Table 3.3 µop Linear Regression Model Comparison 

 Retired µops/cyc Completed µops/cyc Fetched µops/cyc 

Coefficients 
α0 α1 α0 α1 α0 α1 

36.3 4.37 35.8 4.44 35.7 4.31 

Avg Error 3.26% 2.8% 2.6% 

Coefficient of 

Determination 
0.696 0.735 0.737 

 

 

(3.1) 
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Table 3.4 Instruction Linear Regression Model Comparison 

 
Retired  

instructions/cyc 

Completed 

instructions /cyc 

Coefficients 
α0 α1 α0 α1 

36.8 5.28 36.3 5.52 

Avg Error 5.45% 4.92% 

Coefficient of 

Determination 
0.679 0.745 

Of the µop-based models fetched µops is the most representative metric for power 

consumption.  This suggests that µops that do not update the architected state of the 

machine still consume a significant amount of power.  For the case of cancelled µops, 

this is not surprising since these µops did complete execution but were not retired.  So, 

they would have traversed nearly the entire processor pipeline consuming a similar power 

level as retired µops.  More surprising is the effect of fetched µops on the power model.  

Fetched µops includes retired and cancelled operations.  It also includes the remaining 

µops that were cancelled before completing execution.  Since fetched µops provides the 

most accurate model, cancelled µops must be consuming a significant amount of power.  

These models generate minimum and maximum power values (36W – 47W) similar to 

what was found on a Pentium 3 (31W-48W) [Be00] with similar µop/cycle ranges (0 – 

2.6).  The stated average error values are found using the validation set described in 

Table 3.1.   
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3.3 Micro ROM Related Power Models 

The power models in Tables 3.3 and 3.4 perform best when applied to workloads mostly 

composed of integer-type instructions (SPEC-INT).  Larger errors occur for workloads 

with high rates of floating point instructions (SPEC-FP).  Isci et al [IsMa03] demonstrate 

that FP workloads such as equake use complex microcode ROM delivered µops. While 

the complex instructions execute, microcode ROM power consumption is high, but total 

power consumption is reduced slightly.  In order to determine if this is the case for these 

traces, several synthetic workloads are created, composed almost entirely of complex 

instructions.  Each of the programs is composed of a single large loop that is repeated for 

approximately ten seconds.  The loop body is composed of numerous instances (30+) of 

one particular instruction.  Since more than 90% of executed instructions are identical, 

average power due an individual instruction can be estimated. 

Table 3.5 Instruction Power Consumption 

Instruction 
Power 

(Watts) 

First Instruction Latency 

(cycles) 

Subsequent Instruction Latency 

(cycles) 

fcos 30 180-280 130 

fsin 31 160-200 130 

fptan 25 240-300 170 

imul 28 15-18 5 

idiv 32 66-80 30 

Table 3.5 [In04] shows that high latency instructions such as floating point type, consume 

less power than the 36W minimum predicted by the IPC models.  One possible cause is 

greater opportunity for clock gating.  Since these instructions are guaranteed to take a 
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long time to complete, more aggressive power saving techniques may be performed.  

Further investigation will be required to validate this hypothesis.  Since Table 3.5 

supports the conclusion that high latency instructions consume less power, the models 

can be improved by accounting for this behavior.  One possible accounting method is to 

note that most high latency instructions are composed of relatively long µop sequences 

sourced by the microcode ROM.  Microcode ROM events can be observed using the 

trace cache metric, microrom µops.  This metric counts the number of µops delivered 

from the microcode ROM.  The resultant models are given in Table 3.6.  As expected 

from the observations of power consumption of microcode ROM delivered instructions, 

the model’s microcode ROM component is negative.  This small correction allows the 

power model to extend below 36W for workloads with high instances of complex 

microcode ROM instructions.  

Table 3.6 µop Linear Regression Model Comparison 

 Deliver, µROM Deliver, µROM, Build 

Coefficients 
α0 α1 α2 α0 α1 α2 α3 

36.7 4.24 -11.8 36.7 4.24 -14.6 5.74 

Avg Error 2.50% 2.55% 

Coefficient of 

Determination 
0.844 0.850 

3.4 Power Management Effects 

While instruction and µop-based power models accurately account for power during fully 

active phases, they perform poorly in the presence of dynamic power management and 

temperature variation.  This section characterizes the effect that power adaptations such 
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as clock gating and dynamic voltage and frequency scaling have on power consumption. 

The strong relationship between temperature and leakage power is described.  These 

findings are then used to develop a fully power management and temperature-aware 

processor power model.    

3.4.1 Active and Idle Power Management 

An effective power management strategy must take advantage of program and 

architecture characteristics.  Designers can save energy while maintaining performance 

by optimizing for the common execution characteristics.  The two major power 

management components are active and idle power management.  Each of these 

components use adaptations that are best suited to their specific program and architecture 

characteristics.  Active power management seeks to select an optimal operating point 

based on the performance demand of the program.  This entails reducing performance 

capacity during performance-insensitive phases of programs.  A common example would 

be reducing the clock speed or issue width of a processor during memory-bound program 

phases.  Idle power management reduces power consumption during idle program phases.  

However, the application of idle adaptations is sensitive to program phases in a slightly 

different manner.  Rather than identifying the optimal performance capacity given current 

demand, a tradeoff is made between power savings and responsiveness.  In this case the 

optimization is based on the length and frequency of a program phase (idle phases) rather 

than the characteristics of the phase (memory-boundedness, IPC, cache miss rate).  In the 

remainder of this section active power adaptations are referenced as p-states and idle 
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power adaptations as c-states.  These terms represent adaption operating points as defined 

in the ACPI specification. ACPI [Ac07] “…is an open industry specification co-

developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba.  ACPI establishes 

industry-standard interfaces enabling OS-directed configuration, power management, and 

thermal management of mobile, desktop, and server platforms.” 

3.4.2 Active Power Management: P-states 

A p-state (performance state) defines an operating point for the processor.  States are 

named numerically starting from P0 to PN, with P0 representing the maximum 

performance level.  As the p-state number increases, the performance and power 

consumption of the processor decrease.  Table 3.7 shows p-state definitions for a typical 

processor.  The state definitions are made by the processor designer and represent a range 

of performance levels that match expected performance demand of actual workloads.  P-

states are simply an implementation of dynamic voltage and frequency scaling.  The 

resultant power reduction is obtained using these states is largely dependent on the 

amount of voltage reduction attained in the lower frequency states.   

Table 3.7 Example P-states Definition 

P-State Frequency (MHz) VDD (Volts) 

P0 FMax × 100% VMax × 100% 

P1 FMax × 85% VMax × 96% 

P2 FMax × 75% VMax × 90% 

P3 FMax × 65% VMax × 85% 

P4 FMax × 50% VMax × 80% 
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Table 3.8 Example C-states Definition 

C-State Response Latency(us) Relative Power 

C0 0 100% 

C1 10 30% 

C2 100 5% 

3.4.3 Idle Power Management: C-states 

A c-state (CPU idle state) defines an idle operating point for the processor.  States are 

named numerically starting from C0 to CN, with C0 representing the active state.  As the 

c-state number increases, the performance and power consumption of the processor 

decrease.  Table 3.8 shows c-state definitions for a typical processor.  Actual 

implementation of the c-state is determined by the designer.  Techniques could include 

low latency techniques, clock and fetch gating, or more aggressive high latency 

techniques such as voltage scaling or power gating.   

3.4.4 Case Study: Processor Power Management Characteristics 

The power saving states described in this section provides a significant range of power 

and performance settings for optimizing efficiency, limiting peak power consumption, or 

both.  However, other parameters greatly influence the effective power consumption.  

Temperature, workload phase behavior, and power management policies are the 

dominant characteristics.  Temperature has the greatest effect on static leakage power.  

This can be seen in Figure 3.2 which shows power consumption of a synthetic workload 

at various combinations of temperature and frequency.  Note that ambient temperature is 

20°C and “idle” temperature is 35°C.   
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Figure 3.2 Temperature Sensitivity of Leakage Power 

As expected, a linear change in frequency yields a linear change in power consumption.  
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influenced by the rate of input/output (I/O) and OS interrupts.  This state also provides 

nearly all of the static power savings of the low-voltage p-states even when in the P0 

state.  Second, the C1-Idle case shows the power consumption assuming at least one core 

remains active and prevents the processor from entering the C1e state.  This represents an 

extreme case in which the system would be virtually idle, but frequent interrupt traffic 

prevents all cores from being idle.  This observation is important as it suggests system 

and OS design can have a significant impact on power consumption.  The remaining two 

cases, C0-Idle and C0-Max, show the impact of workload characteristics on power.  C0-

Idle attains power savings though fine-grain clock gating.   

 

C0-Max All Cores Active IPC ≈ 3 

C0-Idle All Cores Active IPC ≈ 0 

C1- Idle At Least One Active Core, Idle Core Clocks Gated 

C1e-Idle “Package Idle” - All Core Clocks Gated, Memory Controller Clocks Gated 

Figure 3.3 Power by C-state/P-state Combination 
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The difference between C0-Idle and C0-Max is determined by the amount of power spent 

in switching transistors, which would otherwise be clock-gated, combined with worst-

case switching due to data dependencies.  C0-Max can be thought of as a pathological 

workload in which all functional units on all cores are 100 percent utilized and the 

datapath constantly switches between 0 and 1.  All active phases of real workloads exist 

somewhere between these two curves.  High-IPC compute-bound workloads are closer to 

C0-Max while low-IPC memory-bound workloads are near C0-Idle. 

3.4.5 Power Management-Aware Model 

The model improves on existing on-line models [Be00] [BiJo06-1] [IsMa03] by 

accounting for power management and temperature effects.  Like existing models it 

contains a workload dependent portion that is dominated by the number of instructions 

completed per second.  In this case the number of fetched operations per second is used 

in lieu of instructions completed.  The fetched µops metric is preferred as it also accounts 

for speculative execution.  In addition to fetched µops, a retired floating point µops 

metric is also included.  This accounts for the power difference between integer and 

floating point ops in the AMD processor.  Unlike the Pentium 4 processor which exhibits 

little difference in power consumption between integer and floating point applications, 

the AMD processor exhibits much higher power consumption for high-throughput 

floating point applications.  A further distinction of this model is that it contains a 

temperature dependent portion.  Using workloads with constant utilization, processor 

temperature and voltage are varied to observe the impact on static leakage power.  
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Temperature is controlled by adjusting the speed of the processor’s fan.  Temperature is 

observed with a 
1
/8 degree Celsius resolution using an on-die temperature sensor [Bk09].  

This sensor can be accessed by the system under test through a built-in, on-chip register.  

The resultant temperature-dependent leakage equation is shown in Table 3.9.  Since 

temperature is modeled over only the operating range of the processor, it can be 

accounted for as a quadratic equation. Alternatively, a wider temperature range can be 

accounted for using and an exponential equation in the form of a×e
T×b

.  The coefficients a 

and b are found through regression.  The term T represents the die temperature in Celsius.  

For this study the quadratic form is used due to its lower computational overhead and 

sufficient accuracy.  Voltage is controlled using the P-State Control Register [Bk09].  

This allows selection of one of five available voltage/frequency combinations.  Voltage is 

observed externally as a subset of the traced power data.  Like the workload dependent 

model, the coefficients of the static power model are tuned using regression techniques.  

Note that the static power model is highly process dependent.  Processors with different 

semiconductor process parameters require the model to be re-tuned.  

The dominant power management effects (voltage/frequency scaling, clock gating) are 

further accounted for using the gateable and ungateable power models.  Gateable power 

is found by measuring the effect of enabling/disabling idle core clock gating.  Ungateable 

represents the portion of power which cannot be gated.  These components are also found 

experimentally.  The resultant, average error in the model is 0.89%.  The standard 

deviation of the error for SPEC CPU2006 and SYSmark 2007 is less than 1%.  Worst-
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case error is 3.3%.  Alternatively stated, 68.2% of workloads have an error of less than 

1%.  Per workload error is shown in Figure 3.4.  The composition of the CPU model is 

summarized in Table 3.9. 

Table 3.9 AMD Quad-Core Power Model 

Power Models Equation 

Total Power 
∑ (WorkloadDependentN + 	UngateableN	 + 	GateableN)*

���   
+ StaticVolt,Temp 

Workload 

Dependent 

Power 

((FetchOpsN/Sec)×CoeffF+(FloatPointOpsN/Sec) ×CoeffFP 

+(DCAccessN/Sec) ×CoeffDC) ×Voltage
2
 

Idle Power 

Management 

Power 

(Gateable) 

(%HaltedN) ×CoeffGateable×Voltage
2
×FrequencyN 

Irreducible 

Power 

(Ungateable) 

(%NonHaltedN) ×CoeffUngateable×Voltage
2
×FrequencyN 

Irreducible 

Power 

(Static) 

(Temp
2
×CoeffT

2
+Temp

1
×CoeffT

1
+×CoeffT

0
)VoltageN 

 

Figure 3.4 CPU Power Model  – SPEC CPU 2006 Power and Average Error 
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3.5 Methodology for Power Modeling 

With an understanding of system level events that are visible to the processor it is 

possible to apply the iterative modeling process as depicted in Figure 3.5.  This procedure 

utilizes linear and polynomial regression techniques to build power models for individual 

subsystems.  The user identifies workloads which target a particular subsystem (cache, 

system memory, disk) and performs regression modeling using performance events as 

inputs.  The model is then applied to a larger set of workloads to confirm accuracy and 

the lack of outlier cases.  Depending on the outcome, the process is repeated with 

alternate performance events as inputs.  Though an exhaustive search of performance 

events can be performed, a rapid solution is found when events are selected with high 

correlation to subsystem activity.  Details of the modeling process in Figure 3.5 are listed 

below. 

1. Measure subsystem-level power using subset of workloads.  Begin with simple, 

easy-to-run workloads. 

2. Confirm that Coefficient of Variation is greater than α for the chosen workload.  

The simplest workloads often do not generate sufficient power variation for model 

tuning.  For example consider any of the cache-resident workloads in SPEC CPU 2000 

which generate little or no activity in subsystems outside of the processor cores such as 

memory.  Tuning the model based on these low-variation workloads may cause the 

process to include performance events that do not correlate well with power.    
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3. Based on basic domain knowledge, choose performance events, measureable by 

performance counters that are most relevant to the subsystem in question.  Choose 

counters that are expected to “trickle-down” to other subsystems.  The pool of candidate 

performance counters may need to be expanded if sufficient accuracy is not achieved. 

4. Using the selected performance counter events as the input variables and 

subsystem power as the output variable, perform linear regression modeling.  For 

example, in the general linear equation y = mx + b, vary the coefficients m and b until the 

sum-of-squares error is minimized.  Multiple linear or polynomial regression may be 

used in subsequent iterations of algorithm if sufficient accuracy is not obtained. 

5. Using a subset of workloads calculate average error per sample.  If less than ρ% 

error cannot be achieved, choose an a new performance event.  Selection of ρ is dictated 

by the required model accuracy and time required for solution.  Setting ρ to a low 

(restrictive) value may extend time to solution.  It may also prevent the process from 

finding a solution. 

6. Assess the representativeness of the model by manually comparing graphs of 

modeled versus measured power.  This avoids the case in which statistical assessment 

cannot detect major errors such as those seen in Anscombe’s Quartet [An73]. 

7. Using complete set of workloads calculate average error per sample.  If less than δ 

% error cannot be achieved, choose a new performance event.  Like ρ, δ is selected 

according the accuracy and time-to-solution requirements. 
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Figure 3.5 Trickle-Down Modeling Process 
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3.6 Summary 

This section describes concepts and methodologies for modeling processor power 

consumption through the use of performance monitoring counters.  These models achieve 

average error rates of under 1% using only a handful of metrics/signals.  Simple, 

deterministic, processor power models such as these will increase in importance as the 

need for energy efficiency increases.  Techniques that maximize performance within 

fixed power limits or optimize power metrics (Perf/Watt, Energy × Delay, etc.) are 

becoming prevalent in processors [Po10][McPo06][ChJa09] and systems.  Since these 

techniques rely on accurate processor power accounting, performance counter power 

models will increase in importance.       
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Chapter 4  System-Level Power Analysis 

This chapter provides an extensive characterization of system-level power consumption 

across platforms and workloads ranging from servers to laptops.  For each system type, 

workloads and subsystems specific to the system are considered.  Power consumption is 

considered in terms of average and variability.  While average power is critical for energy 

efficiency, variation including maximum and minimum power is required for effective 

system and dynamic power management design. 

4.1 Average Power 

4.1.1 Server Platform - SPEC CPU, SPECjbb and DBT-2 

For the case of SPEC CPU and SPECjbb workloads the behavior is distinct from the 

DBT-2 database workload.  In Figure 4.1 a comparison of average subsystem power 

consumption is given for all workloads.  Compared to the disk-bound DBT-2, the 

memory-bound and cpu-bound applications show significantly higher CPU and memory 

power consumption.  While DBT-2 only increases average CPU power by 26% compared 

to idle, all of these workloads increase average CPU power by more than 250%.  For 

memory, the top three consumers are floating point workloads.  This supports the 

intuitive conclusion that memory power consumption is correlated to utilization.   
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Figure 4.1  Average Power Consumption (Watts) 
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to aliasing were introduced that affected average power results.  Much greater variation 

can be found within each workload. 

4.1.2 SPEC CPU 2000/2006 CPU and Memory Power Comparison 

Compared to desktop and mobile systems servers have a different power consumption 

composition across subsystems.  Due to the presence of large memory subsystems, 

DIMM power is a much larger component.  Also, larger working sets such as those found 

in SPEC CPU2006 compared to SPEC CPU2000 shift power consumption from the cores 

to the DIMMs.  Consider CPU2000 in Figure 4.2 and CPU2006 in Figure 4.3.  Due to 

comparatively small working sets, CPU2000 workloads are able to achieve higher core 

power levels.  The reason is that, since the working set fits completely within the on-chip 

caches, the processor is able to maintain high levels of utilization.  This is made more 

evident by the power increases seen as the number of simultaneous threads is increased 

from one to four.  Since there is less performance dependence on the memory interface, 

utilization and power continue to increase as threads are added.  The result is different for 

SPEC CPU2006.  Due to the increased working set size of this benchmark, the memory 

subsystem limits performance.  Therefore, core power is reduced significantly for the 

four-thread case.  Differences for the single-thread case are much less, due to a reduced 

dependency on the memory subsystem.  The shift in utilization from the core to the 

memory subsystem can be seen clearly in Figure 4.4.  For the most compute-bound 

workloads, core power is five times larger than DIMM power.  However, as the 
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workloads become more memory-bound, the power levels converge to the point where 

DIMM power slightly exceeds core power. 

 
Figure 4.2 CPU2000 Average Core Power - 1 Thread vs. 4 Thread 

 

Figure 4.3 CPU2006 Average Core Power - 1 Thread vs. 4 Thread 
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Figure 4.4 SPEC CPU2006 Average Core vs. DIMM Power 

4.1.3 Desktop Platform – SYSmark 2007 

In this section average power consumption levels across a range of workloads are 

considered.  Two major conclusions for desktop workloads are drawn: the core is the 

largest power consumer and it contains the most variability across workloads.  Though 

other subsystems, such as memory controller and DIMM, have significant variability 

within workloads, only the core demonstrates significant variability in average power 

across desktop workloads.  Consider Figure 4.5: while average core power varies by as 

much as 57 percent, the next most variable subsystem, DIMM, varies by only 17 percent.  

Note, this conclusion does not hold for server systems and workloads in which much 

larger installations of memory modules cause greater variability in power consumption.  

The cause of this core power variation can be attributed to a combination of variable 

levels of thread-level parallelism and core-level power adaptations.  In the case of 3D, the 

workload is able to consistently utilize multiple cores. 

50 49 49 48 48 48 47 46 46 46 45 45 43 42 42 42 41 40 40 40 39 39 38 37 37 35 35 35 34 34

10 17 25 18 10 9 16 16 14 21 12 22 26 29 25 25 25 25 34 34 36 29 38 32 38 33 35 34 36 39

0

10

20

30

40

50

60

70

80

90

g
am

es
s

h
2
6

4
re

f

h
m

m
er

ca
lc

u
li

x

n
am

d

p
o
v

ra
y

g
ro

m
ac

s

p
er

lb
en

ch

g
o
b

m
k

d
ea

lI
I

sj
en

g

to
n

to

x
al

an
cb

m
k

ca
ct

u
sA

D
M

b
zi

p
2

A
v

er
ag

e

as
ta

r

g
cc

sp
h

in
x
3

w
rf

b
w

av
es

ze
u

sm
p

le
sl

ie
3

d

o
m

n
et

p
p

G
em

sF
D

T
D

so
p

le
x

m
cf

li
b

q
u
an

tu
m

m
il

c

lb
m

W
a

tt
s

DIMM

CPU



49 

 

At the other extreme, the productivity workload rarely utilizes more than a single core.  

Since Quad-Core AMD processor power adaptations are applied at the core level, 

frequency reduction achieves significant power savings on the three idle cores.  As a 

result, the productivity workload consumes much less power than the 3D workload.  The 

remaining workloads offer intermediate levels of thread-level parallelism and therefore 

have intermediate levels of power consumption.  Also note that this level of power 

reduction is due only to frequency scaling.  With the addition of core-level voltage 

scaling, the variation/power savings is expected to increase considerably.   

 

Figure 4.5 Desktop Subsystem Power Breakdown 

4.1.4 Desktop Platform - SPEC CPU, 3DMark and SYSmark 

To understand subsystem-level power consumption average and standard deviation 

results are presented.  Figure 4.6 displays average power of each subsystem measured in 

Watts.  To give an indication of the variation in power consumption Table 4.1 displays 

3.7 3.7 3.7 3.6

22.1 22.2 21.1 22.0

13.9 13.8 13.7 13.8

10.9 10.5 10.3 10.1

33.1

18.7
14.3

29.4

0

10

20

30

40

50

60

70

80

90

3D E-Learning Productivity Video

Creation

P
o
w

er
(W

a
tt

s) CPU

Memory

I/O

Disk

Video



50 

 

the standard deviation of subsystem power.  Two major differences are apparent 

comparing desktop to server power consumption:  desktop power in each subsystem is 

much less while relative variability is much greater.  In both cases, power management 

plays a large role.  Effective power management through DVFS, clock gating and link 

management reduce average power during idle and low utilization phases.  This leads to a 

greater difference in sample-to-sample power.  Additionally, semiconductor process 

improvements have a major effect. 

The CPU subsystem is considered first.  Not surprisingly, the desktop processor has 

average power that is an order of magnitude less than the server processor.  This is 

largely influenced by process (130nM vs. 45nM), DVFS (desktop-only) and idle power 

management.  While the server idle power represents at least 24% of average power, 

desktop idle power is no more than 4%.  These large power savings require the CPU 

model to include additional metrics such as frequency, voltage and temperature.  It is not 

sufficient to consider metrics associated only with the instruction stream (IPC, cache 

accesses).  

Like CPU, the chipset also exhibits much greater power variation.  Unlike the server 

chipset which has nearly uniform power consumption, the desktop chipset has much 

greater variation with standard deviation representing as much as 10% of average power.  

The difference illustrates the impact of link (Hypertransport) power management.  

Average power values are also much less due to the lack of an L3 cache in the desktop 
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processor.  In both platforms the top-level cache is contained in the chipset power rail.  

To reduce power consumption and cost the desktop designer lacks an L3 cache. 

Yet another subsystem with order-of-magnitude power reduction is the DRAM memory.  

Despite higher operating frequency (533Mhz vs 100MHz) average DRAM power is 

reduced by almost a factor of 10.  The reason is reduced memory voltage (2.8V vs 1.5V), 

reduced capacity (8GB vs 4GB) and more aggressive memory power management.  Note 

that the desktop system differentiates between DRAM, “Memory” subsystem and the 

Memory Controller.  The server system includes both in the memory subsystem.  The 

desktop memory controller has a similar level of power variation as the DRAMs.  This is 

due to the memory controller management power savings for both subsystems.  This also 

allows implementation of simple trickle-down models in multiple subsystems that are 

driven by the same performance metrics. 

An additional subsystem, not present in the server analysis is the RS780 GPU (graphics 

processing unit).  This subsystem has unique bi-modal power consumption.  In all cases 

GPU power is either near the maximum or minimum levels.  For workloads with little or 

no GPU activity power ranged from 0.8W to 1.3W with little variation.  The graphics-

centric workloads of 3DMark06 had much greater variation as the workload alternates 

between ~1W and 4W.  This gives the GPU one of the largest power variations with a 

standard deviation covering over 25% of the maximum power.  The bimodal power 

consumption is caused by aggressive idle power management and low active power 

variation.  
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Figure 4.6 Subsystem Average Power (Watts) 
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changes yield a drastic increase in variability with standard deviation representing 32% of 

average power in the most intense workload (video creation).       
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Table 4.1 Subsystem Power Standard Deviation (Watts) 

Workload CPU Chipset Memory 
Memory 

Controller 
GPU Disk Total 

idle 0.026 0.010 0.008 0.008 0.002 0.115 0.129 

SPEC CPU2006 INT 2.586 0.257 1.518 0.447 0.174 0.361 2.689 

SPEC CPU2006 FP 2.334 0.246 1.970 0.500 0.143 0.240 2.263 

gt1 0.736 0.093 0.808 0.217 0.904 0.487 1.57 

gt2 0.820 0.105 0.905 0.241 1.090 0.488 2.05 

cpu1 1.989 0.262 0.706 0.168 0.356 0.469 2.02 

cpu2 2.036 0.263 0.709 0.167 0.362 0.421 2.23 

hdr1 0.757 0.131 1.043 0.294 1.144 0.527 1.84 

hdr2 0.826 0.152 1.134 0.326 1.096 0.497 2.16 

EL 0.696 0.158 0.980 0.278 0.051 0.373 1.744 

VC 1.774 0.252 0.585 0.114 0.069 0.566 2.540 

PR 0.683 0.250 0.811 0.155 0.086 0.438 1.506 

3D 1.159 0.170 0.587 0.108 0.029 0.321 1.701 

SPECjbb 1.230 0.297 1.096 0.235 0.031 0.232 2.765 

 

4.2 Power Consumption Variation 

4.2.1 Server Platform 

To quantify the extent of power variation within a workload coefficient of variation 

(CoV) metric is used.  This metric uses standard deviation to quantify variation in a data 

set, and also normalizes the variation to account for differences in average data.  Since 

the subsystems in this study have average power values that differ by nearly an order of 

magnitude, this metric is most appropriate.  Table 4.2 provides a summary of the 

coefficient of variation for all workloads. 

Compared to the variation in average power among workloads on a given subsystem, the 

variation within a particular workload is less consistent.  Subsystem-workload pairs such 
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as CPU-gcc and memory-SPECjbb have a large variety of power levels.  In contrast disk-

art and chipset-mcf have as much as 300X less variation.   

Table 4.2  Coefficient of Variation 

 CPU Chipset Memory I/O Disk 

idle 8.86×10
-3

 4.61×10
-3

 1.17×10
-3

 3.86×10
-3

 1.25×10
-3

 

gcc 5.16×10
-2

 1.13×10
-2

 6.90×10
-2

 4.05×10
-3

 2.44×10
-3

 

mcf 3.37×10
-2

 8.53×10
-3

 3.60×10
-2

 3.81×10
-3

 1.50×10
-3

 

vortex 6.99×10
-3

 4.12×10
-3

 2.06×10
-2

 3.11×10
-3

 7.82×10
-4

 

art 2.47×10
-3

 3.66×10
-3

 5.31×10
-3

 3.12×10
-3

 2.51×10
-4

 

lucas 1.21×10
-2

 6.34×10
-3

 5.73×10
-3

 3.09×10
-3

 3.25×10
-4

 

mesa 6.05×10
-3

 3.49×10
-3

 8.81×10
-3

 3.86×10
-3

 3.85×10
-4

 

mgrid 3.58×10
-3

 2.46×10
-3

 3.36×10
-3

 3.06×10
-3

 2.37×10
-4

 

wupwise 1.56×10
-2

 6.96×10
-3

 9.45×10
-3

 3.12×10
-3

 4.95×10
-4

 

DBT-2 1.70×10
-1

 6.73×10
-3

 2.37×10
-2

 4.35×10
-3

 1.61×10
-3

 

SPECjbb 2.34×10
-1

 1.75×10
-2

 7.61×10
-2

 1.70×10
-3

 3.34×10
-3

 

The cause for this difference can be attributed to the presence or lack of power 

management in the various subsystems.  The most variable subsystem, the CPU, makes 

use of explicit clock gating through the instruction set.  Whenever the operating system is 

unable to find a schedulable process, it issues the “halt” instruction.  This puts the 

processor in a low power mode in which the clock signal is gated off in many parts of the 

chip.  This mode reduces power consumption in the processor to less than 25% of typical.  

Since the memory subsystem does not make use of significant power management 

modes, its variation is due only to varying levels of utilization.  Since these workloads 

exhibit large variations in memory utilization, this has a significant impact.   

In contrast, the chipset and I/O subsystems have little variation in utilization.  Since these 

subsystems also do not make use of power saving modes, their total variation is low.  In 
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the case of I/O, the observed workloads make little or no use of disk and network 

resources.  For the chipset subsystem, the causes are not as clear and require further 

study.  As mentioned in the previous section the lack of disk power management causes 

little variation in disk power consumption.  If these subsystems are to benefit from 

dynamic adaptation, workloads with larger variation in utilization would be needed. 

In order to justify the use of CoV for identifying workloads with distinct, adaptable 

phases the probability distributions for extreme cases are considered.  In order for a 

subsystem-workload pair to be a strong candidate for optimization, it must have distinct 

program/power phases.  If a workload exhibits constant power consumption it is difficult 

to identify distinct phases.  Further if the difference in phases is small, it may be difficult 

to distinguish a phase in the presence of sampling noise.  Therefore, a strong candidate 

should have multiple distinct phases.  This can be observed in the power amplitude 

distributions in Figure 4.7.  A narrow distribution represents a constant power 

consumption.  A wide distribution represents many levels of power consumption.  

Distinct power phases only exist in the wide distributions.   

Figure 4.7 shows the average power distribution for the various subsystems.  Not 

surprisingly, CPUs are the dominant power users.  However, unlike distributed, scientific 

NAS Parallel Benchmark [FeGe05-1] and mobile, productivity workloads such as 

PCMark and 3DMark [MaVa04], I/O and disk power are significant.  While differences 

in average subsystem power are large at 138% for disk compared to CPU, the variations 

within an individual subsystem are even greater.  A comparison of subsystem power 
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amplitude distributions is made in Figure 4.7.  Note that the CPU distribution is truncated 

at 60 Watts to prevent obscuring results from the other subsystems.  A small number of 

phases (6.5%) exist above 60 Watts and extending to 163 Watts. 

These distributions suggest that there are significant opportunities for phase-based power 

savings for CPU, I/O, and disk.  These subsystems have more wider and/or multimodal 

distributions.  The larger variations in power consumption provide greater opportunity to 

use runtime detection techniques such as [In06] [IsMa06].  In contrast, chipset and 

memory have homogeneous behavior suggesting nearly constant power consumption and 

less opportunity for phase detection. 

The presence of power variation is not sufficient to motivate the application of power 

adaptation.  Due to the overhead of detection and transition, adapting for short duration 

phases may not be worthwhile.  Table 4.3 presents the percentage of samples that are 

classifiable as phases with durations of 1 ms, 10ms, 100ms and 1000ms.  A group of 

power samples is considered a phase if the power level within the group remains 

constant.  To quantify the similarity, the coefficient of variation (CoV) is calculated for 

the group.  The group is considered a phase if the CoV does not exceed a specified 

threshold.  The boundaries of a phase are determined by samples which cause the CoV to 

exceed the threshold.  Results for CoV of 0.25, 0.1 and 0.05 are presented.  At thresholds 

of 0.25 and 0.1 excessive error exists especially in I/O subsystem phase classifications.  

A probable cause of the error is the greater sample-to-sample variability of the I/O power 

trace.  The disk subsystem, which has higher than average error, also has a wider than 
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average distribution.  The apparent increased residency for longer phases is specific to the 

high CoV cases.  The reason is that by including a larger number of samples (longer 

phase length) in the CoV calculation and using a high CoV threshold, the “real” phase 

behavior is obscured.  Actual phase edges get averaged out by the larger number of 

samples.   This is primary reasons for choosing CoV=0.05 for the subsequent analysis. It 

exhibits the desired behavior of distinguishing the long and short phases.  For the 

following discussion, a CoV of 0.05 is utilized.   

 

Figure 4.7 Subsystem Amplitude Distributions 

The effect of narrow chipset and memory distributions is evident in their high rates of 

classification.  For both, at least half of all samples can be classified as 1000 ms phases.  

In contrast, CPU, I/O and disk have no 1000 ms phases and considerably fewer phases 

classified at finer granularities.  These results can be used to plan power management 

strategies for a particular workload.  For example, by noting that the I/O subsystem has 

almost no phases longer than 1 ms, the designer would be required to use low latency 
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adaptations.  In contrast, the disk subsystem has 18.5% of samples definable as 100 ms 

phases, thus providing greater opportunity to amortize adaptation costs.  While chipset 

and memory subsystems have a large percentage of classifiable samples, they may not be 

viable candidates for adaptation.  By also considering that most of the chipset and 

memory samples are close to the average, standard deviations of 0.9 Watts and 1.4 Watts 

respectively, there may be insufficient variation for runtime phase detection. 

Table 4.3 Percent of Classifiable Samples 

Duration (ms) CPU Chipset Memory I/O Disk 

CoV = 0.25 

1 98.5 100 100 99.5 100 

10 90.8 100 100 87.6 100 

100 70.0 100 100 85.3 100 

1000 36.0 100 100 96.3 100 

Error % 8.78 3.70 3.47 15.2 6.31 

CoV = 0.10 

1 91.7 100 100 81.1 100 

10 66.0 100 98.6 35.7 88.6 

100 43.1 100 94.4 21.0 95.6 

1000 9.30 100 93.1 0.00 95.0 

Error % 4.60 3.70 3.47 6.63 6.31 

CoV = 0.05 

1 61.6 88.3 97.7 22.4 98.4 

10 25.5 78.0 91.2 1.70 32.1 

100 6.00 63.2 78.6 0.00 18.5 

1000 0.00 64.4 50.0 0.00 0.00 

Error % 3.38 3.46 2.68 3.67 2.93 

From these results, it is clear that distinct phases are detectable at granularities ranging 

from seconds to milliseconds.  The next step in utilizing the phases is to combine the 

amplitude and duration results to direct power management strategies.  An example 

classification is given in Table 4.4. 
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Table 4.4 Workload Phase Classification 

 High Power Med Power Low Power 

High Duration 5% 10% 20% 

Med Duration 0% 15% 5% 

Low Duration 10% 35% 0% 
 

This classification can be used to direct selection of power saving techniques.  The phase 

duration selects the power management type, based on similar transition times.  The 

power level and frequency work in opposition to each other as a policy control.  For 

example, a particular phase may only occur 5% of the time. However, since it is such a 

high power case it would be valuable to reduce its power.  At the other extreme, a phase 

may consume low power, but since it occurs frequently it would be valuable to address. 

4.2.2 Desktop Platform 

In this section the intra-workload phase characteristics that contribute to the variation are 

considered.  These results are attributable to the three dominant components of power 

adaptation: hardware adaptation, workload characteristics, and OS control of adaptations.  

In Figure 4.8 a distribution of the phase length of power consumption for desktop 

workloads is presented.  Two major conclusions are drawn: the operating system has a 

significant effect on phase length and interactive workloads tend to have longer phases. 

First, the two spikes at 10 ms and 100 ms show the effect of the operating system.  These 

can be attributed to the periodic timer tick of the scheduler and p-state transitions 

requested by the operating system.  In the case of Microsoft Windows Vista, the periodic 

timer tick arrives every 10-16 ms [Mm05].  This affects the observed power level since 
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power consumed in the interrupt service routine is distinct from “normal” power levels.  

In the case of high-IPC threads, power is reduced while servicing the interrupt, which 

typically has a relatively low-IPC due to cold-start misses in the cache and branch 

predictor.  In the case of low-power or idle threads, power is increased since the core 

must be brought out of one or more power saving states in order to service the interrupt.  

This is a significant problem for power adaptations since the timer tick is not workload 

dependent.  Therefore, even a completely idle system must “wake up” every 10 ms to 

service an interrupt, even though no useful work is being completed.  Also, 10 ms phase 

transitions are artificially introduced due to thread migration.  Since thread scheduling is 

performed on timer tick intervals, context switches, active-to-idle, and idle-to-active 

transitions occur on 10 ms intervals.  The 100 ms phases can be explained by the OS’s 

application of p-state transitions.  Experimentally, it can be shown that the minimum rate 

at which the operating system will request a transition from one p-state to another is 100 

ms.  When p-state transitions are eliminated, the spike at the 100 ms range of Figure 4.8 

is eliminated.  

The second conclusion from Figure 4.8 is that interactive workloads have longer phase 

durations.  In the case of 3D and video creation workloads, a significant portion of time is 

spent in compute-intensive loops.  Within these loops, little or no user interaction occurs.  

In contrast, the productivity and e-learning workloads spend a greater percentage of the 

time receiving and waiting for user input.  This translates into relatively long idle phases 

which are evident in the lack of short duration phases in Figure 4.8. 
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Figure 4.8 Core Power Phase Duration 

This is further supported by Figure 4.9, which group the most common phases by 

combinations of amplitude and duration.  Note that all phases less than 10 ms are 

considered to be 10 ms.  This simplifies presentation of results and is reasonable since the 

OS does not apply adaptation changes any faster than 10 ms.  These figures show that the 

highest power phases only endure for a short time.  These phases, which are present only 

in 3D and – to a much lesser degree – in video creation, are only possible when multiple 

cores are active.  The lack of long duration high power phases is attributable to two 

causes: low percent of multithreaded phases and higher IPC dependence during 

multithreaded phases.  The dependence on IPC for phase length increases as the number 

of active cores increases.  When many cores are active the power differences are caused 

by changes in active power due to IPC (performance).  When few cores are active, total 
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power is dominated by leakage power since active power is low.  Leakage power is 

mostly affected by p-state changes.  Fluctuations in IPC occur at much shorter durations 

(100s ns) than p-state changes (100s ms).  Therefore, stable power consumption levels 

are less likely as the number of active cores increases.      

 

Figure 4.9 Core Power Phases – SYSmark 2007 

4.3 Summary 

This section characterizes power consumption in modern server and desktop computing 

systems.  The characterization demonstrates the relationship between the power 

consumption of various subsystems and workloads.  Popular computational workloads 

such as SPEC CPU are shown to generate power variation in the processor and memory 

subsystems, but not in the remainder of subsystems.  By comparing power variation in a 

server system with little power management to a recent desktop system with extensive 

8%

13%

9%

35%

9%

15%

11%

8%
10%

12%

22%

12%
21%

11%12% 17%

28%

11%

7%

64%

17%

-10W

0W

10W

20W

30W

40W

50W

60W

1 10 100 1,000 10,000

C
o

re
 P

o
w

er

Phase Duration (ms)

3D

E-Learning

Productivity

Video Creation

Relative size 

correspond to % 

samples in group 

Phases due 

to 10ms 

scheduling 

quanta 

Idle Phases 

Active 

Program 

Phases 



63 

 

power management, it is shown that most variation is due to power management.  This 

suggests that as systems employ more aggressive power management, instantaneous 

power consumption will increase its variability.  Power limiting strategies will need to 

account for and respond to frequent power transitions due to the increased potential for 

performance loss or power overage.     
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Chapter 5  Modeling System-Level Power 

using Trickle-Down Events 

This chapter presents system-level power models based on performance counter events 

within the processor.  The first section defines the concept and intuition behind trickle-

down performance events.  The second section describes the server power model.  The 

last section describes the laptop power model. 

5.1 Processor Events Propagate to Rest of System 

Trickle-down power modeling provides an accurate representation of complete-system 

power consumption using a simple methodology.  The approach relies on the broad 

visibility of system-level events to the processor.  This allows accurate, performance 

counter based models to be created using only events local to the processor.  These local 

events can be measured using ubiquitous performance counters found in all modern 

microprocessors.  Local events are preferred since power models can be built using a 

single interface.  There is no need to create interfaces to multiple devices and subsystems 

which have inconsistent or incomplete performance counter APIs (Application 

Programming Interface).  It is particularly common at the system level since components 

are often designed by multiple vendors.  Trickle-down modeling also addresses hardware 

costs in systems implementing direct measurement.  Rather than providing sensors and 
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power measurement hardware for multiple subsystems, measurement need only be 

implemented on a single system during the design stage.  The model is created based on 

measurement from a small number of systems which allows power measurement 

hardware to be eliminated from the final product.   

While the trickle-down approach simplifies power modeling of complete systems it 

requires a modest knowledge of subsystem level interaction.  The effectiveness of the 

model at capturing system-level power is determined by the selection of comprehensive 

performance events.  Some events such as top-level cache or memory accesses are 

intuitive.  A miss in the first level cache will necessarily generate traffic in higher level 

caches and or the memory subsystem.  Other events such as those found in I/O devices 

are not as obvious.  Consider the system diagram in Figure 5.1. 

This represents the quad-socket server for which the trickle-down modeling approach is 

applied.  The arrows flowing outward  from the processor represent events that originate 

in the processor and trickle-down to other subsystems (L3 Miss, TLB Miss, MemBus 

Access and Uncacheable Access).  Arrows flowing inward such as DMA (Direct 

Memory Access) or bus master access and I/O interrupts may not be directly generated 

by the processor, but are nevertheless visible.  Since DMA access is typically performed 

to addresses marked as cacheable by the processor, they can be observed in the standard 

cache access metrics.  To distinguish DMA accesses by a particular device, events should 

be qualified by address range.  Each device typically uses a private range of addresses in 
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system memory for DMA access.  Similarly interrupts from multiple devices can be 

distinguished by interrupt number or address in the case of message signaled interrupts. 

 

Figure 5.1. Propagation of Performance Events 

With over forty detectable performance events [Sp02], the Pentium IV provides a 

challenge in selecting events that are most representative of subsystem power.  The 

subsystem interconnections pictured in Figure 5.1 provide a starting point.  By noting the 

“trickle-down” effect of events in the processor, a subset of the performance events is 

selected to accurately model subsystem power consumption.  A simple example would be 

the effect of cache misses in the processor.  For a typical microprocessor the top-level 

cache affects power consumption in the memory subsystem.  Transactions that cannot be 

satisfied (cache miss) by the top-level cause a cache line (block) sized access to the main 
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memory.  Since the number of main memory accesses is directly proportional to the 

number of cache misses, it is possible to approximate the number of accesses using only 

cache misses.  Since these memory accesses must go off-chip, power is consumed 

proportionally in the memory controller and DRAM.  In reality the relation is not so 

simple, but there is still a strong causal relationship between cache misses and main 

memory accesses.   

5.2 Complete-System Server Power Model 

Though the initial selection of performance events for modeling is dictated by an 

understanding of subsystem interactions (as in the previous example), the final selection 

of which event type(s) to use is determined by the average error rate and a qualitative 

comparison of the measured and modeled power traces.  The dominant, power-related 

performance events are described below.   

Cycles – Execution time in terms of CPU clock cycles.  The cycles metric is combined 

with most other metrics to create per cycle metrics.  This corrects for slight differences in 

sampling rate.  Though sampling is periodic, the actual sampling rate varies slightly due 

to cache effects and interrupt latency. 

Halted Cycles – Cycles in which clock gating is active.  When the Pentium IV processor 

is idle, it saves power by gating the clock signal to portions of itself.  Idle phases of 

execution are “detected” by the processor through the use of the HLT (halt) instruction.  
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When the operating system process scheduler has available slack time, it halts the 

processor with this instruction.  The processor remains in the halted state until receiving 

an interrupt.  Though the interrupt can be an I/O device, it is typically the periodic OS 

timer that is used for process scheduling/preemption.  This has a significant effect on 

power consumption by reducing processor idle power from ~36W to 9W.  Because this 

significant effect is not reflected in the typical performance metrics, it is accounted for 

explicitly in the halted cycles counter.   

Fetched µops – Micro-operations fetched.  The micro-operations (µops) metric is used 

rather than an instruction metric to improve accuracy.  Since in the P6 architecture 

instructions are composed of a varying number of µops, some instruction mixes give a 

skewed representation of the amount of computation being done.  Using µops normalizes 

the metric to give representative counts independent of instruction mix.  Also, by 

considering fetched rather than retired µops, the metric is more directly related to power 

consumption.  Looking only at retired µops would neglect work done in execution of 

incorrect branch paths and pipeline flushes.  

L3 Cache Misses – Loads/stores that missed in the Level 3 cache.  Most system main 

memory accesses can be attributed to misses in the highest level cache, in this case L3.  

Cache misses can also be caused by DMA access to cacheable main memory by I/O 

devices.  The miss occurs because the DMA must be checked for coherency in the 

processor cache. 
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TLB Misses – Loads/stores that missed in the instruction or data Translation Lookaside 

Buffer.  TLB misses are distinct from cache misses in that they typically cause trickle-

down events farther away from the microprocessor.  Unlike cache misses, which usually 

cause a cache line to be transferred from/to memory, TLB misses often cause the transfer 

of a page of data (4KB or larger).  Due to the large size of pages, they are often stored on 

disk.  Therefore, power is consumed on the entire path from the CPU to the hard disk. 

DMA Accesses – Transaction that originated in an I/O device whose destination is 

system main memory.  Though DMA transactions do not originate in the processor, they 

are fortunately visible to the processor.  As demonstrated in the L3 Miss metric 

description, these accesses to the processor (by an I/O device) are required to maintain 

memory coherency.  Being able to observe DMA traffic is critical since it causes power 

consumption in the memory subsystem.  An important thing to consider in the use of the 

Pentium IV’s DMA counting feature is that it cannot distinguish between DMA and 

processor coherency traffic.  All memory bus accesses that do not originate within a 

processor are combined into a single metric (DMA/Other).  For the uniprocessor case this 

is not a problem.  However, when using this metric in an SMP environment such as this, 

care must be taken to attribute accesses to the correct source.  Fortunately, the workloads 

considered here have little processor-to-processor coherency traffic.  This ambiguity is a 

limitation of the Pentium IV performance counters and is not specific to this technique.   

Processor Memory Bus Transactions – Reads or writes on processor’s external memory 

bus.  All transactions that enter/exit the processor must pass through this bus.  Intel calls 
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this the Front Side Bus (FSB).  As mentioned in the section on DMA, there is a limitation 

of being able to distinguish between externally generated (other processors) and DMA 

transactions.   

Uncacheable Accesses – Load/Store to a range of memory defined as uncacheable.  

These transactions are typically representative of activity in the I/O subsystem.  Since the 

I/O buses are not cached by the processor, downbound (processor to I/O) transactions and 

configuration transactions are uncacheable.  Since all other address space is cacheable, it 

is possible to directly identify downbound transactions.  Also, since configuration 

accesses typically precede large upbound (I/O to processor) transactions, it is possible to 

indirectly observe these.  

Interrupts – Interrupts serviced by CPU.  Like DMA transactions, most interrupts do not 

originate within the processor.  In order to identify the source of interrupts, the interrupt 

controller sends a unique ID (interrupt vector number) to the processor.  This is 

particularly valuable since I/O interrupts are typically generated by I/O devices to 

indicate the completion of large data transfers.  Therefore, it is possible to attribute I/O 

bus power to the appropriate device.  Though, the interrupt vector information is 

available in the processor, it is not available as a performance event.  Therefore, the 

presence of interrupt information in the processor simulated by obtaining it from the 

operating system.  Since the operating system maintains the actual interrupt service 

routines, interrupt source accounting can be easily performed.  In this case the 

/proc/interrupts file available in Linux operating systems is used. 
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The form of the subsystem power models is dictated by two requirements: low 

computational cost and high accuracy.  Since these power models are intended to be used 

for runtime power estimation, it is preferred that they have low computational overhead.  

For that reason regression curve fitting is attempted using single or multiple input linear 

models.  If it is not possible to obtain high accuracy with a linear model, a single or 

multiple input quadratic is selected. 

Subsystem Power Models 

The following sections describe the details of the subsystem power models.  Descriptions 

are given for issues encountered during the selection of appropriate input metrics.  For 

each subsystem a comparison of modeled and measured power under a high variation 

workload is given. 

5.2.1 CPU 

This CPU power model improves an existing model [BiVa05] to account for halted clock 

cycles.  Since it is possible to measure the percent of time spent in the halt state, it is 

possible to account for the greatly reduced power consumption due to clock gating.  This 

addition is not a new contribution, since a similar accounting was made in the model by 

Isci [IsMa03].  The distinction is that this model is the first application of a performance-

based power model in an SMP environment.  The ability to attribute power consumption 

to a single physical processor within an SMP environment is critical for shared 

computing environments.  In the near future it is expected that billing of compute time in 
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these environments will take account of power consumed by each process [Mc04].  This 

is particularly challenging in virtual machine environments in which multiple customers 

could be simultaneously running applications on a single physical processor.  For this 

reason, process-level power accounting is essential. 

Given that the Pentium IV can fetch three instructions/cycle, the model predicts range of 

power consumption from 9.25 Watts to 48.6 Watts.  The form of the model is given in 

Equation 5.1.   
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Figure 5.2 Processor Power Model – gcc 

A trace of the total measured and modeled power for the four processors is given in 

Figure 5.2.  The workload used in the trace is eight threads of gcc, started at 30s intervals.  

Average error is found to be 3.1%.  Note that unlike the memory bound workloads that 

saturate at eight threads, the cpu-bound gcc saturates after only 4 simultaneous threads. 
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5.2.2 Memory 

This section considers models for memory power consumption based on cache misses 

and processor bus transactions. 

The initial attempt at modeling memory power made use of cache misses.  A model based 

on only cache misses/cycle is an attractive prospect as it is a well understood metric and 

is readily available in performance monitoring counters.  The principle behind using 

cache misses as proxy for power is that loads not serviced by the highest level cache, 

must be serviced by the memory subsystem.  As demonstrated in [Ja01], power 

consumption in DRAM modules is highest when the module is in the active state.  This 

occurs when either read or write transactions are serviced by the DRAM module.  

Therefore, the effect of high-power events such as DRAM read/writes can be estimated.   

In this study, the number of L3 Cache load misses per cycle is used.  Since the Pentium 

IV utilizes a write-back cache policy, write misses do not necessarily cause an immediate 

memory transaction.  If the miss was due to a cold start, no memory transaction occurs.  

For conflict and capacity misses, the evicted cache block will cause a memory transaction 

as it updates memory. 

The initial findings showed that L3 cache misses were strong predictors of memory 

power consumption (Figure 5.3).  The first workload considered is the integer workload 

mesa from the SPEC CPU 2000 suite.  Since a single instance of this workload does not 

sufficiently utilize the memory subsystem, multiple instances are used to increase 
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utilization.  For mesa, memory utilization increases noticeably with each instance of the 

workload.  Utilization appears to taper off once the number of instances approaches the 

number of available hardware threads in the system.  In this case the limit is 8 (4 physical 

processors x 2 threads/processor).  The resultant quadratic power model is given in 

Equation 5.2.  The average error under the mesa workload is low at only 1%.  However, 

the model fails under extreme cases. 
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Figure 5.3 Memory Power Model (L3 Misses) – mesa 

Unfortunately, L3 misses do not perform well under all workloads.  In cases of extremely 

high memory utilization, L3 misses tend to underestimate power consumption.  It is 

found that when using multiple instances of the mcf workload, memory power 

consumption continues to increase, while L3 misses are slightly decreasing.  

It is determined that one of the possible causes is hardware-directed prefetches that are 

not accounted for in the count of cache misses.  However, Figure 5.4 shows that though 
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prefetch traffic does increase after the model failure, the total number of bus transactions 

does not.  Since the number of bus transactions generated by each processor does not 

sufficiently predict memory power, an outside (non-CPU) agent is accessing the memory 

bus.  For the target system the only other agent on the memory bus is the memory 

controller itself, performing DMA transactions on behalf of I/O devices. 

 

Figure 5.4 Prefetch and Non-Prefetch Bus Transactions – mcf 

Changing the model to include memory accesses generated by the microprocessors and 

DMA events resulted in a model that remains valid for all observed bus utilization rates.  

It should be noted that using only the number of read/write accesses to the DRAM does 

not directly account for power consumed when the DRAM is in the precharge state.  

DRAM in the precharge state consumes more power than in idle/disabled state, but less 

than in the active state.  During the precharge state, data held in the sense amplifiers is 

committed to the DRAM array.  Since the initiation of a precharge event is not directly 

controlled by read/write accesses, precharge power cannot be directly attributed to 
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read/write events.  However, in practice read/write accesses are reasonable predictors.  

Over the long term (thousands of accesses) the number of precharge events should be 

related to the number of access events.  The resultant model is given in Equation 5.3.  A 

trace of the model applied to the mcf workload is shown in Figure 5.5. This workload 

cannot be modeled using cache misses.  The model yields an average error rate of 2.2%. 
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5.2.3 Disk 

The modeling of disk power at the level of the microprocessor presents two major 

challenges: large distance from CPU to disk and little variation in disk power 

consumption.  Of all the subsystems considered in this study, the disk subsystem is at the 

greatest time and distance from the microprocessor. 

   

Figure 5.5 Memory Power Model (Memory Bus Transactions)- mcf 

Therefore, there are challenges in getting timely information from the processor’s 

perspective.  The various hardware and software structures that are intended to reduce the 

-100%

-50%

0%

50%

100%

0

10

20

30

40

50

0 500 1000 1500

E
rr

o
r 

(%
)

W
a

tt
s

Seconds

Measured

Modeled

Error

(5.3) 



77 

 

average access time to the distant disk by the processor make power modeling difficult.  

The primary structures are: microprocessor cache, operating system disk cache, I/O 

queues and I/O and disk caches.  The structures offer the benefit of decoupling high-

speed processor events from the low-speed disk events.  Since the power modeling 

techniques rely on the close relationship between the subsystems, this is a problem.   

This is evidenced in the poor performance of the first attempts.  Initially, we considered 

two events: DMA accesses and uncacheable accesses.  Since the majority of disk 

transfers are handled through DMA by the disk controller, this appeared to be a strong 

predictor.  The number of uncacheable accesses by the processor was also considered.  

Unlike the majority of application memory, memory mapped I/O (I/O address mapped to 

system address space) is not typically cached.  Generally, I/O devices use memory 

mapped I/O for configuration and handshaking.  Therefore, it should be possible to detect 

accesses to the I/O devices through uncacheable accesses.  In practice neither of these 

metrics fully account for fine-grain power behavior.  Since such little variation exists in 

the disk power consumption it is critical to accurately capture the variation that does 

exist.  In this case the lack of variation is due to a lack of power management features.  

The addition of power management magnifies the variation present in the workload.  

Accounting for and modeling the small variation in the absence of power management 

suggests an accurate model can be constructed with power management.   

To address this limitation the manner in which DMA transactions are performed is noted.  

Coarsely stated, DMA transactions are initiated by the processor by first configuring the 
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I/O device.  The transfer size, source and destination are specified through the memory 

mapped I/O space.  The disk controller performs the transfer without further intervention 

from the microprocessor.  Upon completion or incremental completion (buffer 

full/empty) the I/O device interrupts the microprocessor.  The microprocessor is then able 

to use the requested data or discard local copies of data that was sent.  This study uses the 

number of interrupts originating from the disk controller.  This approach has the 

advantage over the other metrics in that the events are specific to the subsystem of 

interest.  This approach is able to represent fine-grain variation with low error.  In the 

case of the synthetic disk workload, by using the number of disk interrupts/cycle an 

average error rate of 1.75% is achieved.  The model is provided in Equation 5.4.  An 

application of the model to the memory-intensive mcf is shown in Figure 5.6.  Note that 

this error rate accounts for the large DC offset within the disk power consumption.  This 

error is calculated by first subtracting the 21.6W of idle (DC) disk power consumption.  

The remaining quantity is used for the error calculation. 
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Figure 5.6 Disk Power Model (DMA+Interrupt) – Synthetic Disk Workload 

5.2.4 I/O 

Since the majority of I/O transactions are DMA transactions from the various I/O 

controllers, an I/O power model must be sensitive to these events.  Three events are 

considered to observe DMA traffic: DMA accesses on memory bus, uncacheable 

accesses and interrupts.  Of the three, interrupts/cycle is the most representative.  DMA 

accesses to main memory seemed to be the logical best choice since there is such a close 

relation to the number of DMA accesses and the switching factor in the I/O chips.  For 

example, a transfer of cache line aligned 16 dwords (4 bytes/dword), maps to a single 

cache line transfer on the processor memory bus.  However, in the case of smaller, non-

aligned transfers the linear relationship does not hold.  A cache line access measured as a 

single DMA event from the microprocessor perspective may contain only a single byte.  

This would grossly overestimate the power being consumed in the I/O subsystem.  

Further complicating the situation is the presence of performance enhancements in the 

I/O chips.   
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One of the common enhancements is the use of write-combing memory.  In write-

combining, the processor or I/O chip in this case combines several adjacent memory 

transactions into a single transaction further removing the one-to-one mapping of I/O 

traffic to DMA accesses on the processor memory bus.  As a result, interrupt events are 

better predictors of I/O power consumption.  DMA events failed to capture the fine-grain 

power variations.  DMA events tended to have few rapid changes, almost as if the DMA 

events had a low-pass filter applied to them.  The details of the model can be seen in 

Equation 5.5.  Accounting for the large DC offset increases error significantly to 32%.  

Another consideration with the model is the I/O configuration used.  The model has a 

significant idle power which is related to the presence to two I/O chips capable of 

providing six 133MHz PCI-X buses.  While typical in servers, this is not common for 

smaller scale desktop/mobile systems that usually contain 2-3 I/O buses and a single I/O 

chip.  Further, the server only utilizes a small number of the I/O buses present.  It is 

expected that with a heavily populated, system with fewer I/O buses, the DC term would 

become less prominent.  This assumes a reasonable amount of power management within 

the installed I/O devices. 
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5.2.5 Chipset 

The chipset power model is the simplest of all subsystems since a constant is all that is 

required for accuracy.  There are two reasons for this.  First, the chipset subsystem 

(5.5) 
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exhibits little variation in power consumption.  Therefore, a constant power model is an 

obvious choice.  Further, it is difficult to identify the effect performance events have on 

power consumption compared to induced electrical noise in the sensors.  The second, and 

more critical reason, is a limitation in the power sampling environment.  Since the chipset 

subsystem uses power from more than one power domain, the total power cannot be 

measured directly.  Instead, it is derived by finding the average measured difference in 

power between multiple domains.  The average chipset power is 19.9W. 

5.2.6 Model Validation 

Tables 5.1 and 5.2 present summaries of average errors for the five models applied to 

twelve workloads.  Errors are determined by comparing modeled and measured error at 

each sample.  A sample corresponds to one second of program execution or 

approximately 1.5 billion instructions per processor.  For performance counter sampling, 

the total number of events during the previous one second is used.  For power 

consumption, the average of all samples in the previous second (ten thousand) is used.  

One second sample intervals provide a compromise between trace size and accuracy.  

Reducing the sample interval to as low as 100 microseconds does increase the magnitude 

of error in worst-case samples.  However, the cumulative average error as shown in 

Equation 5.6 is nearly identical to that obtained with one second sample intervals.  The 

benefit is that trace size is reduced to a practical level that allows tracing complete, 

realistic workloads. 
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The I/O and disk models performed well under all workloads.  The low error rates are 

partly due to low power variation / high idle power consumption.  The CPU and memory 

subsystems had larger errors, but also larger workload variation.  The worst case errors 

for CPU occurred in the memory-bound workload: mcf.  Due to a high CPI 

(cycles/instruction) of greater than ten cycles, the fetch-based power model consistently 

underestimates CPU power.  This is because under mcf the processor only fetches one 

instruction every 10 cycles even though it is continuously searching for (and not finding) 

ready instructions in the instruction window.  For mcf this speculative behavior has a 

high power cost that is equivalent to executing an additional 1-2 instructions/cycle. 

Table 5.1 Integer Average Model Error 

Workload CPU Chipset Memory I/O Disk 

Idle 1.74% 0.586% 3.80% 0.356% 0.172% 

Gcc 4.23% 10.9% 10.7% 0.411% 0.201% 

Mcf 12.3% 7.7% 2.2% 0.332% 0.154% 

Vortex 6.53% 13.0% 15.6% 0.295% 0.332% 

DBT-2 9.67% 0.561% 2.17% 5.62% 0.176% 

SPECjbb 9.00% 7.45% 6.14% 0.393% 0.144% 

DiskLoad 5.93% 3.06% 2.93% 0.706% 0.161% 

Integer Average 
7.06 

±3.50% 

6.18% 

±4.92% 

6.22% 

±5.12% 

1.16% 

±1.97% 

0.191% 

±0.065% 

All Workload Average 
6.67 % 

±3.42% 

5.97% 

±4.23% 

8.80% 

±5.54% 

0.824% 

±1.52% 

0.390% 

±0.492% 

 

(5.6) 



83 

 

The memory model averaged about 9% error across all workloads.  Surprisingly the 

memory model fared better under integer workloads. The error rate for floating point 

workloads tended to be highest for workloads with the highest sustained power 

consumption.  For these cases the model tends to underestimate power.  Since the rate of 

bus transactions is similar for high and low error rate workloads it is suspected that the 

cause of underestimation is the access pattern.  In particular the model does not account 

for differences in the power for read versus write access.  Also, the number of active 

banks within the DRAM is not directly accounted for.  Accounting for the mix of reads 

versus writes would be a simple addition to the model.  However, accounting for active 

banks will likely require some form of locality metric. 

Idle power error is low for all cases indicating a good match for the DC term in the 

models.  Chipset error is high considering the small amount of variation.  This is due to 

the limitation of the constant model assumed for chipset power. 

Table 5.2 Floating Point Average Model Error 

Workload CPU Chipset Memory I/O Disk 

Art 9.65% 5.87% 8.92% 0.240% 1.90% 

Lucas 7.69% 1.46% 17.5 % 0.245% 0.31% 

Mesa 5.59% 11.3% 8.31% 0.334% 0.17% 

mgrid 0.360% 4.51% 11.4% 0.365% 0.55% 

wupwise 7.34% 5.21% 15.9% 0.588% 0.42% 

FP Average 
6.13% 

±3.53% 

5.67% 

±3.57% 

12.41% 

±4.13% 

0.354% 

±0.142% 

0.67% 

±0.70% 

All Workload 

Average 

6.67 % 

±3.42% 

5.97% 

±4.23% 

8.80% 

±5.54% 

0.824% 

±1.52% 

0.39% 

±0.49% 
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5.3 Complete-System Desktop Power Model 

In this section results for the application of the trickle-down modeling approach are 

presented for a recent desktop platform.  This platform differs from the previous server in 

terms of process technology, system architecture, manufacturer and workload among 

others.  It is shown that though this platform is significantly different than the server, the 

trickle-down modeling approach still accurately models power.  Of particular importance 

are two major differences: subsystem level power management and workload 

characteristics.  Power management increases the complexity and utility of the power 

model as power consumption varies greatly with the application of power management.  

Compare this to the server system in which power remains near a constant level due to 

subsystems not reducing performance capacity, and therefore power consumption, during 

periods of low utilization.  Increased power variation is also attributable to desktop-

specific workloads.  While server workloads tend to always operate at full speed (e.g. 

SPEC CPU) desktop workloads such as SYSmark and 3DMark contain large portions of 

low utilization.  This exposes the impact of power management and the need to model it.  

5.3.1 System Description 

To validate the effectiveness of the trickle-down approach the process is applied to a 

recent desktop platform.  A comparison of the two systems used in this study (server and 

desktop) is provided in Table 5.3.  These systems differ in their power management 

implementations and subsystem components.  The desktop system is optimized for power 
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efficiency rather than performance.  This leads to greater variation in power consumption 

compared to a server since power management features reduce power greatly during low 

utilization.  Server systems tend to employ less aggressive power savings.  Therefore, 

power at low utilization is greater and overall variation is lesser.  This difference is 

evident in the analysis of average subsystem-level power in Tables 5.1 - 5.2 and 5.6.  The 

power management implementation in the desktop system also requires the use of more 

extensive power models.  Rather than only needing to consider CPU clock gating and 

DRAM power down modes, the desktop system model must consider DVFS, chipset link 

power management, disk and GPU power management.  The wider range of power 

consumption also leads to greater temperature sensitivity. 

Table 5.3 System Comparison 

Platform 

Segment 

Server Desktop 

Manufacturer Intel AMD 

Processor(s) Quad-socket 130nM 

2.8GHz 

Dual-core 45nM 2.0GHz 

Memory 8GB DDR-200 4GB DDR3-1066 

Power 

Management 

CPU Clock Gating 

DRAM Power Down 

CPU Clock Gating and DVFS 

DRAM Power Down and Self 

Refresh 

Chipset Link Disconnect 

Harddrive Spin Down and 

ATA modes 

GPU Clock Gating 

Graphics Rage ProXL RS780 

Observable 

Subsystems 

CPU 

Chipset 

Memory 

I/O 

Disk 

CPU 

Chipset 

Memory 

Memory Controller 

GPU 

Disk 
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Another major difference is the ability to measure subsystem power at a finer granularity.  

The desktop platform allows direct measurement of memory controller and GPU in 

addition to all the subsystems that are measureable in the server system.  One exception is 

the server I/O subsystem which contains numerous PCI-X busses and bridges.  The 

desktop system does not contain comparable I/O subsystem.  Therefore, it is not included 

in the study. 

5.3.2 Workloads 

Due to the distinctions between server and desktop systems several desktop or client-

appropriate workloads are added.  In typical server or desktop benchmarks the GPU 

subsystem is almost entirely idle.  Therefore, to exercise the GPU subsystem the 

3DMark06 benchmark is included.  3DMark06 contains six subtests covering CPU and 

GPU intensive workloads.  Four of the subtests target the GPU’s 3D processing engine 

(gt1, gt2, hdr1, hdr2).  The other two (cpu1 and cpu2) heavily utilize CPU cores but have 

almost no GPU utilization.  Targeting the 3D engine generates the largest power variation 

since the 3D engine is by far the largest power consumer in the GPU.  An interesting side 

effect of the desktop GPU is intense system DRAM utilization.  To reduce cost and 

power consumption, desktop systems such as this use a portion of system DRAM in lieu 

of locally attached, private DRAM.  As a result, 3D workloads in desktop systems are 

effective at generating wide power variation in the memory subsystem. 

Overall subsystem level power management is exposed through the addition of the 

SYSmark 2007 benchmark.  This workload is implemented using simulated user input 
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through the application GUI.  The numerous delays required for GUI interaction causes 

many idle phases across the subsystems.  This allows power management to become 

active.  Contrast this to the vast majority of benchmarks which, by design, operate the 

CPU and other subsystems only at the 100% load level.  The DBT-2 database workload is 

excluded as it is not practical and relevant to run on a desktop platform.  For comparison 

to the server model, SPEC CPU, SPECjbb and Idle workloads are included.  The 

workloads on targeted subsystems are summarized below in Table 5.4. 

Table 5.4 Desktop Workloads 

Workload Description Subsystems Targeted 

Idle Only background OS processes All (power managed) 

SPEC CPU 2006 

 

INT 

perlbench, bzip2, gcc, mcf, 

gobmk, hmmer, sjeng, libquantum, 

h264ref, omnetpp, astar, 

xalancbmk 

CPU 

Memory 

Memory Controller 

FP 

bwaves, games, milc, zeusmp, 

gromacs, cactusADM, leslie3d, 

namd, dealII, soplex, povray, 

calculix, gemsFDTD, tonto, lbm, 

wrf, sphinx3 

CPU 

Memory 

Memory Controller 

3DMark06 

gt1 
Graphics Test 1 and 2 

GPU 

Memory 

Memory Controller 
gt2 

cpu1 
CPU Test 1 and 2 CPU 

cpu2 

hdr1 
High Dynamic Range Test 1 and 2 

GPU 

Memory 

Memory Controller hdr2 

SYSmark 2007 

EL E-Learning CPU 

Memory 

Memory Controller 

Chipset 

Disk 

VC Video Creation 

PR Productivity 

3D 3D 

SPECjbb2005 Server-Side Java 

CPU 

Memory 

Memory Controller 
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5.3.3 Performance Event Selection 

Performance event selection is critical to the success of performance counter-driven 

power models.  To identify a minimum set of representative performance events, the 

relationship between each event and power consumption must be understood.  This 

section describes the performance monitoring counter events used to construct the trickle-

down power model.  The definition and insight behind selection of the counters is 

provided. 

Fetched µops – Micro-operations fetched.  Comparable to the Pentium IV fetched micro-

operations, this metric is highly correlated to processor power.  It accounts for the largest 

portion of core pipeline activity including speculation.  This is largely the result of fine-

grain clock gating.  Clocks are gated to small portions of the pipelines when they are not 

being used. 

FP µops Retired – Floating point micro-operations retired.  FP µops Retired accounts 

for the difference in power consumption between floating point and integer instructions.  

Assuming equal throughput, floating point instructions have significantly higher average 

power.  Ideally, the number of fetched FPU µops would be used.  Unfortunately, this 

metric is not available as a performance counter.  This is not a major problem though 

since the fetched µops metric contains all fetched µops, integer and floating point.  

DC Accesses – Level 1 Data Cache Accesses.  A proxy for overall cache accesses 

including Level 1,2,3 data and instruction.  Considering the majority of workloads, level 



89 

 

1 data cache access rate dominates cache-dependent power consumption.  No other single 

cache access metric correlates as well to processor core power (including caches). 

%Halted/%Not-Halted – Percent time processor is in halted state.  This represents 

power saved due to explicit clock gating.  The processor saves power using fine-grain 

and coarse-grain of clock gating.  Fine-grain clock gating saves power in unutilized 

portions of the processor while instructions are in-flight.  Coarse-grain clock gating can 

save more power than fine-grain yet it requires the processor to be completely idle.  The 

processor applies this type of gating only when the processor is guaranteed to not have 

any instructions in-flight.  This condition by definition occurs following execution of the 

HLT instruction.  Halt residency is controlled by the operating system and interrupts 

scheduling work on processors.       

CPU Clock Frequency – Core clocks per second.  Due to the use of DVFS, it is 

necessary to track the instantaneous frequency of the processor.  Though some metrics 

such as µops fetched or retired implicitly track the power consumed in many components 

due to clock frequency, they do not track workload-independent power consumers such 

as clock grids.  Using clock frequency in conjunction with %Halt it is possible to account 

for power consumed in these units. 

CPU Voltage – CPU Voltage Rail.  Due to the application of DVFS the processor may 

operate at a range of discrete voltages in order to save power.  Changes in voltage have a 

significant impact on power consumption due to the exponential relationship between 
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voltage and dynamic (~V
2
) and leakage power (~V

3
).  Due to a single, shared voltage 

plane, the actual voltage applied is the maximum requested of all cores in a socket.  The 

requested voltage can be read using the P-State Status Register [Bk09]. 

Temperature – CPU Temperature.  At the high voltages required for multi-GHz 

operation, leakage power becomes a major component of power consumption.  Also, at 

idle when dynamic power is nearly eliminated due to clock gating leakage power can be 

the dominant contributor.  Since temperature has a strong relation to leakage power (T
2
) 

it is necessary to account for this effect by measuring temperature.  Temperature can be 

approximated using a series of on-die thermal sensors.  The output of these sensors can 

be obtained using a configuration-space register [Bk09].   

GPU Non-Gated Clocks – Number of GPU clocks per second.  Similar to CPU power, 

GPU power is greatly impacted by the amount of clock gating and DVFS.  In this study 

the DVFS usage is restricted to frequency changes only.  Therefore, nearly all GPU 

power variation can be accounted for by this single metric.   

DCT Accesses – ∑ N=0-1 DCTNPageHits+DCTNPageMisses + DCTNPageConflicts.  DCT 

(DRAM ConTroller) Access accounts for all memory traffic flowing out of the two on-

die memory controllers, destined for system DRAM.  These events include cpu-generated 

and DMA traffic.   

Link Active% – Percent time Hypertransport links connected.  To save power in the I/O 

interconnection during idle periods, the Hypertransport links are disconnected.  During 
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periods of disconnect, cache snoop traffic and interrupts are blocked.  This allows power 

to be saved in the CPU I/O interconnect and I/O subsystem.  Also, the DRAM may be 

placed in self-refresh mode since DRAM access is blocked.  If a cache snoop or interrupt 

event occurs, the links are reconnected.  

Spindle Active % – Percent time hard disk spindle is spinning.  In traditional 

mechanical hard drives, the spindle motor represent the largest single consumer of power 

in the drive.  To save energy the spindle motor can be powered down.  Due to the high 

latency (and energy consumption) for starting/stopping the spindle this can only be done 

when the drive is expected to be idle for a long time (minutes or more).  In practice, 

typical workloads prevent the spindle from ever powering down.  This includes all 

benchmarks used in this study, except idle.  Therefore, spindle activity can be sufficiently 

accounted for by only distinguishing between idle and active workloads.   

CPUToIOTransactions – Non-cacheable access to memory-mapped I/O devices .  I/O 

device activity can be approximated using a measure of how many memory transactions 

generated by the CPUs are targeted at non-cacheable address space.  Typically, I/O 

devices contain a DMA controllers which performs access to cacheable space in system 

memory.  The configuration and control of these transactions is performed by the CPU 

through small blocks of addresses mapped in non-cacheable space to each I/O device.    

DRAMActive% – Percent time DRAM channel is active.  Power savings in the DRAM 

and memory controller is controlled by the memory controller.  When a memory channel 
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has not issued a memory transaction for at least fixed period of time, the memory 

controller sends the channel to one of the precharge power down modes [Bk09].  This 

primarily saves power in the DRAM chips, but also provides a slight savings in the 

memory controller.    

SUBSYSTEM POWER MODELS 

The impact of effective power management can be seen in the form of the power models 

of this section.  In all cases it is necessary to explicitly account for power management to 

obtain accurate models.  This causes all models to take a similar form.  Previous models 

[BiVa05] [BiJo06-1] are dominated by terms which were directly proportional to 

workload activity factors (IPC, cache accesses).  While those workload-dependent terms 

are also used here, Idle Power Management and Irreducible power are also quantified.  

The idle power management term estimates power saved when instructions or operations 

are not actively proceeding through the subsystem.  For CPUs this primarily occurs when 

executing the idle loop.  The CPU detects one of the idle instructions (HLT, mwait) and 

takes actions such as clock or power gating.  Other subsystems such as memory or I/O 

links similarly detect the absence of transactions and save power through various degrees 

of clock gating.  Irreducible power contains the “baseline” power which is consumed at 

all times.  This baseline power is largely composed of leakage and ungateable 

components. 
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5.3.4 CPU 

To test the extensibility of performance counter power modeling across processor 

architectures, the methodology is applied to an AMD Phenom quad-core processor.  Like 

the Intel Pentium 4 processor used in sections 3.2 and 3.3, fetched instructions is a 

dominant metric for power accounting.  Differences in architecture and microarchitecture 

dictate that additional metrics are needed to attain high accuracy.  Two areas are 

prominent: floating point instruction power and architectural power management.  Unlike 

the Intel server processor which exhibits nearly statistically uniform power consumption 

across workloads of similar fetch rate, the AMD desktop processor consumes up to 30% 

more power for workloads with large proportions of floating point instructions. 

To account for the difference in floating point instruction power, the desktop processor 

model employs an additional metric for retired floating point instructions.  A still larger 

power difference is caused by the addition of architectural power management on the 

desktop processor.  The older, server processor only has architectural power management 

in the form of clock gating when the halt instruction is issued by the operating system.  

The newer, desktop processor adds architectural, DVFS.  This leads to drastic reductions 

in switching and leakage power.  To account for these power reductions, the desktop 

model includes tracking of processor frequency, voltage and temperature.  The details of 

the model can be found in Section 3.4.5. 
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While this model is accurate for most current generation processors, future processors 

may require additional metrics to maintain comparable accuracy.  Power savings 

techniques such as power gating and on-die voltage regulation will require new methods 

for power accounting.  These techniques extend the sensitivity of leakage power 

consumption to functional unit activity levels.  Currently, leakage power is dictated 

almost completely by architecturally visible, core-level, idle and DVFS states.  Future 

power gating implementations will likely be applied within subsets of a core, such as 

floating point units or caches.  Similarly, on-die regulation allows DVFS to be applied 

independently to particular functional units.  This increases the complexity of 

performance counter power modeling which normally only accounts for switching power.  

To accounting for these local power adaptations, models will need either detailed 

knowledge of the power gating and DVFS implementations or statistical characterizations 

of their application.  Given the effectiveness of performance counter power models at 

accounting for fine-grain switching power, it is likely that power gating and on-die 

regulation can also be accounted for. 

5.3.5 GPU 

To estimate GPU power consumption a technique similar to that typically used for CPUs 

is employed: count the number of ungated clocks.  In CPUs this is done by subtracting 

the number of halted clocks from all clocks [BiJo06-1].  In the case of the RS780 the 

ungated clocks can be measured directly.  This approach only accounts directly for power 

saved due to clock gating.  Power reductions due to DVFS are not explicitly represented.  
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Despite this, high accuracy of less than 1.7% error is obtained due to the implementation 

of DVFS.  Unlike CPU DVFS which allows the operating system to reduce voltage and 

frequency during active phases, GPU DVFS reduces voltage only when clock gating is 

applied (idle).  Therefore, increased power due to operating at the higher voltage is 

included in the non-gated clock metric.  This bi-modal behavior can be seen in Figure 

5.7.  The mostly-idle, clock-gated portion of the HDR1 workload draws about 1.5W.  The 

fully active phase increases voltage and eliminates clock gating.  Power increases 

drastically to over 4W. 

An alternative metric for GPU power was also considered: % GUI Active.  This metric 

represents the portion of time in which the GPU is updated the display.  The main 

limitation of this approach is that it does not account for the intensity of work being 

performed by the underlying GPU hardware.  Low-power 2D workloads, such as low-bit 

rate video playback, appear to have the same GPU utilization as more intense high-

resolution video decoding.  An example of modeled versus measured GPU power for 

3DMark06-HDR1 is provided in Figure 5.7.  Modeled GPU power as a function of non-

gated GPU clocks is shown by Equation 5.7.     

GPU Power =  

0.0068 × (Non-Gated Clocks /sec) × 10
-6  

+ 0.8467
 

(5.7) 
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Figure 5.7 GPU Power Model (Non-Gated Clocks) – 3DMark06-HDR1 

5.3.6 Memory 

Memory or DRAM power consumption is one of the more variable subsystems.  Similar 

to the CPU, the application of various power management features yields a wide range of 

power consumption.  For example consider the standard deviation of power consumption 

in SPECjbb of 1.096W compared to average its average of 1.71W.  This variation is 

caused by the three modes of operation: self-refresh, precharge power down and active.  

Self-refresh represents the lowest power state in which DRAM contents are maintained 

by on-chip refresh logic.  This mode has a high entry/exit latency and is only entered 

when the system is expected to be idle for a long period.  The memory controller selects 

this mode as part of its hardware-controlled C1e idle [Bk09] state.  Since this state is 

entered in conjunction with the hypertransport link disconnect, the power savings can be 

represented using the LinkActive% metric.  Pre-charge power down is a higher-power, 

lower-latency alternative which provides power savings for short idle phases.  This 

allows pre-charge power savings to be considered with normal DRAM activity power.  
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Light activity yields higher precharge residency.  DRAM activity is estimated using the 

DCTAccess metric.  The sum of all DCT accesses on both channels (hit, miss and 

conflict) correlates positively to active DRAM power and negatively to precharge power 

savings.  In most workloads this approach gave error of less than 10%.  The two outliers 

were the CPU subtests of 3DMark06.  Due to many of the memory transactions being 

spaced at intervals just slightly shorter than the precharge power down entry time, the 

model underestimates power by a larger margin.  Higher accuracy would require a direct 

measurement of pre-charge power down residency or temporal locality of memory 

transactions.  An example of model versus measured Memory power for SYSmark 2007-

3D is provided in Figure 5.8.  The modeled power as a function of the DRAM channel 

access rate (DCTAccess/sec) and Hypertransport activity percentage (LinkActive%) is 

given in Equation 5.8.  Additional details for the equation components, DCTAccess/sec 

and LinkActive percent are given in section 5.3.3. 

DIMM Power = 

4x10
-8

 x DCTAccess/sec + 0.7434 x LinkActive% + 0.24 

 

Figure 5.8 DRAM Power Model (∑DCT Access, LinkActive) – SYSmark 2007-3D 
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5.3.7 Memory Controller 

Since the memory controller is responsible to entry and exit of power saving modes for 

itself and memory, the memory metrics can also be used to estimate memory controller 

power.  Though both use link active and DCTAccesses the relative weights are different.  

Memory power has a large sensitivity to the transaction rate, 4 ·  10
-8

 W/transaction/sec.  

Compare this to the memory controller which is more than four times smaller at 9 ·  10
-9

 

W/transaction/sec.  Similarly, transaction-independent portion is much higher for the 

memory controller at 1.9W compared to 0.98W for memory.  This reflects the 

unmanaged power consumers in the memory controller.  The same 3DMark06 error 

outliers exist here. An example of model versus measured Memory Controller power for 

3DMark06-HDR1 is provided in Figure 5.9.  The modeled power is provided below in 

Equation 5.9. 

Memory Controller Power =  

9x10
-9

 x DCTAccess/sec + 0.798 x LinkActive% + 1.05 

 

Figure 5.9 Memory Controller Power (∑DCT Access, LinkActive) – HDR1 
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5.3.8 Chipset 

The Chipset power model represents power consumed in the Hypertransport controller.  

Like the memory and memory controller subsystems, power consumption is dominated 

by the link disconnect state and memory controller accesses.  Overall and worst-case 

were less than the others due to the workload independent contributions being relatively 

the largest.  The model for I/O controller power is shown in Equation 5.10.    

I/O Controller Power =  

-10
-16 

x (DCTAcc/sec)
2
 + 2x10

-8 
x (DCTAcc/sec) + 1.24 x LinkAct% + 1.34 

5.3.9 Disk 

The improvements in power management for hard disks between the server-class used in 

the Server study study [BiJo06-1] and the more recent desktop/mobile disk used here is 

evident in the power model in Equation 5.11.  Rather than the negligible power variation 

previously observed (<1%), the variable portion (one standard deviation) is on average 

30%.  This provides more power savings, but a more difficult modeling challenge.  As a 

result average error is higher at 6.6%.   The hard disk power model which is a function of 

CPU-to-I/O transactions and spindle activity is shown in Equation 5.11. 

Hard Disk Power =  

3 x 10
-5

 x (CPUToIOTrans/sec) + 0.629 x SpindleActive + 0.498 

5.3.10 Model Validation 

Table 5.5 summarizes the average error results for the six subsystem power models.  The 

CPU subsystem had the second lowest error at 1.64% largely due to the comprehensive 

(5.11) 

(5.10) 
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power model that was used.  Compare to the server power model which averaged over 

6% error using only three inputs.  More importantly, this low error rate suggests that 

performance counter power models are effective across multiple microprocessor 

architecture generations, platforms, and manufacturers (Intel and AMD). 

The chipset power model is also improved compared to the server chipset model with 

average error of 3.3%.  Like the server model, the desktop model contained a large 

workload-independent component: although in this case it contributed less than half the 

total chipset power rather than the 100% seen in the server model. 

The memory and memory controller power models had the highest average error with 

5.3% and 6.0% respectively.  The high error is largely due to the CPU portion of the 

3DMark06 workload.  This workload generates memory transactions at an interval that 

prevents effective utilization of precharge power down modes.  Therefore, the model 

tends to underestimate memory power consumption.  To resolve this error, a metric of 

typical memory bus idle duration or power down residency would be needed. 

The GPU power model had the lowest error rate at slightly less than 1%.  This illustrates 

the effectiveness of the non-gated GPU clocks as a proxy for GPU power.  In most 

workloads the GPU power has a clear bimodal characteristic.  Active regions have a 

power level that is consistent.  Idle regions also have a consistent power level due to the 

presence of idle clock gating.  It is expected that as finer grain power management is 
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applied to the GPU core logic, larger active power variation will occur.  This will 

necessitate a comprehensive power model such as that used in the CPU. 

Table 5.5 Average Error 

 CPU Chipset Memory Memory Controller GPU Disk 

Idle 0.3% 1.8% 1.2% 0.4% 1.7% 2.5% 

SPEC CPU2006 Integer 1.3% 4.0% 2.3% 3.4% 0.2% 5.3% 

SPEC CPU2006 FP 1.1% 2.6% 7.2% 2.9% 0.5% 4.4% 

gt1 0.8% 5.3% 3.3% 1.3% 0.9% 7.1% 

gt2 1.2% 5.8% 3.3% 4.4% 0.4% 8.7% 

cpu1 1.6% 1.8% 12.5% 14.1% 1.0% 6.9% 

cpu2 1.9% 1.9% 11.5% 13.4% 1.3% 9.2% 

hdr1 2.2% 2.7% 0.8% 0.7% 1.0% 0.9% 

hdr2 1.9% 4.7% 1.6% 8.6% 0.7% 2.7% 

EL 2.7% 9.3% 8.5% 7.7% 0.0% 1.8% 

VC 1.0% 1.8% 8.4% 11.7% 1.6% 10.6% 

PR 2.5% 1.1% 5.7% 5.6% 0.9% 12.1% 

3D 2.8% 3.5% 5.5% 4.7% 0.0% 10.7% 

SPECjbb 1.5% 0.4% 2.0% 4.1% 0.8% 9.8% 

Average 1.63% 3.34% 5.27% 5.93% 0.79% 6.62% 

 

Finally, the disk subsystem is the one subsystem which has a higher error rate compared 

the server power model.  In this case the error can be attributed to the effectiveness of on-

disk and link power management.  In the case of the server model, no active power 

management is provided.  This allows for an accurate model as the workload independent 

portion dominates.  In contrast the more recent desktop hard drive has a workload 

dependent portion which contributes as much as 1/3 of total power.  This causes 

modeling error to have a larger impact.  Note that the subtests with the highest errors are 

also those with the highest disk utilization.     
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5.4 Summary 

In this section feasibility of predicting complete system power consumption using 

processor performance events is demonstrated.  The models take advantage of the trickle-

down effect of these events. These events which are visible in the processing unit, are 

highly correlated to power consumption in subsystems including memory, chipset, I/O, 

disk and microprocessor. Subsystems farther away from the microprocessor require 

events more directly related to the subsystem, such as I/O device interrupts or clock 

gating status.  Memory models must take into account activity that does not originate in 

the microprocessor.  In this case, DMA events are shown to have a significant relation to 

memory power.  It is shown that complete system power can be estimated with an 

average error of less than 9% for each subsystem using performance events that trickle 

down from the processing unit. 

The trickle-down approach is shown to be effective across system architectures, 

manufacturers and time.  High accuracy is achieved on systems from both major PC 

designers (Intel and AMD), Server and desktop architectures, and across time with 

systems from 2005 and 2010 exhibiting comparable accuracy.   
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Chapter 6  Performance Effects of 

Dynamic Power Management 

6.1 Direct and Indirect Performance Impacts 

6.1.1 Transition Costs 

Due to physical limitations, transitioning between adaptation states may impose some 

cost.  The cost may be in the form of lost performance or increased energy consumption.  

In the case of DVFS, frequency increases require execution to halt while voltage supplies 

ramp up to their new values.  This delay is typically proportional to the rate of voltage 

change (seconds/volt).  Frequency decreases typically do not incur this penalty as most 

digital circuits will operate correctly at higher than required voltages.  Depending on 

implementation, frequency changes may incur delays.  If the change requires modifying 

the frequency of clock generation circuits (phase locked loops), then execution is halted 

until the circuit locks on to its new frequency.  This delay may be avoided if frequency 

reductions are implemented using methods which maintain a constant frequency in the 

clock generator.  This is the approach used in Quad-Core AMD processor c-state 

implementation.  Delay may also be introduced to limit current transients.  If a large 

number of circuits all transition to a new frequency, then excessive current draw may 

result.  This has a significant effect on reliability.   Delays to limit transients are 
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proportional to the amount of frequency change (seconds/MHz).  Other architecture-

specific adaptations may have variable costs per transition.  For example, powering down 

a cache requires modified contents to be flushed to the next higher level of memory.  This 

reduces performance and may increase power consumption due to the additional bus 

traffic.  When a predictive component is powered down it no longer records program 

behavior.  For example, if a branch predictor is powered down during a phase in which 

poor predictability is expected, then branch behavior is not recorded.  If the phase 

actually contains predictable behavior, then performance may be lost and efficiency may 

be lost.  If a unit is powered on and off in excess of the actual program demand, then 

power and performance may be significantly affected by the flush and warm-up cycles of 

the components.  In this study the focus is on fixed cost per transition effects such as 

those required for voltage and frequency changes. 

6.1.2 Workload Phase and Policy Costs 

In the ideal case the transition costs described above do not impact performance and save 

maximum power.  The reality is that performance of dynamic adaption is greatly affected 

by the nature of workload phases and the power manager’s policies.  Adaptations provide 

power savings by setting performance to the minimum level required by the workload.  If 

the performance demand of a workload were known in advance, then setting performance 

levels would be trivial.  Since they are not known, the policy manager must estimate 

future demand based on the past.  Existing power managers, such as those used in this 

study (Windows Vista [Vi07] and SLES Linux [PaSt06]), act in a reactive mode.  They 
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can be considered as predictors which always predict the next phase to be the same as the 

last.  This approach works well if the possible transition frequency up the adaptation is 

greater than the phase transition frequency of workload.  Also, the cost of each transition 

must be low considering the frequency of transitions.  In real systems, these requirements 

cannot currently be met.  Therefore, the use of power adaptations does reduce 

performance to varying degrees depending on workload.  The cost of mispredicting 

performance demand is summarized below. 

Underestimate: Setting performance capacity lower than the optimal value causes 

reduced performance.  Setting performance capacity lower than the optimal value may 

cause increased energy consumption due to increased runtime.  It is most pronounced 

when the processing element has effective idle power reduction. 

Overestimate: Setting performance capacity higher than the optimal value reduces 

efficiency as execution time is not reduced yet power consumption is increased.  This 

case is common in memory-bound workloads.   

Optimization Points: The optimal configuration may be different depending on which 

characteristic is being optimized.  For example, Energy×Delay may have a different 

optimal point compared to Energy×Delay
2
. 

6.1.3 Performance Effects 

P-states and C-states impact performance in two ways: Indirect and Direct.  Indirect 

performance effects are due to the interaction between active and idle cores.  In the case 
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of Quad-Core AMD processors, this is the dominant effect.  When an active core 

performs a cache probe of an idle core, latency is increased compared to probing an 

active core.  The performance loss can be significant for memory-bound (cache probe-

intensive) workloads.  Direct performance effects are due to the current operating 

frequency of an active core.  The effect tends to be less compared to indirect, since 

operating systems are reasonably effective at matching current operating frequency to 

performance demand.  These effects are illustrated in Figure 6.1. 

Two extremes of workloads are presented: the compute-bound crafty and the memory-

bound equake.  For each workload, two cases are presented: fixed and normal scheduling.  

Fixed scheduling isolates indirect performance loss by eliminating the effect of OS 

frequency scheduling and thread migration.   This is accomplished by forcing the 

software thread to a particular core for the duration of the experiment.  In this case, the 

thread runs always run at the maximum frequency.  The idle cores always run at the 

minimum frequency.  As a result, crafty achieves 100 percent of the performance of 

processor that does not use dynamic power management.  In contrast, the memory-bound 

equake shows significant performance loss due to the reduced performance of idle cores.  

Direct performance loss is shown in the dark solid and light solid lines, which utilize OS 

scheduling of frequency and threads.  Because direct performance losses are caused by 

suboptimal frequency in active cores, the compute-bound crafty shows a significant 

performance loss.  The memory-bound equake actually shows a performance 
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improvement for low idle core frequencies.  This is caused by idle cores remaining at a 

high frequency following a transition from active to idle.    

 

Figure 6.1 Direct and Indirect Performance Impact 

6.1.4 Indirect Performance Effects 

The amount of indirect performance loss is mostly dependent on the following three 

factors:  Idle core frequency, OS p-state transition characteristics, and OS scheduling 

characteristics.  The probe latency (time to respond to probe) is largely independent of 

idle core frequency above the “breakover” frequency (FreqB).  Below FreqB the 

performance drops rapidly at an approximately linear rate.  This can be seen in Figure 6.1 

as the dashed light line.  The value of FreqB is primarily dependent on the inherent probe 

latency of the processor and the number of active and idle cores.  Increasing the active 

core frequency increases the demand for probes and therefore increases FreqB. Increasing 
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the number of cores has the same effect.  Therefore, multi-socket systems tend to have a 

higher FreqB.  Assuming at least one idle core, the performance loss increases as the ratio 

of active-to-idle cores increases.  For an N-core processor, the worst-case is N-1 active 

cores with 1 idle core.   To reduce indirect performance loss, the system should be 

configured to guarantee than the minimum frequency of idle cores is greater than or equal 

to FreqB.  To this end the Quad-Core AMD processor uses clock ramping in response to 

probes [Bk09].  When an idle core receives a probe from an active core, the idle core 

frequency is ramped to the last requested p-state frequency.  Therefore, probe response 

performance is dictated by the minimum idle core frequency supported by the processor.  

For the majority of workloads, this configuration yield less than 10 percent performance 

loss due to idle core probe latency. 

The other factors in indirect performance loss are due to the operating system interaction 

with power management.  These factors, which include OS p-state transition and 

scheduling characteristics, tend to mask the indirect performance loss.  Ideally, the OS 

selects a high frequency p-state for active cores and a low frequency for idle cores.  

However, erratic workloads (many phase transitions) tend to cause high error rates in the 

selection of optimal frequency.  Scheduling characteristics that favor load-balancing over 

processor affinity worsen the problem.  Each time the OS moves a process from one core 

to another, a new phase transition has effectively been introduced.  More details of OS p-

state transitions and scheduling characteristics are given in the next section on direct 

performance effects. 
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6.1.5 Direct Performance Effects 

Since the OS specifies the operating frequency of all cores (p-states), the performance 

loss is dependent on how the OS selects a frequency.  To match performance capacity 

(frequency) to workload performance demand, the OS approximates demand by counting 

the amount of slack time a core has.  For example, if a core runs for only 5 ms of its 10 

ms time allocation it is said to be 50 percent idle.  In addition to the performance demand 

information, the OS p-state algorithm uses a form of low-pass filtering, hysteresis, and 

performance estimation/bias to select an appropriate frequency.  These characteristics are 

intended to prevent excessive p-state transitions.  This has been important historically 

since transitions tended to cause a large performance loss (PLL settling time, VDD 

stabilization).   However, in the case of Quad-Core AMD processors and other recent 

designs, the p-state transition times have been reduced significantly.  As a result, this 

approach may actually reduce performance for some workloads and configurations. See 

the light, solid line for equake and dark dashed lines for crafty in Figure 6.1.  These two 

cases demonstrate the performance impact of the OS p-state transition hysteresis. 

As an example, consider a workload with short compute-bound phases interspersed with 

similarly short idle phases.  Due to the low-pass filter characteristic, the OS does not 

respond to the short duration phases by changing frequency.  Instead, the cores run at 

reduced frequency with significant performance loss.  In the pathologically bad case, the 

OS switches the frequency just after the completion of each active/idle phase.  The cores 

run at high frequency during idle phases and low frequency in active phases.  Power is 
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increased while performance is decreased.  OS scheduling characteristics exacerbate this 

problem.  Unless the user makes use of explicit process affinity or an affinity library, 

some operating systems will attempt to balance the workloads across all cores.  This 

causes a process to spend less contiguous time on a particular core.  At each migration 

from one core to another there is a lag from when the core goes active to when the active 

core has its frequency increased.  The aggressiveness of the p-state setting amplifies the 

performance loss/power increase due to this phenomenon.  Fortunately, recent operating 

systems such as Microsoft Windows Vista provide means for system designers and end 

users to adjust the settings to match their workloads/hardware [Vi07].     

6.2 Reactive Power Management 

In this section, results are presented to show the effect that dynamic adaptations 

ultimately have on performance and power consumption.  All results are obtained from a 

real system, instrumented for power measurement.  The two major areas presented are 

probe sensitivity (indirect) and operating system effects (direct). 

First, the probe sensitivity of SPEC CPU2006 is considered.  Table 6.1 shows 

performance loss due to the use of p-states.  In this experiment the minimum p-state is set 

below the recommended performance breakover point for probe response.  This 

emphasizes the inherent sensitivity workloads have to probe response.  Operating system 

frequency scheduling is biased towards performance by fixing active cores at the 

maximum frequency and idle cores at the minimum frequency.  These results suggest that 

floating point workloads tend to be most sensitive to probe latency.  However, in the case 
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of SPEC CPU2000 workloads, almost no performance loss is shown.  The reason, as 

shown in section 4.3.1, is that smaller working set size reduces memory traffic and, 

therefore, the dependence on probe latency.  For these workloads only swim, equake, and 

eon showed a measureable performance loss. 

Table 6.1 Performance Loss Due to Low Idle Core Frequency – SPEC CPU 2006 

SPEC CPU 2006 – INT 

perlbench -0.8% sjeng 0.0% 

bzip2 -1.0% libquantum -7.0% 

gcc -3.6% h264ref -0.8% 

mcf -1.8% omnetpp -3.7% 

gobmk -0.3% astar -0.5% 

hmmer -0.2%  

SPEC CPU 2006 – FP 

bwaves -5.6% soplex -6.7% 

games -0.6% povray -0.5% 

milc -7.9% calculix -0.6% 

zeusmp -2.1% GemsFDTD -5.9% 

gromacs -0.3% tonto -0.6% 

cactusADM -2.6% lbm -5.6% 

leslie3D -6.0% wrf -3.2% 

namd -0.1% sphinx3 -5.6% 

dealII -1.3%  

Next, it is shown that by slightly increasing the minimum p-state frequency it is possible 

to recover almost the entire performance loss.  Figure 6.2 shows an experiment using a 

synthetic kernel with high probe sensitivity with locally and remotely allocated memory.  

The remote case simply shows that the performance penalty of accessing remote memory 

can obfuscate the performance impact of minimum p-state frequency.  The indirect 

performance effect can be seen clearly by noting that performance increases rapidly as 

the idle core frequency is increased from 800 MHz to approximately 1.1 GHz.  This is a 
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critical observation since the increase in power for going from 800 MHz to 1.1 GHz is 

much smaller than the increase in performance.  The major cause is that static power 

represents a large portion of total power consumption.  Since voltage dependence exists 

between all cores in a package, power is only saved through the frequency reduction.  

There is no possibility to reduce static power since voltage is not decreased on the idle 

cores. 

 
Figure 6.2 Remote and Local Probe Sensitivity 

Using the same synthetic kernel the effect of p-states is isolated from c-states.  Since the 

p-state experiments show that indirect performance loss is significant below the 

breakover point, now c-state settings that do not impose the performance loss are 

considered.  To eliminate the effect of this performance loss the processor can be 

configured for ramped probe response.  In this mode, idle cores increase their frequency 

before responding to probe requests.  To obtain an optimal tradeoff between performance 

and power settings, this setting mode can be modulated using hysteresis, implemented by 
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adjusting a hysteresis timer.  The timer specifies how long the processor remains at the 

increased frequency before returning to the power saving mode.  The results are shown in 

Figure 6.3.  The blue line represents the performance loss due to slow idle cores caused 

by the application of c-states only.  Like the p-state experiments, performance loss 

reaches a clear breakpoint.  In this case, the breakover point represents 40 percent of the 

maximum architected delay.  Coupling c-states with p-states, the red shows that the 

breakover point is not as distinct since significant performance loss already occurs.  Also, 

like the p-state experiments, setting the hysteresis timer to a value of the breakover point 

increases performance significantly while increasing power consumption only slightly.   

 
Figure 6.3 C-state vs. P-state Performance 

Next, the effect of operating system tuning parameters for power adaptation selection is 

considered.  In order to demonstrate the impact of slow p-state selection, Figure 6.4 is 
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change.  Two major issues were found: minimum OS scheduling quanta and 

increase/decrease filter. 

 

Figure 6.4 Varying OS P-state Transition Rates 

First, performance remains constant when scaling from 1 us to 10 ms (< 1 ms not 

depicted).  This is attributable to the OS implementation of scheduling.  For Microsoft 

Windows Vista, all processes are scheduled on the 10 ms timer interrupt.  Setting 

TimeCheck to values less than 10 ms will have no impact since p-state changes, like all 

process scheduling, occur only on 10-ms boundaries.  Second, even at the minimum 

TimeCheck value, performance loss is at 80 percent.  The reason is that other settings 

become dominant below 10 ms.  In order for a p-state transition to occur the workload 

must overcome the in-built low-pass filter.  This filter is implemented as a combination 
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increase/decrease time.  Since the increase time is much longer than TimeCheck (300 ms 

vs. 10 ms), significant performance is lost even at the minimum setting. 

To reduce the impact of slow p-state transitions OS settings are selected that increase 

transition rates.  In a general sense, frequent p-state transitions are not recommended due 

to the hardware transition costs.  However, these experiments have shown that the 

performance cost for slow OS-directed transitions is much greater than that due to 

hardware.  This can be attributed to the relatively fast hardware transitions possible on 

Quad-Core AMD processors.  Compared to OS transitions which occur at 10 ms 

intervals, worst-case hardware transitions occur in a matter of 100’s of microseconds.  

Figure 6.5 shows the effect of optimizing p-state changes to the fastest rate of once every 

10 ms.  The probe-sensitive equake is shown with and without “fast p-states.”   This 

approach yields between 2 percent and 4 percent performance improvement across the 

range of useful idle core frequencies.  As is shown in the next section, this also improves 

power savings by reducing active-to-idle transition times. 

Figure 6.5 Effect of Increasing P-state Transition Rate 
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6.2.1 Power and Performance Results 

In this section results for p-state and c-state settings are presented that reflect the findings 

of the previous sections.  In this case the Microsoft Windows Vista operating system 

running desktop workloads is studied.  This approach gives the highest exposure to the 

effect the operating system has on dynamic adaptations.  By choosing desktop workloads, 

the number of phase transitions and, therefore, OS interaction is increased.  Since these 

workloads model user input and think times, idle phases are introduced.  These idle 

phases are required for OS study since the OS makes use of idle time for selecting the 

operating point.  Also, Microsoft Windows Vista exposes tuning parameters to scale the 

built-in adaptation selection algorithms for power savings versus performance.  Table 6.2 

shows power and performance results for SYSmark 2007 using a range of settings chosen 

based on the results of the previous sections.   

Table 6.2 Power/Performance Study: SYSmark 2007 

Workload P-State Selection Performance Loss Power Savings 

E-Learning Default 8.8% 43.1% 

Video Creation Default 6.2% 44.7% 

Productivity Default 9.5% 45.3% 

3D Default 5.9% 45.9% 

E-Learning Fast 6.4% 45.9% 

Video Creation Fast 5.2% 46.1% 

Productivity Fast 8.0% 47.8% 

3D Fast 4.6% 48.2% 

E-Learning Fast-Perf 1.5% 32.9% 

Video Creation Fast-Perf 1.8% 25.4% 

Productivity Fast-Perf 2.5% 27.9% 

3D Fast-Perf 1.4% 35.1% 
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In order to reduce p-state performance loss, the idle core frequency is set to 1250 MHz.  

To prevent c-state performance loss, ramped probe mode is used with the hysteresis time 

set above the breakover point.  Also, C1e mode is disabled to prevent obscuring the idle 

power savings of the architected p-states and c-states.  The C1e state is a 

microarchitectural feature that reduces power when all cores are idle.  The power and 

performance effects of this state can reduce the measureable effect of the p-state and c-

state decisions made by the operating system.  

Two important findings are made regarding adaption settings.  First, setting power 

adaptations in consideration of performance bottlenecks reduces performance loss while 

retaining power savings.  Second, reducing OS p-state transition time increases 

performance and power savings.  Table 6.2 shows the resultant power and performance 

for a range of OS p-state algorithm settings.  It is shown that performance loss can be 

limited to less than 10 percent for any individual subtest while power savings average 45 

percent compared to not using power adaptations.  The effect of workload characteristics 

is evident in the results.  E-learning and productivity show the greatest power savings due 

to their low utilization levels.  These workloads frequently use only a single core.  At the 

other extreme, 3D and video creation have less power savings and a greater dependence 

on adaption levels.  This indicates that more parallel workloads have less potential benefit 

from p-state and c-state settings, since most cores are rarely idle.  For those workloads, 

idle power consumption is more critical.  These results also point out the limitation of 
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existing power adaptation algorithms.  Since current implementations only consider idle 

time rather than memory-boundedness, the benefit of p-states is underutilized. 

Additionally, the effect of adjusting operating system p-state transition parameters is 

shown in Table 6.2.  Columns Fast and Fast-Perf represent cases in which p-state 

transitions occur at the fastest rate and bias towards performance respectively.  Since 

existing operating systems such as Microsoft Windows XP and Linux bias p-state 

transitions toward performance, these results can be considered representative for those 

cases. 

6.3 Summary 

In this section, a power and performance analysis of dynamic power adaptations is 

presented for a Quad-Core AMD processor.  Performance and power are shown to be 

greatly affected by direct and indirect characteristics.  Direct effects are composed of 

operating system thread and frequency scheduling.  Slow transitions by the operating 

system between idle and active operation cause significant performance loss.  The effect 

is greater for compute-bound workloads which would otherwise be unaffected by power 

adaptations.  Slow active-to-idle transitions also cause reduced power savings.  Indirect 

effects due to shared, power-managed resources such as caches can greatly reduce 

performance if idle core frequency reductions are not limited sufficiently.  These effects 

are more pronounced in memory-bound workloads since performance is directly related 

to accessing shared resources between the active and idle cores.  Finally, it is shown that 
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performance loss and power consumption can be minimized through careful selection of 

hardware adaptation and software control parameters.  In the case of Microsoft Windows 

Vista running desktop workloads, performance loss using a naïve operating system 

configuration is less than 8 percent on average for all workloads while saving an average 

of 45 percent power.  Using an optimized operating system configuration, performance 

loss drops to less than 2 percent with power savings of 30 percent. 

While the results attained through optimizing a reactive operating system power 

adaptation are promising, further improvement can be achieved through new approaches.  

The existing adaptations algorithms have several limitations including poor response to 

phase changes and a lack of process awareness and frequency-sensitivity.  The ability to 

increase the responsiveness of the reactive algorithm is limited since excessive 

adaptations reduce performance and increase energy consumption.  To attain higher 

performance and efficiency, a predictive adaptation is required.  Predictive adaptation 

effectively provides the responsiveness of a maximally reactive scheme without the 

overhead of excessive adaptation. 

Another limitation is the lack of frequency-sensitivity awareness in current algorithms.  

To make best use of dynamic processor voltage and frequency scaling, the sensitivity of a 

workload to frequency should be accounted.  By knowing the frequency sensitivity, 

workloads which do not benefit from high frequency could achieve much lower power.  

Similarly, workloads that scale well with frequency can attain higher performance by 

avoiding the use of excessively low frequencies.     
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Chapter 7  Predictive Power Management 

7.1 Core-Level Activity Prediction 

Existing power management techniques operate by reducing performance capacity 

(frequency, voltage, resource size) when performance demand is low, such as at idle or 

similar low activity phases.  In the case of multi-core systems, the performance and 

power demand is the aggregate demand of all cores in the system.  Monitoring aggregate 

demand makes detection of phase changes difficult (active-to-idle, idle-to-active, etc.) 

since aggregate phase behavior obscures the underlying phases generated by the 

workloads on individual cores.  This causes sub-optimal power management and over-

provisioning of power resources.  In this study, these problems are addressed through 

core-level, activity prediction. 

The core-level view makes detection of phase changes more accurate, yielding more 

opportunities for efficient power management.  Due to the difficulty in anticipating 

activity level changes, existing operating system power management strategies rely on 

reaction rather than prediction.  This causes sub-optimal power and performance since 

changes in performance capacity by the power manager lag changes in performance 

demand.  To address this problem we propose the Periodic Power Phase Predictor 

(PPPP). This activity level predictor decreases SYSmark 2007 client/desktop processor 

power consumption by 5.4% and increases performance by 3.8% compared to the 
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reactive scheme used in Windows Vista operating system.  Applying the predictor to the 

prediction of processor power, accuracy is improved by 4.8% compared to a reactive 

scheme. 

Dynamic power management provides a significant opportunity for increasing energy 

efficiency and performance of computing systems.  Energy efficiency is increased by 

reducing performance capacity (frequency, parallelism, speculation, etc.) when the 

demand for performance is low.  Efficiency or a lack thereof may impact the performance 

of a system.  High-density server and multi-core processor performance is limited by 

power delivery and dissipation.  Reducing the power consumption in one component may 

allow other components to consume more power (higher voltage and frequency) and 

therefore achieve higher performance.  These systems would otherwise have higher 

performance if they were not sharing power resources [Bl07] [McPo06] [FaWe07] 

[WaCh08] [WuJu05].  Power management allows the performance of cores/systems 

sharing power to increase by “borrowing” power from idle or performance-insensitive 

cores/systems and reallocating it to heavily-utilized cores/systems.   

The challenge in applying power management to increase efficiency and performance is 

in identifying when to adapt performance capacity.  The ubiquitous, architected solution 

implemented in operating systems such as Windows/Linux is to react to changes in 

performance demand.  Though this approach is simple, it performs sub-optimally 

[BiJo08] [DiSo08] for workloads with many distinct and/or short phases.  Each time a 

workload transitions from a phase of low performance demand to a phase of high 
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performance demand, reactive power management increases performance capacity 

sometime after the phase transition.  During the time between the change in demand and 

capacity, performance may be less than optimal.  Similarly, power consumption is sub-

optimal on transitions from high to low demand.  The amount of performance loss is 

proportional to the number of phase changes in the workload and the lag between demand 

and capacity.  For increasing performance in power-limited situations, reactions must be 

fast to prevent overshooting the power limit or missing opportunities to increase 

performance.   

Identifying when to adapt is complicated by the presence of multiple cores sharing power 

resources.  Consider Figure 7.1.  Core-level power consumption is shown for a system 

with multiple simultaneous threads.  The program threads are fixed to the cores with 

thread N on core N, thread N-1 on core N-1, etc.  Since power monitoring is typically 

provided at the system-level [Po10], existing power control techniques use the erratic 

fluctuations in the total power for predicting future behavior.  This is unfortunate since in 

this example, the individual threads have a periodic, easily discernable pattern, while the 

pattern in the aggregate power is less discernable.  If power phases can be tracked at the 

core-level, accurate dynamic power management schemes can be devised.  

To improve the effectiveness of power management the use of predictive, core-level 

power management is proposed.  Rather than reacting to changes in performance 

demand, past activity patterns are used to predict future transitions.  Rather than using 

aggregate power information, activity and power measured at the core-level is used.   
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Figure 7.1: Thread and Aggregate Power Patterns 

To analyze the effectiveness of the predictor the SYSmark 2007 benchmark is used. It 

contains numerous, desktop/personal computing applications such as Word, Excel, 

PowerPoint, Photoshop, Illustrator, etc.  The benchmark is structured to have a high 

degree of program phase transitions, including extensive use of processor idle states (c-

states) and performance states (p-states) [Ac07].  Rather than being strictly dominated by 

the characteristics of the workload itself, SYSmark 2007 accounts for the impact of 

periodic, operating system scheduling and I/O events.  Using this observation, we 
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construct a periodic power phase predictor.  This simple periodic predictor tracks and 

predicts periodic phases by their duration.  By predicting future demand, aggressive 

adaptations can be applied.  The core-level predictive technique outperforms existing 

reactive power management schemes by reducing the effective lag between workload 

phase transitions and power management decisions.  By predicting the individual power 

contribution of each thread rather than predicting the aggregate effect, complex phases 

can be predicted.  The contributions of this chapter are summarized as follows.  

(1) Concept of core-level power phases in multi-core systems.  Core-level power phases 

unveil more opportunities for power saving adaptations than are possible if only 

aggregate system level information is used.  

(2) A simple, periodic power phase predictor.  Though prior research [DuCa03] [IsBu06] 

demonstrates the effectiveness of power management using predictive schemes on 

uniprocessors, this research shows its effectiveness when applied to multi-core systems 

with operating system scheduling interactions.  The proposed predictive power 

management is compared against the reactive algorithm in the Windows Vista operating 

system.  Previous research focused on single-threaded SPEC CPU 2000 benchmarks, 

while this study uses SYSmark 2007 which includes popular desktop/personal computing 

applications such as Microsoft Word, Excel, PowerPoint, Adobe Photoshop, Illustrator, 

etc.  These workloads include difficult to predict power management events due to large 

numbers of interspersed idle phases and frequent thread migrations. 
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7.2 Commercial DVFS Algorithm 

Existing, commercial DVFS algorithms in Windows and Linux operating systems select 

processor clock frequencies by reacting to changes in core activity level [Vi07].  Activity 

level represents the ratio of architected code execution (active time) to wall clock time 

(active + idle time).  Processors become idle when they exhaust the available work in 

their run queues.  The intent of these algorithms is to apply low frequencies when a 

processor is mostly idle and high frequencies when mostly active.  This provides high 

performance when programs can benefit and low power when they cannot.   

In this study the predictive DVFS algorithm is compared to that used in the Windows 

Vista operating system [Vi07].  This Vista algorithm reactively selects DVFS states (core 

frequency) in order to maintain a target core activity level of 30%-50%.  See Figure 7.2.  

The “predicted” activity level is the last observed activity level, hence this is a reactive 

scheme.   

When the core activity level is greater than 50%, the reactive algorithm selects a higher 

frequency to increase performance enough to allow the core to be idle more than 50% 

(i.e. active < 50%) of the time.  The new frequency is selected assuming a 100% 

frequency increase reduces active time by 50%.  For example assume a core operates at 

1GHz and is 100% active.  In order to achieve an activity level of 50%, the algorithm 

would attempt to double the frequency to 2GHz.  Frequency reductions are similar in that 

activity levels below 30% cause the algorithm to reduce frequency in order to increase 
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activity levels to 30%.  Since processors have a finite number of architected DVFS states, 

the algorithm selects the nearest frequency which meets the target activity level. 
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Figure 7.2: Windows Vista Reactive P-State Selection Algorithm 

7.3 Workload Characterization 

To analyze the power/performance impact of the predictive power management scheme 

on real-world workloads, a system running the desktop/client SYSmark 2007 benchmark 

is characterized.  This benchmark represents a wide range of desktop computing 

applications.  The benchmark components are E-Learning, Video Creation, Productivity, 

and 3D.  The individual subtests are listed in Table 7.1.  This benchmark is particularly 
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of idle-active transitions in the cores.  Since current OSs determine dynamic adaption 

levels using core activity level, the replication of these user interactions in the benchmark 

is critical.  For comparison, Figure 7.3 shows average active core residencies of a six-

core AMD Phenom 2 processor across a wide range of desktop workloads.  The left-hand 

side of the figure illustrates the problem with many popular benchmark applications.  The 

benchmarks spend nearly 100% of the time with all cores active.  From an idle power 

management perspective little can be done to improve performance and power efficiency.  

The center and right-hand side workloads are more challenging for idle power 

management due to the frequent occurrence of idle phases. The SYSmark subtests are the 

most challenging due to their large composition of interspersed idle and active phases. 

Table 7.1: SYSmark 2007 Components 

E-Learning Video Creation Productivity 3D 

Adobe 

- Illustrator 

- Photoshop 

   -Flash 

Microsoft 

- PowerPoint 

 

Adobe 

   - After Effects 

   - Illustrator 

   - Photoshop 

Microsoft 

   - Media Encoder 

Sony 

   - Vegas 

Microsoft 

   - Excel 

   - Outlook 

   - Word 

   - PowerPoint 

   - Project 

Corel 

   - WinZip 

Autodesk 

   - 3Ds Max 

Google 

   - SketchUp 

Performance Loss for Vista Reactive Power Management [4] 

8.8% 6.2% 9.5% 5.9% 
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Figure 7.3: Six-Core Phenom 2 Desktop Activity Levels 

Figure 7.4 takes the active-idle analysis of SYSmark to a deeper level by showing the 

core activity level within each subtest.  Unlike traditional scientific and computing 

benchmarks, core activity level varies greatly over time.  The primarily single-thread E-

Learning and Productivity subtests are composed of single core active phases 

interspersed with all cores idle.  The frequent transitions between active and idle make 

power management decisions difficult.  Reacting too quickly to idle phases can induce 

excessive performance loss as code execution is halted to allow transition of clocks, 

voltage planes or component state.  At the other extreme the 3D and Video Creation 

workloads have large sections of all cores being active.  These regions, also interspersed 

with all-idle and one-active regions are critical for power sharing strategies.  As the 
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workload/operating systems adds and removes threads from cores the resultant power 

level changes drastically.  The power difference between cores in the active versus idle 

state is much greater than differences within the active state. 

 

 

Figure 7.4: Utilization of Multiple Cores by SYSmark 2007 Benchmark 

The effect of these frequent transitions on power and performance is significant.  Bircher 

et al [BiJo08] show that the slow reaction of the Vista DVFS algorithm leads to a 
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low as 1/3 of the maximum frequency.  Similarly, power consumption is excessively high 

due to the DVFS algorithm choosing high-power states for many of the frequent, idle 

phases in the benchmark. 

7.4 Periodic Power Phase Predictor – PPPP  

While power management in operating systems like Windows/Linux is reactive, there 

have been proposals to use predictive power management [IsBu06] [DuCa03] [DiSo08].  

Isci [IsBu06] uses table-based predictors of memory operations/instruction, to direct 

DVFS decisions for single-threaded workloads.  Duesterwald et al. [DuCa03] examine 

table-based predictor techniques to predict performance-related metrics (IPC, cache 

misses/instruction and branch misprediction rates) of single-thread workloads, but not 

power.  Diao [DiSo08] uses machine learning to predict activity patterns.  The 

predictions are used to make policy decisions for entering core idle states.  In contrast, 

the periodic power phase predictor (PPPP) is proposed which makes use of table-based 

prediction structures and the repetitive nature of power phases to predict performance 

demand and/or power consumption.  The predictor is shown in Figure 7.5.  Like 

traditional table-based predictors, the main components are: a global phase history 

register (GPHR), pattern history table (PHT) and predicted level.  Typically, table-based 

predictors track sequences of events such as branch outcomes or IPC samples [DuCa03] 

[IsBu06].  This predictor is distinct in that it tracks run-length-encoded sequences of core 

active/idle phases.  Activity in this case is defined as execution of architected 
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instructions.  In APCI[Ac07] terminology that is popularly used for power management, 

it is known as the C0 state.  All other time is considered non-active or idle.  Idle time is 

explicitly defined as “executing” in a processor idle state via the HLT instruction or other 

idle state entry method [Bk09].  This state is also known as the Cx state where x = 1 to N.  

These non-C0 states are responsible for the largest power reductions due to the 

application of clock and power gating.  Large power changes or phases can be detected 

by tracking core activity patterns.  For this reason the PPPP is constructed to track core 

activity patterns.        

A diagram of the predictor is provided in Figure 7.5.  The main feature of the predictor is 

its ability to capture frequent, power-relevant events by tracking active/idle patterns.  

Transitions to active or idle states and the resultant power level can be predicted by 

tracking previous patterns.  One of the most common events is the periodic timer tick 

event used in many commercial operating systems [SiPa07].  This event occurs on a 

regular interval to provide timing and responsiveness to the operating system scheduler.  

When a core is otherwise idle, the timer tick produces an easily discernable pattern.   
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Figure 7.5: Periodic Power Phase Predictor 

For Windows operating systems, the boot strap processor remains idle for periods of 16 

milliseconds interrupted by active periods lasting about 100 microseconds. 

The predictor tracks the duration of the idle and active phases in the length and level 

fields.  As a pattern of active and idle period repeats the predictor updates the quality of 

the prediction using the confidence field.  When a pattern is first identified, it is copied to 

the GPHT and assigned a confidence level of 100%.  The correctness of the prediction is 

assessed by comparing the predicted time and level of the next transition (timestamp 

field) to the actual transition.  If a misprediction in duration or level is found, the 

confidence is reduced by a tunable percentage.  If multiple mispredictions occur, the 
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confidence level will drop below a confidence limit.  The net effect of these parameters is 

that a prediction will be invalidated after three consecutive mispredictions.  The valid and 

pending fields are used to determine which predictor entries can be used for predictor 

matches and which have outstanding predictions respectively.  Multiple predictions can 

be outstanding.  If conflicting prediction exist at an evaluation point, the higher 

confidence prediction is used.  For equal confidence predictions, the lower index 

prediction is used.  Additional details for each predictor field are provided in Table 7.2.  

An example of the PPPP tracking and predicting core utilization level is given in Figure 

7.6. 

 

Figure 7.6: Example of Program Phase Mapping to Predictor 
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Table 7.2: Periodic Power Phase Predictor Field Descriptions 

Predictor 

Field 

Description 

Detected 

Pattern 

Length,Level  

Duration and level of phase pair.  This is also the table index.  When a 

periodic phase is detected, it is used to index the prediction table. 

Predicted 

Phase 

Length,Level 

Predicted Phase at next transition.  For utilization predictor this is activity 

level.  For power prediction this is the power level seen when this phase 

previously occurred. 

Timestamp 

Records timestamp of when predicted phase change is to occur.  This is 

the most critical value produced by the predictor.  It is used by the power 

manager to schedule changes in power/performance capacity of the 

system.  This value allows for optimal selection of performance capacity 

given the anticipated duration of operation at a particular performance 

demand. 

Confidence 

“Quality” of phase as a function of past predictions and duration.  The 

confidence is used by the power manager to determine if a prediction will 

be used or not.  It is also used by the replacement algorithm to determine 

if the phase will be replaced if the predictor is full.  All newly detected 

phases start with a confidence of 1.  If the phase is subsequently 

mispredicted, the confidence is reduced by a fixed ratio. 

Valid Indicates if this entry has a valid phase stored with a “true” or “false.” 

Pending 
Indicates if this phase is predicted to occur again.  This value is set “true” 

on the occurrence of the phase and remains true until the phase prediction 

expires. 
 

7.5 Predicting Core Activity Level 

This section provides power and performance results for the core and aggregate-level 

periodic power phase predictor in comparison to a commercial reactive scheme.  A 

comparison is made in terms of prediction accuracy, prediction coverage, power and 

performance.  Also, a characterization of core activity phases is given.   
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First, prediction accuracy is considered.   Accuracy is defined according to the, 

commercial, reactive DVFS algorithm used in the Windows Vista operating system 

[Vi07]. A correct prediction is one in which the selected DVFS frequency selection keeps 

the processor within the target range of 30% to 50% activity.   

The accuracy of the reactive scheme is determined by analyzing traces of core DVFS and 

activity levels from a real system.  If the selected frequency did not cause the core to have 

an activity level between 30% and 50%, the selection is considered wrong.  For the 

predictive schemes, the activity level trace is played back through the predictor while 

allowing it to select a frequency to meet the 30%-50% target.  Since core activity level 

changes according to core frequency, the resultant activity level must be scaled 

accordingly.  The amount of scaling is determined experimentally by measuring 

performance of the SYSmark workload under a range of core frequencies.  Performance, 

and therefore activity level, scale 70% for each 100% change in core frequency. 

Using this approach results are presented for SYSmark 2007 prediction accuracy in Table 

7.3.  DVFS hit rate is provided for three predictors.  Core-level PPPP represents the 

predictor applied to each core.  Aggregate PPPP represents the predictor driven by the 

total activity level.  All target activity levels remain the same. A single predictor, driven 

by the aggregate activity level (i.e. average of all cores) is used to select the next core 

frequency.  Core-level reactive represents the Windows Vista DVFS algorithm. 
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Table 7.3: SYSmark 2007 DVFS Hit Rate 

Predictor E-Learning Productivity Video Creation 3D 

Core-Level  

PPPP 
82.6% 73.8% 76.4% 72.7% 

Aggregate  

PPPP 
26.8% 26.3% 40.2% 30.7% 

Core-Level Reactive (Vista) 66.4% 65.2% 63.5% 59.7% 

The limitations of reactive DVFS selection are evident.  Due to frequent transitions 

between high and low activity levels, the reactive scheme is only able to achieve the 

correct frequency about 2/3 of the time.  PPPP applied at the aggregate level is much 

worse with an average of 31% accuracy.  The best case is achieved with the core-level 

PPPP
 
which averages 76%.  The differences in the success of these predictors are a result 

of prediction coverage and accuracy of the predicted phases.  See Table 7.4. Coverage is 

defined as percentage of the workload in which a prediction is available.  A prediction 

could be unavailable if the last observed activity pattern has not been seen before or has 

caused too many mispredictions.  The reactive scheme does not have coverage since it 

does not predict.  In contrast PPPP
 
has much lower prediction coverage, especially for the 

aggregate predictor.  The aliasing of multiple core phases obscures predictable behavior 

to less than 3% for E-Learning and Productivity.  Video Creation and 3D are slightly 

better at 16% and 8% respectively.  One possible reason is that these workloads have 

larger portions of multi-threaded execution.  The aggregate activity level is likely more 

representative of core-level activity compared to the single-threaded E-Learning and 

Productivity.  Core-level PPPP
 
achieves the highest accuracy by having a large workload 



137 

 

coverage of 43% and accuracy over 95% in the covered portion.  Outside of the covered 

portions the predictor selects frequency according to the reactive algorithm. 

Table 7.4: SYSmark 2007 Prediction Coverage 

Predictor E-Learning Productivity Video Creation 3D 

Core-Level 

PPPP 
57.0% 33.5% 43.0% 37.9% 

Aggregate 

PPPP 
1.3% 2.3% 16.3% 8.0% 

Core-Level Reactive (Vista) N/A N/A N/A N/A 
 

To quantify the improved predictability of core-level versus aggregate PPPP, Table 7.5 

presents a characterization of core active and idle durations for SYSmark 2007.  

Durations group into the following ranges: < 10 milliseconds, 10-100 milliseconds, 100-

1000 milliseconds and > 1000 milliseconds.  One of the major distinctions between core-

level and Aggregate is the high concentration of short phases, less than 10ms for 

CoreTotal.  Just as in the example shown in Figure 1.4, these short phases are largely a 

result of misalignment of the core-level activity.  In particular, the most common phases 

are in the 10-100ms range.  This is caused by the timer tick, scheduling and power 

adaptation intervals for the Windows operating systems.The timer tick normally occurs 

on 16ms boundaries.  Thread creation and migration events also occur on these 

boundaries.  Power adaptations (DVFS) occur on 100ms boundaries. Therefore, idle 

phases are frequently interrupted by these events.  Similarly, active phases are often 

terminated by threads being migrated to other cores on these same boundaries.  Any 

misalignment of these events between cores causes the effective activity durations to be 
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shorter and less predictable.  Further evidence of these common 10-100ms phases is 

given in Figure 7.7 which shows the frequency distribution of active and idle phases 

across SYSmark 2007. 

Table 7.5: Core Phase Residency by Length 

E-Learning Video Creation 

Phase Length Core Aggregate Core Aggregate 

Less Than 10 ms 11% 93% 44% 82% 

10 - 100 ms 49% 7% 27% 2% 

100 - 1000 ms 10% 0% 14% 9% 

Greater Than 1000 ms 30% 0% 16% 7% 

Productivity 3D 

Phase Length Core Aggregate Core Aggregate 

Less Than 10 ms 55% 97% 55% 97% 

10 - 100 ms 30% 3% 30% 3% 

100 - 1000 ms 5% 0% 5% 0% 

Greater Than 1000 ms 11% 0% 11% 0% 
 

Active and idle phase as considered as a group since both are relevant for prediction.  Idle 

phases must be predicted in order to anticipate how long a power surplus will be 

available.  Similarly, active phase must be predicted to anticipate durations of power 

deficits. In both cases the predicted durations is needed in order to weigh the power and 

performance cost of transitioning to low power states or changing the DVFS operating 

point.  Several local maximums are present due to the periodic nature of the interaction 

between power management, OSs and system hardware.  By removing or varying the 

intensity of these various events and observing the change in frequency distribution, the 

period length may be related to its source.  Note the prevalence of phases in the 10-15ms 

range that corresponds to the OS scheduling interval.  Also, consider the spikes at 100ms, 
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which corresponds to the DVFS scheduling interval.  Additional, longer-duration 

maximums occur in the 200ms and higher range.  These correspond to GUI interaction 

and I/O delays occurring in the SYSmark benchmark. 

Next the resultant power and performance impact of the core-level PPPP
 
versus reactive 

DVFS selection is considered.  Aggregate PPPP
 
is not considered due its poor prediction 

accuracy.  Table 7.6 presents power and performance results for the two schemes.  Power 

and performance are estimated using the measured and predicted DFVS, active and idle 

states shown in Table 7.7.  On average, power is reduced by 5.4% while achieving a 

speedup of 3.8%.  This improvement is caused by PPPP
 
more frequently selecting high 

frequencies for active phases and low frequencies for performance-insensitive idle 

phases.  This shift can be seen in the active residencies of all subtests.  The 2.4GHz – 

Active state increases by 0.6 to 2.5 percentage points.  Similarly, the active time in lower 

frequencies is reduced an average of 0.76 percentage points.  The performance impact of 

selecting a low frequency for an active phase can be large.  For example, selecting 

800MHz rather than 2.4GHz yields a performance loss of 47% ((1-0.8GHz/2.4GHz) x 

70%). Therefore, it takes only a small change in residency to drastically impact 

performance.  Also, the impact on performance is larger due to active time representing 

only an average of 17% total time. This magnifies the performance impact by about 6x 

(1/0.17).  The net effect on active frequency is an increase of 144 MHz from 1.55GHz to 

1.69GHz.  Note that though frequency increases by 9.3%, performance increases only 
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3.8% due to limited frequency scaling of the workload (70%) and reduced total time in 

the active state. 

 

 

Figure 7.7 Core-Level Phase Length Probability Distributions 

Next, power savings is considered.  Though it is possible to bias a reactive DVFS 

algorithm to achieve performance comparable to a predictive algorithm, it is not possible 

to do so without increasing power consumption drastically.  Prediction allows DVFS 

selection to select the “correct” frequency for both performance and power savings.   
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Table 7.6: SYSmark 2007 Power and Performance Impact of PPPP 

 

E-Learning Productivity 

Predictive 

(PPPP) 

Reactive 

(Vista) 

Predictive 

(PPPP) 

Reactive 

(Vista) 

Power (W) 16.6 18.2 14.3 15.1 

Power Savings 8.3% 5.3% 

Delay (sec) 924 963 585 607 

Speedup 4.2% 3.7% 

Energy (KJ) 15.4 17.5 8.4 9.2 

Energy x Delay(KJs) 14.2×10
3
 16.9×10

3
 4.9×10

3
 5.6×10

3
 

Energy x Delay(KJs
2
) 13.2×10

6
 16.2×10

6
 2.9×10

6
 3.4×10

6
 

Energy Savings 12.3% 8.7% 

 

 

Video Creation  3D 

Predictive 

(PPPP) 

Reactive 

(Vista) 

Predictive 

(PPPP) 

Reactive 

(Vista) 

Power (W) 18.6 19.5 25.9 26.6 

Power Savings 4.7% 2.9% 

Delay (sec) 1129 1172 548 568 

Speedup 3.8% 3.6% 

Energy (KJ) 20.9 22.8 14.2 15.1 

Energy x Delay(KJs) 23.6×10
3
 26.7×10

3
 7.8×10

3
 8.6×10

3
 

Energy x Delay(KJs
2
) 26.7×10

6
 31.3×10

6
 4.3×10

6
 4.9×10

6
 

Energy Savings 8.2% 6.3% 
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Table 7.7: SYSmark 2007 P-State and C-State Residency of PPPP versus Reactive 

 

E-Learning Productivity 

Predictive 

(PPPP) 

Reactive 

(Vista) 

Predictive 

(PPPP) 

Reactive 

(Vista) 

2.4GHz - Active 5.4% 4.6% 2.9% 2.4% 

2.4GHz - Idle 7.1% 17.4% 4.4% 9.6% 

1.6GHz - Active 1.2% 1.4% 0.8% 0.8% 

1.6GHz - Idle 5.5% 9.4% 3.8% 6.2% 

1.2GHz - Active 1.1% 1.2% 1.2% 1.2% 

1.2GHz - Idle 6.9% 9.8% 6.6% 9.7% 

0.8GHz - Active 3.2% 4.5% 3.8% 4.7% 

0.8GHz - Idle 69.5% 51.8% 76.5% 65.3% 

Active Frequency 1.72 GHz 1.56 GHz 1.47 GHz 1.34 GHz 

Idle 

Frequency 
1.01 GHz 1.24 GHz 0.94 GHz 1.07 GHz 

 

Video Creation 3D 

Predictive 

(PPPP) 

Reactive 

(Vista) 

Predictive 

(PPPP) 

Reactive 

(Vista) 

2.4GHz - Active 6.8% 5.3% 17.5% 15.0% 

2.4GHz - Idle 5.7% 12.4% 7.8% 17.0% 

1.6GHz - Active 2.7% 3.2% 3.9% 5.1% 

1.6GHz - Idle 5.6% 9.6% 4.6% 6.7% 

1.2GHz - Active 3.8% 4.8% 2.6% 3.1% 

1.2GHz - Idle 9.2% 13.8% 7.3% 9.4% 

0.8GHz - Active 3.7% 4.8% 4.7% 6.9% 

0.8GHz - Idle 62.3% 46.1% 51.6% 36.7% 

Active Frequency 1.65 GHz 1.51 GHz 1.92 GHz 1.77 GHz 

Idle 

Frequency 
1.01 GHz 1.20 GHz 1.07 GHz 1.32 GHz 
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In this case the predictor achieves a 3.8% performance increase while reducing power 

consumption by 5.4%.   The primary cause is a shift in idle frequency selections away 

from the high-performance, high-leakage states.  Residency in the most inefficient state, 

2.4GHz – Idle, is reduced by an average of 7.8 percentage points.  Residency in other idle 

states above the minimum frequency also decreased, but by a smaller 3.1 percentage 

points.  This increases idle residency in the minimum frequency idle state of 800MHz by 

an average of 15%.  Average idle frequency decreases by 200MHz from 1.2GHz to 

1.0GHz.        

7.6 Predicting Power Levels 

The second application of periodic power phase prediction is for predicting core power 

consumption.  Predicting power levels provides opportunities for increased performance 

and efficiency.  Existing power control systems such as power capping[Po10] and turbo 

boost [ChJa09] apply power and performance limits statically based on user-specified or 

instantaneous power consumption.  Knowing power levels a priori could increase 

performance by avoiding adaptations for short duration phases.  For example, a core that 

encounters a short, high-power phase of execution may cause the power controller to 

reduce its or other processors’ frequency.  If the controller could know that the phase 

would be too short to cause a power or temperature violation, the reduction in 

performance could be avoided.  
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To this end PPPP is applied to predict the core-level and aggregate power consumption.  

Results are compared to a last value predictor also at the core and aggregate level.  Core-

level power is measured using the PMC-based power model.  The model allows fine-

grain, power management and temperature-aware estimation of core power.      

Rather than using core activity level to predict core activity level, it is used to cross 

predict power level.  The predicted activity-level in the predictor is replaced by the 

modeled core power level.  The prediction table index remains as sequences of core 

activity levels.  This approach provides better pattern matching as variations in 

temperature and application of DVFS tends to hide otherwise discernable patterns. 

 

Figure 7.8 Prediction Accuracy of Core Power for Various Predictors  

Figure 7.8 shows the weighted average percent accuracy of the periodic power phase 

predictor compared to a last-value predictor.  Weighted average is chosen since SYSmark 
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2007 power consumption contains many idle, low-power phases.  In these phases, a small 

error in absolute terms yields a large percentage error.  Therefore, error values are scaled 

by the magnitude of measured power sample compared to the maximum observed.  For 

example, a 10% error on a 5W sample has half the impact of a 10% error on a 10W 

sample.  For all subtests, the core-level versions of the predictors outperformed the 

aggregate versions.  The best overall performance is 86% accuracy for the periodic core-

level predictor compared to 83% for the core-level version of the last-value predictor.  

The benefit of core-level prediction of power is less pronounced than for prediction of 

activity level.  This is due to the smaller dynamic range of power consumption compared 

to activity level.  Though activity levels regularly vary from 0% to 100%, power levels 

remain in a much smaller range of approximately 25% to 75%. 

7.7 Summary 

This section presents the concept of core-level phase prediction and its application to 

dynamic power management.  By observing changes in performance demand and power 

consumption at the core-level, it is possible to perceive predictable phase behavior.  

Prediction of phases allows power management to avoid over or under provisioning 

resources in response to workload changes.  Using this concept the PPPP
 
is developed.  It 

is a simple, table-based prediction scheme for directing DVFS selection.  It is applied to 

the SYSmark2007 benchmark suite and attain significant performance and power 

improvements.  Compared to the reactive DVFS algorithm used by Windows Vista, 
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performance is increased by 5.4% and while power consumption is reduced by 3.8%.  We 

show that processor power can be predicted by PPPP
 
with accuracy 4.8% better than a 

last-value predictor. 

Predictive schemes such as PPPP are the next step in improving performance and 

efficiency of systems employing dynamic power management.  As it was demonstrated in 

the pursuit of higher single-threaded processor performance, the highest possible 

performance is achieved when costly phase changes can be predicted.  Prediction allows 

the use of more aggressive power saving techniques since excessive performance loss can 

be avoided. 
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Chapter 8  Related Research 

This section summarizes related research in the areas relating to predictive processor 

power management.  Specifically, performance counter-driven power models, system-

level power characterization and predictive power management are covered. 

8.1 Performance Counter-Driven Power Models 

Contemporary research in the area of performance counter-driven power modeling has 

focused primarily on the single largest consumer, the processor [LiJo03] [Be00] [IsMa03] 

[CoMa05] [BrTiMa00].  System-level power modeling [HeCe06] is mostly focused on 

power consumption within a single subsystem [Ja01] [ZeSo03] [KiSu06] [GuSi02]. 

Consistent throughout processor power modeling is the theme that power consumption is 

primarily determined by the number of instructions retired per cycle.  Li et al [LiJo03] 

present a simple linear model for power consumption by operating system services.  The 

resultant models are a function of only IPC. Their modeling only considers operating 

system routines and requires a separate model for each operating system routine.  Most 

importantly, their model is simulation-based and consequently does not correlate well 

with power consumption of actual processors. In contrast, the models in this dissertation 

is based on direct, in-system measurement and shows that power depends more on 

fetched µop/cycle rather than IPC.  Bellosa [Be00] uses synthetic workloads to 
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demonstrate a correlation between observable performance events and power 

consumption.  He shows that a correlation exists for: µops/sec, fµops/sec, L2 

accesses/sec and memory accesses/sec. Since only synthetic workloads are characterized, 

these results are not representative of realistic workloads.  The most closely related work 

is by Isci et al [IsMa03]. They build a comprehensive power model based on utilization 

factors of the various components of the processor.  Using 22 performance monitoring 

counters they model average power consumption of SPEC2000 workloads within 5%.  

The models in this dissertation yields similar accuracy, yet with only two PMC metrics 

that aggregate power consumption across the numerous processor functional units.  A 

major limitation of all of these contemporary works is the lack of awareness of power 

management and temperature effects.  The dissertation models accurately account for 

power fluctuations due to clock gating, DVFS and temperature variation. 

Existing studies in system-level power modeling [Ja01] [ZeSo03] [KiSu06] have relied 

on events local to the subsystem.  The model in this dissertation is the first to encompass 

complete system power using only events local to the processor.  The most closely 

related work by Heath [GuSi02], models CPU, network and disk power using operating 

system counters.  This model does not account for memory and chipset power.  Since it 

relies on comparatively high-overhead operating system routines, the run-time 

performance cost is higher compared to the dissertation model that uses only fast, on-chip 

performance counters.   
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8.2 System-Level Power Characterization 

Existing workload power studies of computing systems consider the various levels: 

microarchitecture [IsMa03] [Be00] [NaHa03], subsystem [BoEl02] [MaVa04] [FeGe05-

1], or complete system [ChAn01].  This disseration targets the subsystem level and 

extends previous studies by considering a larger number of subsystems.  Unlike existing 

subsystem studies that analyze power on desktop or mobile uniprocessor systems, this 

dissertation considers multi-core, multi-socket, desktop, mobile and server systems. 

Studies at the microarchitecture level [IsMa03] [Be00] utilize performance monitoring 

counters to estimate the contribution to microprocessor power consumption due to the 

various functional units.  These studies only consider uniprocessor power consumption 

and use scientific workloads only.  Since power is measured through a proxy it is not as 

accurate as direct measurement.  Natarajan [NaHa03] performs simulation to analyze 

power consumption of scientific workloads at the functional unit level. 

At the subsystem level, [BoEl02] [MaVa04] [FeGe05-1] consider power consumption in 

three different hardware environments.  Bohrer [BoEl02] considers CPU, hard disk, and 

combined memory and I/O in a uniprocessor personal computer.  The workloads 

represent typical webserver functions such as http, financial, and proxy servicing.  This 

disseration adds multiprocessors, and considers memory and I/O separately.  Mahesri and 
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Vardan [MaVa04] perform a subsystem level power study of a Pentium M laptop.  They 

present average power results for productivity workloads.  In contrast, this dissertation 

considers a server-class SMP running a commercial workload.  Feng [FeGe05-1] 

performs a study on a large clustered system running a scientific workload.  As part of a 

proposed resource management architecture, Chase [ChAn01] presents power behavior at 

the system level.  Lacking in all of these studies is a consideration of power phase 

duration.  Duration is a critical aspect since it directs power adaptions.  An effective 

adaptation scheme must choose adaptations that are appropriate to the expected duration 

of the event.  For example, since there is a performance and energy cost associated with 

DVFS, changes to voltage/frequency should only be performed if the system can 

amortize those costs before the next change is required.  

8.3 Predictive Power Adaptation 

While most existing power management schemes are reactive, there are a few related 

proposals that use predictive power management [IsBu06] [DuCa03] [DiSo08].  Isci 

[IsBu06] uses table-based predictors of memory operations/instruction, to direct DVFS 

decisions for single-threaded workloads.  Duesterwald et al. [DuCa03] examine table-

based predictor techniques to predict performance-related metrics (IPC, cache 

misses/instruction and branch misprediction rates) of single-thread workloads, but not 

power.  Diao [DiSo08] uses machine learning to predict activity patterns.  The 

predictions are used to make policy decisions for entering core idle states.  In contrast the 
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prediction scheme in this dissertation makes use of table-based prediction structures and 

the repetitive nature of power phases to predict performance demand and/or power 

consumption.  Further, the validation of the predictor is performed using realistic, 

representative workloads.  These workloads contain complex power management events 

that are not present in the simple workloads used in the contemporary research.  These 

events are critical to a practical power management schemed since they induce power and 

performance effects larger than those seen in simple workloads.  

Outside the predictive adaptation realm, there are numerous proposals for increasing 

energy efficiency and staying within operating limits.  To increase energy efficiency 

studies have applied adaptation at the processor level [LiMa06] [LiBr05] [WuJu05] 

[Vi07] [PaSt06] [KoGh05] [KoDe04] and system level [MeGo09] [RaLe03] [BoEl02].  

To stay within defined operating limits studies have applied adaptation at the processor 

level [HaKe07] [RaHa06] [ChJa09] [IsBu06] [McPo06] and complete system level 

[LeWa07] [RaLe06] [ChDa05] [ChAn01] [Po10] [FaWe07] [WaCh08] [MiFr02]. 

8.4 Deadline and User-Driven Power Adaptation 

In the embedded and real-time computing domains power management is performed 

under a different set of requirements.  Rather than focusing on reduction of average or 

peak power, computation deadlines are more critical.  These systems contain various 

components and processes with critical deadlines for computation.  For example, network 

devices implement buffers to allow the network interface to queue transactions.  This 
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frees the main processor to service other subsystems in an uninterrupted manner.  

However, since the buffering is finite, the main processor must service and empty the 

buffer with the deadline or connectivity may be lost.  To reduce energy consumption, 

several researchers [LuCh00] [KrLe00] [OkIs99] [PeBu00] [ShCh99] [PiSh01] [PoLa01] 

propose operating the processor at the minimum voltage and frequency that satisfies the 

computation deadlines as indicated by the kernel or application software.  The limitation 

of this approach is that the deadline must be articulated in the kernel or application 

software.  Other approaches infer deadlines through measurement and/or classification 

[GoCh95] [PeBu98] [WeWe94] [FlRe01] [LoSm01].  Measurement-based feedback can 

also be done using not-traditional metrics.  Shye [ShSc08] [ShOz08] shows that user 

satisfaction can be correlated to performance monitoring counters and biometric sensors.  

Using these metrics, processor performance can be adjusted to the minimum level that 

satisfies the user.   
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Chapter 9  Conclusions and Future Work 

9.1 Conclusions 

The widespread application of dynamic power management has provided the opportunity 

for computing systems to attain high performance and energy efficiency across a wide 

range of workloads.  Practically, systems do not operate optimally due to the lack of 

effective, power management, control schemes.  This is largely due to a lack of run-time 

power accounting and the use of reactive power management on workloads with widely 

varying performance and power characteristics.  The objective of this dissertation is to 

improve the effectiveness of dynamic power management by addressing these 

limitations.  This is achieved in the following contributions: 

1) Fine-Grain Accounting of Complete System Power Consumption 

Using a small set of widely available performance events including IPC, cache misses 

and interrupts, power models are developed by measuring power consumption on actual 

systems.  These linear and polynomial models are created using regression techniques 

that iteratively adjust coefficients to minimize model error.  This novel approach 

improves upon existing research by finding that complex structures such as processors 

and chipsets can be accurately represented by tracking their dominant performance 

events.  Unlike existing research that primarily relies on retired instruction or 
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comprehensive performance events, this approach relies on speculative events.  This 

approach provides higher accuracy with many fewer events to track.  For a state-of-the-

art multi-core processor, these simple models achieve average error rates less than 1%.   

Through an analysis of power and performance for complete systems it is discovered that 

the performance events local to the processor can also predict power consumption in the 

complete system.  This trickle-down concept is applied to allow accurate modeling of 

memory controllers, system memory, caches, chipsets, disks and I/O bridges using only 

performance events in the cpu.  This reduces complexity and measurement overhead by 

containing all run-time measurement in low-latency on-chip performance counters.       

2) Power and Performance Analysis of Computing Systems 

To inform the development of power accounting and management schemes, this 

dissertation presents an extensive analysis of power and performance of server, desktop 

and mobile systems.  It is found that the largest variation in power and performance 

occurs in processors and the subsystems most closely coupled to them, such as caches 

and memory controllers.  The cause is largely dictated by the application of power saving 

techniques such as clock gating and dynamic voltage and frequency scaling.  Compared 

to power variations due to instruction or transactions streams, variation due to power 

management is much larger. 

Additionally, this dissertation presents a new way of analyzing power consumption.  

Unlike existing research that focuses on average power consumption, this study considers 
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the duration of power and performance phases.  All power management schemes incur an 

energy and performance penalty when the system transitions from one adaptation level to 

another.  To avoid costly transitions, adaption schemes must know how and when to 

adapt.  This new approach leads to the discovery of frequently repeating power and 

performance patterns within workloads.  Of these patterns, the most dominant and 

predictable is the scheduling quanta of operating systems.  Since active-idle and idle-

active transitions frequently occur on these boundaries, they serve as strong indicators of 

phase changes. 

3) Predictive Power Management 

This dissertation presents the concept of core-level phase prediction and its application to 

dynamic power management.  By observing changes in performance demand and power 

consumption at the core-level, it is possible to perceive predictable phase behavior.  

Prediction of phases allows power management to avoid over or under provisioning 

resources in response to workload changes.  Using this concept the PPPP
 
is developed.  It 

is a simple, table-based prediction scheme for directing DVFS selection.  The predictor is 

applied to the SYSmark2007 benchmark suite and achieves significant performance and 

power improvements.  Compared to the reactive DVFS algorithm used by Windows 

Vista, performance is increased by 5.4% and while power consumption is reduced by 

3.8%.   
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9.2 Future Work 

Run-time energy accounting and predictive power management are promising tools for 

improving the energy efficiency and performance of computing systems.  This 

dissertation has demonstrated the initial implementation of these tools at improving 

processor efficiency and performance.  Listed below are a few similar research areas that 

are likely to yield new, valuable discoveries. 

Power Managing Cloud Computing Resources 

The shift away from desktop computing to cloud computing is increasing the opportunity 

for predictive power management.  A typical desktop system has about sixty active 

processes, with less than ten of them actively consuming most computing resources.  In 

contrast, cloud computing servers combine hundreds of active processes from many 

clients.  Each of the processes has phase behavior that is independent of the others.  This 

combination of heterogeneous tasks makes existing reactive power management difficult 

since the active-idle patterns are an aggregation of multiple independent patterns.  A 

significant power savings opportunity exists in accounting for and predicting the effective 

usage pattern of cloud computing servers.   

Functional Unit Activity Prediction 

The need to increase power efficiency is pushing microarchitectural power management 

beyond the core-level to individual functional units.  To save power during program 
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execution, portions of pipelines or functional units can be effectively resized through 

clock gating and power gating when not needed.  The challenge is to apply these power 

saving adaptations only when the transition cost can be amortized by long idle phases.  

By defining prediction metrics for each functional unit, it is possible to detect and predict 

the critical long-duration idle phases. 

Process-Level Power Accounting 

The entirety of this dissertation and other performance-counter power modeling research  

focuses on attributing power to a particular hardware thread or core.  The limitation of 

this approach is that process scheduling and migration can impact the ability to discern 

unique program phases.  It is likely that tracking power and phase history at the process-

level will reduce aliasing thus improving predictability. 

Scheduling using On-line Power and Performance Models 

Another application of power accounting is for the direction of scheduling decisions.  By 

introducing performance models that are power-aware, optimal scheduling and power 

management decisions can be made.  The current state-of-the-art architectural power 

adaptations provide a range of throughput and latency at the processor core-level.  

Expressing those impacts as run-time power and performance models would allow major 

improvements in energy efficiency and performance. 
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