
Error-Detection in Enterprise Application
Integration Solutions

Rafael Z. Frantz1, Rafael Corchuelo2, and Carlos Molina-Jiménez3

1 Dep. de Tecnologia, UNIJUÍ University
Rua do Comércio 3000, Ijuí 98700-000, RS, Brazil

rzfrantz@unijui.edu.br
2 Dep. de Lenguajes y Sistemas Informáticos, Universidad de Sevilla

Avda. Reina Mercedes, s/n, Sevilla 41012, Spain
corchu@us.es

3 School of Computing Science, University of Newcastle
Newcastle upon Tyne, NE1 7RU, United Kingdom

carlos.molina@ncl.ac.uk

Abstract. Enterprise Application Integration (EAI) is a field of Soft-
ware Engineering. Its focus is on helping software engineers integrate ex-
isting applications at a sensible costs, so that they can easily implement
and evolve business processes. EAI solutions are distributed in nature,
which makes them inherently prone to failures. In this paper, we report
on a proposal to address error detection in EAI solutions. The main con-
tribution is that it can deal with both choreographies and orchestrations
and that it is independent from the execution model used.

Keywords: Enterprise Application Integration; Error Monitoring; Error
Detection; Dependability and Resilience.

1 Introduction

Companies are relying heavily on computer-based applications to run their busi-
nesses processes. Such processes must evolve and adapt as companies evolve and
adapt to varying contextual conditions. Common problems include that the ap-
plications were not designed to facilitate integrating them with others, i.e., they
do not provide a business level API, and that they were implemented using a
variety of technologies that do not inter-operate easily [13]. The goal of Enter-
prise Application Integration (EAI) is to help reduce the costs of EAI solutions
to facilitate the implementation and evolution of business processes.

Figure §1 sketches two sample EAI solutions that involve four applications
and three integration processes. Note that a solution is only a logical means to
organise a set of processes: different solutions can share the same processes, and
a solution can contain another solution. The processes interact with the appli-
cations using the facilities they provide, e.g., an API in the best case, a user
interface, a file, a database or other kinds of resources. They help implement
message-based workflows to keep a number of applications’ data in synchrony or

App 3

App 2

Prc 3 Prc 2
P5 P7 P3 P4

App 1 API Prc 1
P1

P2

Solution 1

Solution 2

App 4

P6

Communication
Channel

Entry Port Exit Port

Fig. 1. Sample EAI solutions

to build new functionality on top of them. Processes use ports to communicate
with each other or with applications over communication channels. Ports encap-
sulate reading from or writing to a resource, which helps abstract away from the
details of the communication mechanism, which may range from an RPC-based
protocol over HTTP to a document-based protocol implemented on a database.

The Service Oriented Architecture initiative has gained importance within
the field of EAI, since it provides appropriate technologies to wrap applications
and to implement message workflows. Centralised workflows, aka orchestrations,
rely on a single process that helps co-ordinate a workflow of messages amongst
a number of other processes and applications; contrarily, decentralised work-
flows, aka choreographies, do not rely on such a central co-ordinator. The tools
used to implement workflows include conventional systems [8], others based on
BPEL [15], and others like BizTalk [5], or Camel [10].

EAI solutions are distributed in nature, since they involve several applications
and processes that may easily fail to communicate with each other [8], which
argues for real-world EAI solutions to be fault-tolerant. There seems to be a
general consensus that the provisioning fault-tolerance includes the following
stages: event reporting, error monitoring, error diagnosing, and error recovery.
Event reporting happens when processes report that they have read or written
a message by means of a port; the goal of error monitoring is to analyse traces
of events to find invalid correlations, i.e., anomalous sets of messages that have
been processed together; such correlations must later be diagnosed to find the
cause of the anomalies, and appropriate actions to recover from the error must
be taken in the error recovery stage.

Orchestration workflows rely on an external mechanism that analyses inbound
messages, correlates them, and starts a new instance of the orchestration when-
ever a correlation is found. The typical execution model is referred to as process-
based since a thread must be allocated to run a process on a given correlation;
contrarily, the task-based execution model relies on a pool of threads that are
allocated to the tasks. Simply put, in the process-based model threads remain
allocated to a process even if that process is waiting for the answer to a request
to another process; contrarily, in the task-based model, no thread shall be idle
as long as a task in a process is ready for execution.

In this paper, we report on a proposal to build an error monitor for EAI
solutions. The key contribution is that it works with both orchestrations and
choreographies, and that it is independent from the execution model used. In
Section §2, we report on other proposals in the literature; in Section §3, we
present an overview of our proposal; in Section §4, we delve into our proposal to
detect errors; finally, we present our conclusions in Section §5.

2 Related Work

Error detection is relatively easy in orchestration systems because either correla-
tions are found prior to starting an orchestration process and everything happens
within the boundaries of this process. Contrarily, in choreographies, a correlation
may typically involve several processes that run in total asynchrony, and there is
not a single point of control; furthermore, EAI solutions may overlap since it is
common that processes are reused across several business processes. This makes
it more difficult to endow choreographies with fault-tolerance capabilities.

The research on fault tolerance that has been conducted by the workflow
community is closely related to our work. Chiu and others [4] presented an ab-
stract model for workflows with embedded fault-tolerance capabilities; it set the
foundations for other proposals in this field. Hagen and Alonso [8] presented
a proposal that builds on the two-phase commit protocol, and it is suitable for
orchestrations in which the execution model is process-based. Alonso and others
[1] provided additional details on the minimum requirements to deal with fault
tolerance in orchestrated systems. Liu and others [12] discussed how to deal
with fault tolerance in settings in which recovery actions are difficult or infeasi-
ble to implement; the authors also assume the existence of a centralised workflow
engine, i.e., they also focus on orchestrations. Li and others [11] reported on
a theoretical solution that is based on using Petri nets; they see processes as if
they were controllers, and report on detecting some classes of errors by means of
linear parity checks; the key is that they focus on systems in which a fault can
involve an arbitrarily large number of correlated messages, which are consumed
and produced by distributed processes, but are assume that they are chore-
ographed by a central processor. An architecture for fault-tolerant workflows,
based on finite state machines that recognise valid sequences of messages was
discussed in [6]; this proposal is suitable for both orchestrated and choreographed
processes; however it is aimed at process-based executions.

The study of fault tolerance in the context of choreographies has been paid
less attention in the literature. Chen and others [3] presented a proposal that
deviates from the previous ones in that their results can be applied to both
orchestrations and choreographies. They assume that the system under consid-
eration is organised into three logical layers (front-end, application server, and
database server), plus an orthogonal layer (the logging system). Since they can
deal with choreographies, they need to analyse message traces to detect errors.
They assume that each message has a unique identifier that allows to trace it
throughout the execution flow; unfortunately, they cannot deal with EAI solu-
tions in which messages are split or aggregated, since this would require to find

correlations amongst messages, which is not supported at all. Due to this lim-
itation, it can easily deal with both process- and task-based execution models.
Yan and Dague [16] suggested to re-use the body of knowledge about error
detection in industrial discrete event systems, in error detection in web services
applications; they discussed runtime error detection of orchestrated web services;
a salient feature of this proposal is that, similarly to [14], the authors assume
that failure events are not observable; the granularity of execution in this ap-
proach is at process level. Baresi and others [2] discussed some preliminary
ideas for building an error monitor that can be used for both orchestrated and
choreographed processes. No implementation or evaluation was provided.

Our analysis of the literature reveals most authors in the EAI field focus on
orchestrations and the process-based execution model; choreographies and the
task-based execution model have been paid little attention so far. Another con-
clusion is that the distinction amongst the stages required to provision fault
tolerance is often blurred. The reason is that many proposals focus on error re-
covery since error detection or error diagnosing is quite a trivial task. In many
proposals, the presence of an error can be derived from a single event. For in-
stance, the conventional try-catch mechanism involves the notification of a single
event to be caught by the exception mechanisms [7]. However, there is a large
class of applications in which the presence of an error can only be deduced from
the analysis of traces of events that are related to each other, e.g., by order,
parent-child relationships, propagation, or causations. Error detection in these
cases is a challenging problem, in particular, when the number of events is large.

3 Overview of Our Proposal

Our proposal builds on a monitor to which each port must report events, and a
set of rules that help determine if correlations are valid or not. A monitor is com-
posed of three modules called Registrar, Event Handler, and Error Detector, three
databases called Descriptions Database, Graphs Database, and History Database,
and a queue called Graphs Queue. Figure §2 presents the abstract model for them.

The Registrar module is responsible for maintaining the Descriptions Database
up to date. This database provides the other modules a description of the solu-
tions, processes, ports, and rules the monitor handles. (Note that we use term
‘artefact’ to refer to both solutions and processes.)

The Event Handler uses the events reported by ports to update the Graphs
Database and the Graphs Queue. An event can be of type Reception, which hap-
pens at ports that read data from an application (either successfully or unsuc-
cessfully) and other ports that fail to read data at all, Shipment, which occurs
when a port writes information (either successfully or unsuccessfully), and Trans-
fer, which happens when a port succeeds to read data that was written previously
by another port. Every event has a target binding and zero, one, or more source
bindings. We use this term to refer to the data involved in an event, namely: the
instant when the event happened, the name of the port, the identifier of the mes-
sage read or written, and a status, which can be either Status::OK to mean that

name : Name

Rule

max : Integer
min : Integer

Atom

WE
RE
OK

<<enumeration>>
Status

1

1

processes
1..*

{unique}

<<utility>>
GraphsDatabase

<<utility>>
EventHandler

<<utility>>
ErrorDetector

Process

direction : Direction
name : Name

Port

<<abstract>>
Event

TransferShipment

{disjoint, complete}

status : Status
messageID : Identifier
portName : Name
instant : Instant

Binding

sources
0..*

{unique}

ports
2..*

{unique}

1

atoms
2..*

{unique}

Graph

nodes
0..*

{unique}

Edge

edges
0..*

{unique}

source
1

target
1

Solution

<<utility>>
DescriptionsDatabase

rules
0..*

{unique}

<<utility>>
Registrar

<<writes>>

timeOut : Integer
name : Name

<<abstract>>
Artefact

{disjoint, complete}
solutions

0..*

{unique}

<<updates>>

Entry

entries
0..*

{unique}

1

1

<<processes>>

<<updates>>

EXIT
ENTRY

<<enumeration>>
Direction

<<reads>>

Reception

target
1checkpoint : Instant

Correlation

entries
0..*

{unique}

failingRules : Set<Name>
checkpoint : Instant
artefactName : Name

Notification

1

unreportedBindings
1..*

{unique}

<<utility>>
HistoryDatabase

<<writes>>
<<reads>>

<<reads>>

value : String

<<datatype>>
Name

value : String

<<datatype>>
Identifier

<<reads>>

<<updates>>

value : Integer

<<datatype>>
Instant

<<creates>>

<<reads>>

<<reads>>

<<creates>>

GraphsQueue
<<updates>>

<<takes>>

entries
0..*

{unique}

Fig. 2. Model for Registrar, Event Handler and Error Detector modules

Solution 1

Solution 2

Prc 2

 25, P3, M2, OK

b6 45, P4, M3, OK

b8

e5

Prc 1

 1, P1, M1, OK
b1

14, P2, M2, OK

b4
e1

e4

48, P1, Z1, OK
b9

53, P2, Z2, OK

b10
e7

e8

Prc 1

31, P3, X3, OK

b7Prc 2

 67, P3, Z2, OK

b13Prc 2 Prc 3

 6, P5, X1, OK

b2

 8, P6, X2, OK

b3

 21, P7, X3, OK

b5e2

e3

e5

Solution 1

Solution 1 Solution 2

 59, P5, Q1, OK

b11Prc 3

Solution 2

 64, P6, Q2, OK

b12Prc 3

Solution 2

Solution 2

NodeArtefact Edge

Fig. 3. Sample Graphs Database

no problem was detected, Status::RE to mean that there was a reading failure,
or Status::WE to mean that there was a writing failure.

The Graphs Database stores an entry per artefact in the Descriptions Database;
such entries contain a graph that the Event Handler builds incrementally, as it
receives events. Figure §3 shows a sample Graphs Database for the EAI solution
in Figure §1. For instance, let us focus on bindings b6 and b4: the former is
involved in process Prc2 and both solutions, and it denotes that port P3 dealt

with message M2 at instant 25, and that the result was successful; the later is
involved in process Prc1 and Solution1 only, and it indicates that port P2 dealt
with message M2 at instant 14, and that the result was successful; besides, the
edge between them both indicates that binding b6 originates from binding b4.

The Graphs Queue is used to refer to the entries in the Graphs Database that
have changed since the database was analysed for the last time. This helps
minimise the work performed by the Error Detector, whose abstract model is
presented in Figure §2. Note that it is relatively easy to find correlations in a
graph like the one in Figure §3 since this task amounts to finding the connected
components of the graph [9]. Contrarily, verifying them depends completely on
the semantics of the EAI solutions involved. This is why we assign each artefact
an upper bound to the total amount of time it is expected to take to produce
a valid correlation, i.e., a time out, and a set of rules of the following form,
cf. Figure §2:

P1[m1..n1], . . . , Pp [mp ..np] → Q1[r1..s1], . . . , Qq [rq ..sq],

where Pi and Qj are port names and mi , ni , ri , si denote the minimum and
maximum number of messages a correlation allows in each port so that it can be
considered valid. For instance, a rule like P5[1..1], P6[1..1] → P4[1..10] regarding
Solution2 in Figure §1 means that it is a requirement for a correlation to be
considered valid that it has one message at port P5, one message at port P6 and
then 1–10 messages at port P4.

The correlations found by the Error Detector module are removed from the
Graphs Database and stored in the History Database. This helps us complete them
if new messages are reported later.

4 Detecting Errors

Due to space limitations, we do not provide additional details on the Registrar
or the Event Handler modules. Instead, we focus on the Error Detector, which is
the central module. Its algorithm is as follows:

1: to detectErrors() do

2: repeat

3: s = findCorrelations()

4: for each correlation c in s do

5: verifyCorrelation(c)

6: end for

7: end repeat

8: end

It runs continuously; in each iteration, it first finds a set of correlations and
then verifies them sequentially. In the following subsections, we delve into the
algorithms to find correlations and to verify them.

4.1 Finding Correlations

The algorithm to find correlations is as follows:

1: to findCorrelations(): Set(Correlation) do

2: take entry f from the Graphs Queue

3: checkpoint = getTime()

4: s = find connected components of f .graph

5: result = ∅
6: for each graph g in s do

7: c = new Correlation(artefact = f .artefact, graph = g , checkpoint = checkpoint)

8: add c to result

9: end for

10: end

This algorithm starts by taking an entry f from the Graphs Queue at line §2;
if there is not an entry available, then we assume that the algorithm blocks here
until an entry is available. Note that the core of the algorithm is line §4, in which
we find the connected components of the graphs that corresponds to the entry
we have taken from the Graphs Queue.

4.2 Verifying Correlations

A correlation can be diagnosed as on-going, valid or invalid. A correlation is
on-going if its deadline has not expired yet. Bear in mind that correlations are
analysed within the context of an artefact, which must have an associated time
out and set of rules. The deadline for a correlation is defined as the time of
its earliest binding plus this time out. This provides a time frame within which
all of the messages involved in the correlation are expected to be reported. A
correlation is valid if all of the messages it involves were read or written by the
expected deadline, there was no reading or writing failure, and all of the rules
involved are passed; otherwise, it is considered invalid and a notification must
be generated so that it can be diagnosed and appropriate recovery actions can
be executed later. The algorithm to verify a correlation is as follows:

1: to verifyCorrelation(in c: Correlation) do

2: findCompletion(c, out completedGraph, out unnotifiedBindings)

3: status = every binding b in completedGraph.nodes has status OK?

4: earliestInstant = minimum of completedGraph.nodes.instant

5: latestInstant = maximum of completedGraph.nodes.instant

6: deadline = earliestInstant + c.artefact.timeOut

7: notPassedRules = checkRules(completedGraph, c.artefact)

8: isValid = deadline <= c.checkpoint and latestInstant <= deadline and

9: status == true and notPassedRules == ∅
10: isInvalid = (deadline < latestInstant) or

11: (deadline <= c.checkpoint and (not status or notPassedRules �= ∅))

12: if isValid then

13: f = find the entry for c.artefact in the Graphs Database

14: remove c.graph from f .graph

15: g = new Entry(artefact = c.artefact, graph = c.graph, isValid = true)

16: add g to History database

17: elsif isInvalid then

18: f = find the entry for c.artefact in the Graphs Database

19: remove c.graph from f .graph

20: g = new Entry(artefact = c.artefact, graph = completedGraph, isValid = false)

21:

22: add g to History database

23: n = new Notification(artefactName = c.artefact.name, graph = completedGraph,

24: unnotifiedBindings = unnotifiedBindings, checkpoint = c.checkpoint,

25: notPassedRules = notPassedRules)

26: send n to the notification port of the monitor

27: elsif

28: - Nothing to do, since c is an on-going correlation

29: end if

30: end

The algorithm gets a Correlation c as input; the first thing it has to do is to
complete it with the help of the History Database. Note that correlations that are
not on-going are removed from the Graphs Database; due to the asynchronous na-
ture of EAI solutions, that implies that a after a correlation is verified, additional
correlated messages may be reported. This is also the reason why before verifying
a correlation, it must be completed using the History Database. Algorithm find-
Completion, which is explained later, performs this tasks; given a correlation c,
it returns a graph that includes c.graph and additional nodes and edges found in
the History Database, as well the subset of bindings in the completed correlation
that have not been notified, yet.

4.3 Completing Correlations

The algorithm to complete a correlation is as follows:

1: to findCompletion(in c: Correlation, out completedGraph: Graph,

2: out unnotifiedBindings: Set(Binding)) do

3: completedGraph = new Graph(nodes = shallow copy of c.graph.nodes,

4: edges = shallow copy of c.graph.edges)

5: unnotifiedBindings = shallow copy of c.graph.nodes

6: s = find all of the entries for c.artefact in the History database

7: for each entry f in s do

8: intersection = c.graph.nodes ∩ f .graph.nodes

9: if intersection �= ∅ then

10: merge f .graph into completedGraph

11: if not f .isValid then

12: remove intersection from unnotifiedBindings

13: end if

14: end if

15: end for

16: end

This algorithm takes a correlation c as input and returns a graph that is a
completed version of c.graph and a set of bindings that have not been notified
so far. It first creates an initial completed graph at line §3 from a shallow copy
of the nodes and the edges of the graph of correlation c. A shallow copy is made
because otherwise line §10 would modify the original graph in correlation c. The
loop at lines §7–§15 discovers if there are common bindings between correlation c
and an entry f . If common bindings are found they are merged into the resulting
completed graph, and bindings that were detected to be already in the graph
of entry f are removed from the set of unnotified bindings, leaving only new
bindings that were not reported yet. Note that this is done only if graph f
represents an invalid graph; otherwise all bindings are new.

4.4 Checking Rules

The algorithm to check rules is as follows:

1: to checkRules(in g : Graph, in t: Artefact): Set(Name) do

2: result = ∅
3: for each rule r in t.rules do

4: for each atom a in r .atoms do

5: n = count bindings b in g.nodes such that b.portName == a.port.name

6: if n < a.min or n > a.max then

7: add r .name to result

8: end if

9: end for

10: end for

11: end

This algorithm takes a graph that represents a correlation and an artefact
as input; it returns the subset of rules associated with the artefact that the
correlation does not pass. The algorithm is simple since we just need to count
the number of bindings that involve the port referenced in the atom; if this figure
is not within the margins that the atom establishes, then it is added to the result
of the algorithm since that rule is not passed.

5 Conclusions

In this paper, we have presented a proposal to detect errors in the context of EAI
solutions. It is novel in that it is not bound to orchestrations or choreographies,
neither to a process- nor a task-based execution model; it is totally independent.
We have analysed the time complexity of our algorithm and we have proved that
it is O(b + c h), where b denotes the average number of bindings that have been
reported by means of events since the last checkpoint, c denotes the average
number of correlations found at each checkpoint, and h the average number of
entries for an artefact in the History Database. Note that b and c are expected to
vary within some margins as long as the Descriptions Database does not change;
contrarily, h increases monotonically as time goes by. This implies that after a

point in time, this complexity is dominated by h, i.e., the algorithm behaves
linearly in the average number of entries per artefact in the History Database.
Recall that the only purpose of this database is to complete correlations that
are found in the Graphs Database, just in case a message is processed by a port
after the deadline for the corresponding correlation expires. In practice, it makes
sense to remove old information from the database periodically, say a week; this
puts an upper bound to the size of the History Database, which, in turn, puts an
upper bound to the total time the algorithm may take to detect errors.

References

[1] Alonso, G., Hagen, C., Divyakant, D., Abbadi, A.E., Mohan, C.: Enhancing the
fault tolerance of workflow management systems. IEEE Concurrency 8(3), 74–81
(2000)

[2] Baresi, L., Guinea, S., Kazhamiakin, R., Pistore, M.: An Integrated Approach
for the Run-Time Monitoring of BPEL Orchestrations. In: Mähönen, P., Pohl, K.,
Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp. 1–12. Springer, Heidelberg
(2008)

[3] Chen, M., Accardi, A., Kiciman, E., Lloyd, J., Patterson, D., Fox, A., Brewer, E.:
Path-based faliure and evolution management. In: Int’l Symp. Netw. Syst. Des.
and Impl., p. 23 (2004)

[4] Chiu, D., Li, Q., Karlapalem, K.: A meta modeling approach to workflow man-
agement systems supporting exception handling. Inf. Syst. 24(2), 159–184 (1999)

[5] Dunphy, G., Metwally, A.: Pro BizTalk 2006. Apress (2006)
[6] Ermagan, V., Kruger, I., Menarini, M.: A fault tolerance approach for enterprise

applications. In: IEEE Int’l Conf. Serv. Comput., vol. 2, pp. 63–72 (2008)
[7] Goodenough, J.: Exception handling: Issues and proposed notation. Communica-

tions of the ACM 18(12), 683–696 (1975)
[8] Hagen, C., Alonso, G.: Exception handling in workflow management systems.

IEEE Trans. Softw. Eng. 26(10), 943–958 (2000)
[9] Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation. Com-

munications ofthe ACM 16(6), 372–378 (1973)
[10] Ibsen, C., Anstey, J.: Camel in Action. Manning Publications (2010)
[11] Li, L., Hadjicostis, C., Sreenivas, R.: Designs of bisimilar petri net controllers

with fault tolerance capabilities. IEEE Trans. Syst. Man Cybern. Part A: Syst.
Humans 38(1), 207–217 (2008)

[12] Liu, C., Orlowska, M., Lin, X., Zhou, X.: Improving backward recovery in workflow
systems. In: Int’l Conf. Database Syst. Adv. Appl., p. 276 (2001)

[13] Messerschmitt, D., Szyperski, C.: Software Ecosystem: Understanding an Indis-
pensable Technology and Industry. MIT Press, Cambridge (2003)

[14] Sampath, M., Sengupta, R., Lafortune, S.: Failure diagnosis using discrete-event
models. IEEE Trans. on Control Syst. Technol. 4(2), 105–124 (1996)

[15] Wright, M., Reynolds, A.: Oracle SOA Suite Developer’s Guide. Packt Publishing
(2009)

[16] Yan, Y., Dague, P.: Modeling and diagnosing orchestrated web service processes.
In: IEEE Int’l Conf. on Web Serv., pp. 51–59. IEEE Computer Society, Los Alami-
tos (2007)

	Error-Detection in Enterprise Application Integration Solutions
	Introduction
	Related Work
	Overview of Our Proposal
	Detecting Errors
	Finding Correlations
	Verifying Correlations
	Completing Correlations
	Checking Rules

	Conclusions
	References

