Skip to main content

Real-Time Knowledge for Cooperative Cognitive Automobiles

  • Chapter
  • First Online:
  • 1280 Accesses

Abstract

We are currently witnessing a rapid growth in the number of sensors in our automobiles. Accompanied by a trend towards higher data rate, storage capabilities, and processing power per sensor it seems safe to state that the role of information acquisition and processing is of increasing importance to the automotive domain. While radar, lidar, and video sensors were only introduced to selected upper class automobiles around the turn of the millennium, such sensors are readily available for medium sized vehicles by now and are expected to become standard in any vehicle in the not so far future. Combined with vehicular communication systems it is expected that this trend will not only show quantitative effects on driving comfort, but in the long term will provide a totally new quality of traffic operation including concerted navigation for safe, comfortable, and efficient driving.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The European Automotive industry introduced radar sensors in the Mercedes-Benz S-Class and in Jaguar’s XKR for Adaptive Cruise Control in 1999, followed by BMW’s 7-series in early 2000.

  2. 2.

    For the sake of simplicity, we restrict our consideration to a position estimate. Extension to other information like orientation or velocity is straightforward.

References

  1. European Union (2010) E-Safety. http://www.ec.europa.eu/information_society/activities/esafety

  2. Gindele T, Jagszent D, Pitzer B, Dillmann R (2008) Design of the planner of Team AnnieWAY’s autonomous vehicle used in the DARPA Urban Challenge 2007. In: Proceedings of the IEEE intelligent vehicles symposium, pp 1131–1136

    Google Scholar 

  3. Goebl M (2009) Eine realzeitfähige Architektur zur Integration kognitiver Funktionen. Dissertation, Technische Universität München, München

    Google Scholar 

  4. Goebl M, Färber G (2007) A real-time-capable hard- and software architecture for joint image and knowledge processing in cognitive automobiles. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, Turkey, pp 734–739

    Google Scholar 

  5. Goebl M, Althoff M, Buss M, Färber G, Hecker F, Heißing B, Kraus S, Nagel R, Puente León F, Rattei F, Russ M, Schweitzer M, Thuy M, Wang C, Wuensche H (2008) Design and capabilities of the Munich cognitive automobile. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, the Netherlands, pp 1101–1107

    Google Scholar 

  6. Hundelshausen F, Himmelsbach M, Hecker F, Mueller A, Wuensche HJ (2008) Driving with tentacles: Integral structures for sensing and motion. J Field Robot 25(9):640–673

    Article  Google Scholar 

  7. Kammel S, Ziegler J, Pitzer B, Werling M, Gindele T, Jagzent D, Schröder J, Thuy M, Goebl M, von Hundelshausen F, Pink O, Frese C, Stiller C (2008) Team AnnieWAY’s autonomous system for the 2007 DARPA Urban Challenge. J Field Robot 25(9):615–639

    Article  Google Scholar 

  8. Kämpchen N, Clauss M, Guenter Y, Schreier RM, Stiegeler M, Tischler K, Dietmayer K, Grossmann HP, Kabza H, Neumann H, Rothermel AL, Stiller C (2005) Vernetzte Fahrzeug-Umfelderfassung für zukünftige Fahrerassistenzsysteme. In: Maurer M, Stiller C (eds) Proceedings of the workshop Fahrerassistenzsysteme, Freundeskreis Mess- und Regelungstechnik Karlsruhe e.V., Walting, Altmühltal, pp 139–150

    Google Scholar 

  9. Nagel R, Eichler S, Eberspächer J (2007) Intelligent wireless communication for future autonomous and cognitive automobiles. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, Turkey, pp 716–721

    Google Scholar 

  10. Özgüner Ü, Stiller C, Redmill K (2007) Systems for safety and autonomous behavior in cars: The DARPA grand challenge experience. IEEE Proc 95(2):1–16

    Article  Google Scholar 

  11. Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans Syst, Man, Cybernetics SMC-13(3):257–266

    Article  Google Scholar 

  12. Schröder J, Gindele T, Jagszent D, Dillmann R (2008) Path planning for cognitive vehicles. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, Holland, pp 1119–1124

    Google Scholar 

  13. Stiller C, Färber G, Kammel S (2007a) Cooperative cognitive automobiles. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, Turkey, pp 215–220

    Google Scholar 

  14. Stiller C, Kammel S, Dang T, Duchow C, Hummel B (2007b) Autonome Fahrzeugführung durchs Gelände – ION im Grand Challenge. at – Automatisierungstechnik 55(6):290–297

    Google Scholar 

  15. Thuy M, Althoff M, Buss M, Diepold K, Eberspächer J, Färber G, Goebl M, Heißing B, Kraus S, Nagel R, Naous Y, Obermeier F, Puente León F, Rattei F, Wang C, Schweitzer M, Wünsche H (2008) Kognitive Automobile – Neue Konzepte und Ideen des Sonderforschungsbereiches/TR-28. In: 3. Tagung Aktive Sicherheit durch Fahrerassistenz, Garching bei München

    Google Scholar 

  16. Tischler K, Hummel B (2005) Enhanced environmental perception by inter-vehicle data exchange. In: IEEE intelligent vehicles symposium, Las Vegas, USA

    Book  Google Scholar 

  17. Werling M, Goebl M, Pink O, Stiller C (2008) A hardware and software framework for cognitive automobiles. In: Proceedings of the IEEE intelligent vehicles symposium 2008, Eindhoven, Niederlande, pp 1080–1085

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the fruitful collaboration of the partners from Karlsruhe Institute of Technology, Technische Universität München and Universität der Bundeswehr München within the Transregional Collaborative Research Centre 28 Cognitive Automobiles. Special thanks are directed to Georg Färber, one of the initiators, founders and member of the executive board of the Centre. The authors gratefully acknowledge support of the TCRC by the Deutsche Forschungsgemeinschaft (German Research Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Stiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stiller, C., Pink, O. (2012). Real-Time Knowledge for Cooperative Cognitive Automobiles. In: Chakraborty, S., Eberspächer, J. (eds) Advances in Real-Time Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24349-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24349-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24348-6

  • Online ISBN: 978-3-642-24349-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics