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Abstract. We study nondeterministic strategies in parity games with the
aim of computing a most permissive winning strategy. Following earlier
work, we measure permissiveness in terms of the average number/weight
of transitions blocked by a strategy. Using a translation into mean-payoff
parity games, we prove that deciding (the permissiveness of) a most
permissive winning strategy is in NP ∩ coNP. Along the way, we provide
a new study of mean-payoff parity games. In particular, we give a new
algorithm for solving these games, which beats all previously known
algorithms for this problem.

1 Introduction

Games extend the usual semantics of finite automata from one to several players,
thus allowing to model interactions between agents acting on the progression of
the automaton. This has proved very useful in computer science, especially for the
formal verification of open systems interacting with their environment [21]. In this
setting, the aim is to synthesise a controller under which the system behaves
according to a given specification, whatever the environment does. Usually, this
is modelled as a game between two players: Player 1 represents the controller and
Player 2 represents the environment. The goal is then to find a winning strategy
for Player 1, i.e. a recipe stating how the system should react to any possible
action of the environment, in order to meet its specification.

In this paper, we consider multi-strategies (or non-deterministic strategies,
cf. [1, 3]) as a generalisation of strategies: while strategies select only one possible
action to be played in response to the behaviour of the environment, multi-
strategies can retain several possible actions. Allowing several moves provides
a way to cope with errors (e.g., actions being disabled for a short period, or timing
imprecisions in timed games). Another quality of multi-strategies is their ability
to be combined with other multi-strategies, yielding a refined multi-strategy,
which is ideally winning for all of the original specifications. This offers a modular
approach for solving games.
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Classically, a strategy is more permissive than another one if it allows more
behaviours. Under this notion, there does not need to exist a most permissive win-
ning strategy [1]. Hence, we follow a different approach, which is of a quantitative
nature: we provide a measure that specifies how permissive a given multi-strategy
is. In order to do so, we consider weighted games, where each edge is equipped
with a weight, which we treat as a penalty that is incurred when disallowing
this edge. The penalty of a multi-strategy is then defined to be the average sum
of penalties incurred in each step (in the limit). The lower this penalty is, the
more permissive is the given multi-strategy. Our aim is to find one of the most
permissive multi-strategies achieving a given objective.

We deal with multi-strategies by transforming a game with penalties into a
mean-payoff game [11, 24] with classical (deterministic) strategies. A move in
the latter game corresponds to a set of moves in the former, and is assigned a
(negative) reward depending on the penalty of the original move. The penalty of a
multi-strategy in the original game equals the opposite of the payoff achieved by
the corresponding strategy in the mean-payoff game. In previous work, Bouyer et
al. [3] introduced the notion of penalties and showed how to compute permissive
strategies wrt. reachability objectives. We extend the study of [3] to parity
objectives. This is a significant extension because parity objectives can express
infinitary specifications. Using the above transformation, we reduce the problem
of finding a most permissive strategy in a parity game with penalties to that of
computing an optimal strategy in a mean-payoff parity game, which combines a
mean-payoff objective with a parity objective.

While mean-payoff parity games have already been studied [8, 2, 6], we propose
a new proof that these games are determined and that both players have optimal
strategies. Moreover, we prove that the second player does not only have an
optimal strategy with finite memory, but one that uses no memory at all. Finally,
we provide a new algorithm for computing the values of a mean-payoff parity
game, which is faster than the best known algorithms for this problem; the
running time is exponential in the number of priorities and polynomial in the
size of the game graph and the largest absolute weight.

In the second part of this paper, we present our results on parity games with
penalties. In particular, we prove the existence of most permissive multi-strategies,
and we show that the existence of a multi-strategy whose penalty is less than a
given threshold can be decided in NP ∩ coNP. Finally, we adapt our deterministic
algorithm for mean-payoff parity games to parity games with penalties. Our
algorithm computes the penalties of a most permissive multi-strategy in time
exponential in the number of priorities and polynomial in the size of the game
graph and the largest penalty.

Related work. Penalties as we use them were defined in [3]. Other notions of
permissiveness have been defined in [1, 20], but these notions have the drawback
that a most permissive strategy might not exist. Multi-strategies have also been
used for different purposes in [17].

The parity condition goes back to [12, 19] and is fundamental for verification.
Parity games admit optimal memoryless strategies for both players, and the
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problem of deciding the winner is in NP ∩ coNP. As of this writing, it is not
known whether parity games can be solved in polynomial time; the best known
algorithms run in time polynomial in the size of the game graph but exponential
in the number of priorities.

Another fundamental class of games are games with quantitative objectives.
Mean-payoff games, where the aim is to maximise the average weight of the
transitions taken in a play, are also in NP∩ coNP and admit memoryless optimal
strategies [11, 24]. The same is true for energy games, where the aim is to always
keep the sum of the weights above a given threshold [5, 4]. In fact, parity games
can easily be reduced to mean-payoff or energy games [14].

Finally, several game models mixing several qualitative or quantitative ob-
jectives have recently appeared in the literature: apart from mean-payoff parity
games, these include generalised parity games [9], energy parity games [6] and
lexicographic mean-payoff (parity) games [2] as well as generalised energy and
mean-payoff games [7].

2 Preliminaries

A weighted game graph is a tuple G = (Q1, Q2, E,weight), where Q := Q1∪̇Q2 is a
finite set of states, E ⊆ Q×Q is the edge or transition relation, and weight : E → R
is a function assigning a weight to every transition. When weighted game graphs
are subject to algorithmic processing, we assume that these weights are integers;
in this case, we set W := max{1, |weight(e)| | e ∈ E}.

Moreover, we define the size of G, denoted by ‖G‖, as |Q|+ |E| · dlog2 W e.
(Up to a linear factor, ‖G‖ is the length of a binary encoding of G). In the same
spirit, the size ‖x‖ of a rational number x equals the total length of the binary
representations of its numerator and its denominator.

For q ∈ Q, we write qE for the set {q′ ∈ Q | (q, q′) ∈ E} of all successors
of q. We require that qE 6= ∅ for all states q ∈ Q. A subset S ⊆ Q is a subarena
of G if qE ∩ S 6= ∅ for all states q ∈ S. If S ⊆ Q is a subarena of G, then we
can restrict G to states in S, in which case we obtain the weighted game graph
G � S := (Q1 ∩ S,Q2 ∩ S,E ∩ (S × S),weight � S × S).

A play of G is an infinite sequence ρ = ρ(0)ρ(1) · · · ∈ Qω of states such that
(ρ(i), ρ(i+ 1)) ∈ E for all i ∈ N. We denote by OutG(q) the set of all plays ρ with
ρ(0) = q and by Inf(ρ) the set of states occurring infinitely often in ρ.

A play prefix or a history γ = γ(0)γ(1) · · · γ(n) ∈ Q+ is a finite, nonempty
prefix of a play. For a play or a history ρ and j < k ∈ N, we denote by
ρ[j, k) := ρ[j, k− 1] := ρ(j) · · · ρ(k− 1) its infix that starts at position j and ends
at position k − 1; the play’s suffix ρ(j)ρ(j + 1) · · · is denoted by ρ[j,∞).

Strategies. A (deterministic) strategy for Player i in G is a function σ : Q∗Qi → Q
such that σ(γq) ∈ qE for all γ ∈ Q∗ and q ∈ Qi. A strategy σ is memoryless
if σ(γq) = σ(q) for all γ ∈ Q∗ and q ∈ Qi. More generally, a strategy σ is
finite-memory if the equivalence relation ∼ ⊆ Q∗×Q∗, defined by γ1 ∼ γ2 if and
only if σ(γ1 · γ) = σ(γ2 · γ) for all γ ∈ Q∗Qi, has finite index.
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We say that a play ρ of G is consistent with a strategy σ for Player i if
ρ(k+ 1) = σ(ρ[0, k]) for all k ∈ N with ρ(k) ∈ Qi, and denote by OutG(σ, q0) the
set of all plays ρ of G that are consistent with σ and start in ρ(0) = q0. Given
a strategy σ of Player 1, a strategy τ of Player 2, and a state q0 ∈ Q, there exists
a unique play ρ ∈ OutG(σ, q0) ∩OutG(τ, q0), which we denote by ρG(σ, τ, q0).

Traps and attractors. Intuitively, a subarena T ⊆ Q of states is a trap for one
of the two players if the other player can enforce that the play stays in this set.
Formally, a trap for Player 2 (or simply a 2-trap) is a subarena T ⊆ Q such that
qE ⊆ T for all states q ∈ T ∩Q2, and qE ∩ T 6= ∅ for all q ∈ T ∩Q1. A trap for
Player 1 (or 1-trap) is defined analogously. Note that if T is n trap for Player i
in G � S and S is a trap for Player 1 in G, then T is also a trap for Player i in G.

If T ⊆ Q is not a trap for Player 1, then Player 1 has a strategy to reach
a position in Q \ T . In general, given a subset S ⊆ Q, we denote by AttrG1 (S)
the set of states from where Player 1 can force a visit to S. This set can be
characterised as the limit of the sequence (Ai)i∈N defined by A0 = S and

Ai+1 = Ai ∪ {q ∈ Q1 | qE ∩Ai 6= ∅} ∪ {q ∈ Q2 | qE ⊆ Ai} .

From every state in AttrG1 (S), Player 1 has a memoryless strategy σ that guar-
antees a visit to S in at most |Q| steps: the strategy chooses for each state
q ∈ (Ai \ Ai−1) ∩Q1 a state p ∈ qE ∩ Ai−1 (which decreases the distance to S
by 1). We call the set AttrG1 (S) =

⋃
i∈NAi the 1-attractor of S and σ an attractor

strategy for S. The 2-attractor of a set S, denoted by AttrG2 (S), and attractor
strategies for Player 2 are defined symmetrically. Notice that for any set S, the set
Q \AttrG1 (S) is a 1-trap, and if S is a subarena (2-trap), then AttrG1 (S) is also a
subarena (2-trap). Analogously, Q \AttrG2 (S) is a 2-trap, and if S is a subarena
(1-trap), then AttrG2 (S) is also a subarena (1-trap).

Convention. We often drop the superscript G from the expressions defined above,
if no confusion arises, e.g. by writing Out(σ, q0) instead of OutG(σ, q0).

3 Mean-payoff parity games

In this first part of the paper, we show that mean-payoff parity games are
determined, that both players have optimal strategies, that for Player 2 even
memoryless strategies suffice, and that the value problem for mean-payoff parity
games is in NP∩ coNP. Furthermore, we present a deterministic algorithm which
computes the values in time exponential in the number of priorities, and runs in
pseudo-polynomial time when the number of priorities is bounded.

3.1 Definitions

Formally, a mean-payoff parity game is a tuple G = (G,χ), where G is a weighted
game graph, and χ : Q→ N is a priority function assigning a priority to every
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state. A play ρ = ρ(0)ρ(1) · · · is parity-winning if the minimal priority occurring
infinitely often in ρ is even, i.e., if min{χ(q) | q ∈ Inf(ρ)} ≡ 0 (mod 2). All
notions that we have defined for weighted game graphs carry over to mean-
payoff parity games. In particular, a play of G is just a play of G and a strategy
for Player i in G is nothing but a strategy for Player i in G. Hence, we write
OutG(σ, q) for OutG(σ, q), and so on. As for weighted games graphs, we often
omit the superscript if G is clear from the context. Finally, for a mean-payoff
parity game G = (G,χ) and a subarena S of G, we write G �S for the mean-payoff
parity game (G � S, χ � S).

We say that a mean-payoff parity game G = (G,χ) is a mean-payoff game
if χ(q) is even for all q ∈ Q. In particular, given a weighted game graph G,
we obtain a mean-payoff game by assigning priority 0 to all states. We denote
this game by (G, 0).

If χ(Q) ⊆ {0, 1}, then we say that G is a mean-payoff Büchi game; if χ(Q) ⊆
{1, 2}, we call it a mean-payoff co-Büchi game. Hence, in a Büchi game Player 1
needs to visit the set χ−1(0) infinitely often, whereas in a co-Büchi game he has
to visit the set χ−1(1) only finitely often.

For a play ρ of G, we define its payoff as

payoffG(ρ) =
{

lim inf
n→∞

payoffGn(ρ) if ρ is parity-winning,
−∞ otherwise,

where for n ∈ N

payoffGn(ρ) =


1
n

n−1∑
i=0

weight(ρ(i), ρ(i+ 1)) if n > 0,

−∞ if n = 0.

If σ is a strategy for Player 1 in G, we define its value from q0 ∈ Q as

valG(σ, q0) = infτ payoffG(ρ(σ, τ, q0)) = inf{payoffG(ρ) | ρ ∈ OutG(σ, q0)},

where τ ranges over all strategies of Player 2 in G. Analogously, the value of a
strategy τ for Player 2 from q0 is defined as

valG(τ, q0) = supσ payoffG(ρ(σ, τ, q0)) = sup{payoffG(ρ) | ρ ∈ OutG(τ, q0)},

where σ ranges over all strategies of Player 1 in G. The lower and upper value of
a state q0 ∈ Q are defined by

valG(q0) = supσ valG(σ, q0) and valG(q0) = infτ valG(τ, q0),

respectively. Intuitively, valG(q0) and valG(q0) are the maximal (respectively
minimal) payoff that Player 1 (respectively Player 2) can ensure (in the limit).
We say that a strategy σ of Player 1 is optimal from q0 if valG(σ, q0) = valG(q0).
Analogously, we call a strategy τ of Player 2 optimal from q0 if valG(τ, q0) =
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Fig. 1. A mean-payoff parity game for which infinite memory is necessary

valG(q0). A strategy is (globally) optimal if it is optimal from every state q ∈ Q.
It is easy to see that valG(q0) ≤ valG(q0). If valG(q0) = valG(q0), we say that
q0 has a value, which we denote by valG(q0).

In the next section, we will see that mean-payoff games are determined, i.e.,
that every state has a value. The value problem is the following decision problem:
Given a mean-payoff parity game G (with integral weights), a designated state
q0 ∈ Q, and a number x ∈ Q, decide whether valG(q0) ≥ x.

Example 1. Consider the mean-payoff parity game G depicted in Fig. 1, where a
state or an edge is labelled with its priority, respectively weight; all states belong
to Player 1. Note that valG(q1) = 1 since Player 1 can delay visiting q2 longer
and longer while still ensuring that this vertex is seen infinitely often. However,
there is no finite-memory strategy that achieves this value.

Let σ be a finite-memory strategy of Player 1 in G, and let ρ be the unique play
of G that starts in q1 and is consistent with σ. Assume furthermore that ρ visits q2
infinitely often (otherwise valG(σ, q1) = −∞). Then ρ = q1

k1q2q1
k2q2 · · · , where

each ki ∈ N \ {0}. Since σ is a finite-memory strategy, there exists m ∈ N such
that ki ≤ m for all i ∈ N. Hence, valG(σ, qq) = payoff(ρ) ≤ m/(m+ 1) < 1.

3.2 Strategy complexity

It follows from Martin’s determinacy theorem [18] that mean-payoff parity games
are determined. Moreover, Chatterjee et al. [8] gave an algorithmic proof for
the existence of optimal strategies. Finally, it can be shown that for every
x ∈ R∪{−∞} the set {ρ ∈ Qω | payoff(ρ) ≥ x} is closed under combinations. By
Theorem 4 in [16], this property implies that Player 2 even has a memoryless
optimal strategy. We give here a purely inductive proof of these facts that does
not rely on Martin’s theorem. We start by proving that Player 1 has an optimal
strategy in games where Player 2 is absent.

Lemma 2. Let G be a mean-payoff parity game with Q2 = ∅. Then Player 1 has
an optimal strategy in G.

Proof. It suffices to construct for each q0 ∈ Q a strategy σ with valG(σ, q0) ≥
valG(q0). If valG(q0) = −∞, we can choose an arbitrary strategy σ. Otherwise, by
the definition of valG(q0), for each ε > 0 there exists a play ρε ∈ OutG(q0) with
payoff(ρε) ≥ valG(q0)− ε. Consider the sets Inf(ρε) of states occurring infinitely
often in ρε. Since there are only finitely many such sets, we can find a set P ⊆ Q
such that for each ε > 0 there exists 0 < ε′ < ε with P = Inf(ρε′). Let qmin ∈ P
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be a vertex of lowest priority. (This priority must be even since each ρε fulfils
the parity condition).

Let σ1 be an optimal memoryless strategy in the mean-payoff game GP =
(G � P, 0) (the strategy σ1 just leads the play to a simple cycle with maximum
average weight), and let σ2 be the memoryless attractor strategy in the game GP
that ensures a visit to qmin from all states q ∈ P ; we extend both strategies to
a strategy in G by combining them with a memoryless attractor strategy for P .
(In particular, σ2 enforces a visit to qmin from q0.) Note that valGP (q) ≥ valG(q0)
for all q ∈ P since each of the plays ρε′ visits each vertex in P and has payoff
≥ valG(q0)− ε′.

Player 1’s optimal strategy σ is played in rounds: in the ith round, Player 1
first forces a visit to qmin by playing according to σ2; once qmin has been visited,
Player 1 plays σ1 for i steps before proceeding to the next round. Note that
valGP (σ, qmin) = valGP (σ1, qmin). Moreover, the unique play ρ ∈ OutG(σ, q0)
satisfies qmin ∈ Inf(ρ) ⊆ P and therefore fulfils the parity condition. To sum
up, we have valG(σ, q0) = valG(σ, qmin) = valGP (σ, qmin) = valGP (σ1, qmin) =
valGP (qmin) ≥ valG(q0). ut

Using Lemma 2, we can prove that mean-payoff-parity games are not only
determined, but also that Player 1 has an optimal strategy and that Player 2
has a memoryless optimal strategy.

We use the loop factorisation technique (cf. [23]): Let γ be a play prefix and
let q̂ ∈ Q. The loop factorisation of γ relative to q̂ is the unique factorisation
of the form γ = γ0γ1 · · · γl, where γ0 does not contain q̂, and each factor γi,
1 ≤ i ≤ l, is of the form γi = q̂ · γ′i where γ′i does not contain q̂. Analogously, for
a play ρ which has infinitely many occurrences of q̂ the loop factorisation of ρ
relative to q̂ is the unique factorisation ρ = γ0γ1 · · · where each γi has the same
properties as in the above case.

For a state q̂ with m successors, q̂E = {q1, . . . , qm}, we define an operator
πi : Q∗ → Q∗ for each 1 ≤ i ≤ m by setting

πi(γ) :=
{
γ if either γ = q̂qiγ

′ for some γ′ ∈ Q∗ or γ = qi = q̂,
ε otherwise.

The operator πi induces another operator Πi : Q∗ → Q∗ by setting

Πi(γ) = Πi(γ0)Πi(γ1) · · ·Πi(γl),

where γ = γ0γ1 · · · γl is the loop factorisation of γ relative to q̂. The opera-
tor Πi operates on play prefixes, but it can easily be extended to operate on
infinite plays with infinitely many occurrences of q̂.

Theorem 3. Let G be a mean-payoff parity game.

1. G is determined;
2. Player 1 has an optimal strategy in G;
3. Player 2 has a memoryless optimal strategy in G.
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Proof. We proceed by an induction over the size of S := {q ∈ Q2 | |qE| > 1}, the
set of all Player 2 states with more than one successor. If S = ∅, all statements
follow from Lemma 2. Let 1.–3. be fulfilled for all games with |S| < n and
let G = (G,χ) be a mean-payoff parity game with |S| = n. We prove that the
statements also hold for G. Let q̂ ∈ S with q̂E = {q1, . . . , qm}. For each 1 ≤ j ≤ m,
we define a new game Gj = (Gj , χ) by setting Ej = E \ ({q̂} × Q) ∪ {(q̂, qj)},
and Gj = (Q1, Q2, Ej ,weight � Ej). Note that the induction hypothesis applies
to each Gj . W.l.o.g. assume that valG1(q̂) ≤ valGj (q̂) for all 1 ≤ j ≤ m. We will
construct a memoryless strategy τ for Player 2 and a strategy σ for Player 1 such
that valG(τ, q0) ≤ valG1(q0) and valG(σ, q0) ≥ valG1(q0) for every q0 ∈ Q. Hence,

valG1(q0) ≤ valG(σ, q0) ≤ valG(q0) ≤ valG(q0) ≤ valG(τ, q0) ≤ valG1(q0),

and all these numbers are equal. In particular, we have valG(q0) = valG(q0) =
valG(q0), valG(σ, q0) = valG(q0) and valG(τ, q0) = valG(q0), which proves 1.–3.

By the induction hypothesis, Player 2 has a memoryless optimal strategy τ
in G1. Clearly, τ is also a memoryless strategy for Player 2 in G, and valG(τ, q0) =
valG1(τ, q0) = valG1(q0) for all q0 ∈ Q.

It remains to construct a strategy σ for Player 1 in G such that valG(σ, q0) ≥
valG1(q0) for all q0 ∈ Q.

First, we devise a strategy σ̂ such that valG(σ̂, q̂) ≥ valG1(q̂). If valG1(q̂) = −∞,
we can take an arbitrary strategy. Hence, assume that valG1(q̂) is finite. By the
induction hypothesis, for each j = 1, . . . ,m there exists a strategy σj for Player 1
in Gj with valGj (σj , q̂) = valGj (q̂). We define σ̂ to be the interleaving strategy,
defined by

σ̂(γ) = σ̂(γ0 · · · γl) =


σ1(Π1(γ)) if γl = q̂q1γ

′ for some γ′ ∈ Q∗,
...

...
σm(Πm(γ)) if γl = q̂qmγ

′ for some γ′ ∈ Q∗,

for all play prefixes γ whose loop factorisation relative to q̂ equals γ0 · · · γl.
We claim that valG(σ̂, q̂) ≥ valG1(q̂).

Let ρ ∈ OutG(σ̂, q̂). If ρ has only finitely many occurrences of q̂, then ρ is
equivalent to a play in Gj that is consistent with σj for some j. Since valGj (q̂) ≥
valG1(q̂) and σj is optimal, payoff(ρ) ≥ valG1(q̂), and we are done. Otherwise,
consider the loop factorisation ρ = γ0γ1 · · · and set

Γ = {j ∈ {1, . . . ,m} | γi · q̂ is a loop in Gj for infinitely many i ∈ N}.

Since the mean-payoff parity condition is prefix-independent, we can assume
w.l.o.g. that every loop in ρ is a loop in Gj for j ∈ Γ . For each j ∈ Γ , denote
by ρj = Πj(ρ) the corresponding play in Gj . By definition of σ̂, we have ρj ∈
OutGj (σj , q̂) for each j ∈ Γ . Since valG1(q̂) is finite and valG1(q̂) ≤ valGj (q̂),
each ρj fulfils the parity condition. As the minimal priority occurring infinitely
often in ρ also occurs infinitely often in one ρj , this implies that ρ fulfils the
parity condition.
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We claim that for each n > 0, payoffn(ρ) is a weighted average of payoffnj
(ρj)

for some nj > 0. To see this, consider the loop factorisation γ′0 · · · γ′k of ρ[0, n].
(Note that γ′i = γi for all i < k.) For each j ∈ Γ , set

nj =
{
|Πj(ρ[0, n])| − 1 if γ′k is a history of Gj and either γ′k 6= q̂ or qj = q̂.
|Πj(ρ[0, n])| otherwise.

Intuitively, nj is the number of transitions in ρ[0, n] that correspond to a transition
in ρj . Hence,

{(ρ(i), ρ(i+ 1)) | 0 ≤ i < n} =
⋃
j∈Γ
{(ρj(i), ρj(i+ 1)) | 0 ≤ i < nj}.

In particular,
∑
j∈Γ nj = n and

∑
j∈Γ nj/n = 1. We have

payoffn(ρ) = 1
n

n−1∑
i=0

weight(ρ(i), ρ(i+ 1))

= 1
n

∑
j∈Γ
nj>0

nj−1∑
i=0

weight(ρj(i), ρj(i+ 1))

=
∑
j∈Γ
nj>0

nj
n
· 1
nj

nj−1∑
i=0

weight(ρj(i), ρj(i+ 1))

=
∑
j∈Γ
nj>0

nj
n
· payoffnj

(ρj).

Since a weighted average is always bounded from below by the minimum element,
we can conclude that

payoffn(ρ) ≥ min
j∈Γ
nj>0

payoffnj
(ρj) ≥ min

j∈Γ
payoffnj

(ρj).

Taking the lower limit on both sides, we obtain

payoff(ρ) = lim inf
n→∞

payoffn(ρ)

≥ lim inf
n→∞

min
j∈Γ

payoffnj
(ρj)

= min
j∈Γ

lim inf
n→∞

payoffnj
(ρj)

= min
j∈Γ

lim inf
nj→∞

payoffnj
(ρj)

= min
j∈Γ

payoff(ρj).
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Since each ρj is consistent with σj and σj is optimal, we have payoff(ρj) ≥
valGj (q̂) ≥ valG1(q̂) for each j ∈ Γ and therefore also payoff(ρ) ≥ valG1(q̂). Since
this holds for all ρ ∈ OutG(σ̂, q̂), we can conclude that valG(σ̂, q̂) ≥ valG1(q̂).

Finally, we construct a strategy σ for Player 1 in G such that valG(σ, q0) ≥
valG1(q0) for all q0 ∈ Q. Let

σ(γ) =
{
σ1(γ) if q̂ does not occur in γ,
σ̂(q̂γ2) if γ = γ1q̂γ2 with γ1 ∈ (Q \ {q̂})∗.

Then for each play ρ ∈ OutG(σ, q0) where q̂ does not occur, it holds payoffG(ρ) =
payoffG1(ρ) ≥ valG1(σ1, q0) = valG1(q0). If q̂ occurs in at least one play consis-
tent with σ, then in the game G1 (where σ1 is optimal), we have valG1(q0) =
valG1(σ1, q0) ≤ valG1(q̂). Hence, for each play ρ ∈ OutG(σ, q0) where q̂ oc-
curs (say at position j), it holds payoffG(ρ) = payoffG(ρ[j,∞)) ≥ valG(σ̂, q̂) ≥
valG1(q̂) ≥ valG1(q0). Altogether we have payoffG(ρ) ≥ valG1(q0) for every play
ρ ∈ OutG(σ, q0) and therefore valG(σ, q0) ≥ valG1(q0). ut

A consequence of the proof of Lemma 2 and Theorem 3 is that each value of
a mean-payoff parity game is either −∞ or equals one of the values of a mean-
payoff game played on the same weighted graph (or a subarena of it). Since
optimal memoryless strategies exist in mean-payoff games [11], the values of
a mean-payoff game with integral weights are rational numbers of the form r/s
with |r| ≤ |Q| ·W and |s| ≤ |Q|. Consequently, this property holds for the (finite)
values of a mean-payoff parity game as well.

While Example 1 demonstrates that an optimal strategy of Player 1 requires
infinite memory in general, this is not the case for mean-payoff co-Büchi games,
where both players have memoryless optimal strategies. This can be seen by
applying Theorem 2 of [13] or by an inductive proof, which we provide here.

Theorem 4. Let G be a mean-payoff co-Büchi game. Then Player 1 has a
memoryless optimal strategy from every state q0 ∈ Q.

Proof. The proof is by induction over the number |Q| = n of states in G. For
n = 1, the statement is trivially fulfilled. Now let n > 1, q0 ∈ Q, and assume
that the statement is true for all games with less than n states. Define Q′ =
Q \ Attr2(χ−1(1)). If Q′ = ∅, then Player 2 can force visiting χ−1(1) infinitely
often by playing a memoryless attractor strategy. Hence, valG(q0) = −∞, and
every memoryless strategy of Player 1 is optimal. In the following, assume that
Q′ 6= ∅. Consider the game G′ := G �Q′, which is a mean-payoff game, and set

S := {q ∈ Q′ | valG
′
(q) ≥ valG(q0)}.

Note that S is a trap for Player 2 both in G′ and in G (since Q′ is a 2-trap
in G). We claim that S 6= ∅. Towards a contradiction, assume that S = ∅, i.e.,
valG

′
(q) < valG(q0) for all q ∈ Q′, and let τ be an optimal memoryless strategy

for Player 2 in G′. We extend τ to a strategy in G by combining it with a
memoryless attractor strategy for χ−1(1) on Attr2(χ−1(1)). Let ρ ∈ OutG(τ, q0)
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and m := maxq∈Q′ valG
′
(q). Either ρ visits Attr2(χ−1(1)) and therefore also

χ−1(1) infinitely often, in which case payoff(ρ) = −∞ < m, or ρ[i,∞) is a play
of G′ for some i ∈ N, in which case payoff(ρ) = payoff(ρ[i,∞)) ≤ valG

′
(ρ(i)) ≤ m.

Hence, valG(q0) ≤ valG(τ, q0) ≤ m < valG(q0), a contradiction.
Now, let σ′ be a memoryless optimal strategy of Player 1 in G′. By the

definition of S, we have valG
′
(σ′, q) ≥ valG(q0) for all q ∈ S. Moreover, σ′ induces

a memoryless strategy σS in G �S such that valG�S(σS , q) = valG
′
(σ′, q) ≥ valG(q0)

for all q ∈ S. Let A = AttrG1 (S). We extend σS to a memoryless strategy σA
in G � A by combining it with a memoryless attractor strategy for S on A \ S.
It follows that valG�A(σA, q) ≥ valG(q0) for all q ∈ Attr1(S). If q0 ∈ Attr1(S),
we are done. Otherwise, q0 ∈ T := Q \ A. Since S 6= ∅, the game G � T has
less states than G, and by the induction hypothesis, Player 1 has a memoryless
optimal strategy σT from q0 in G � T . Note that, since T is a trap for Player 1,
we have valG�T (σT , q0) = valG�T (q0) ≥ valG(q0). Let σ be the union of σA
and σT , which is a memoryless strategy in G. We claim that σ is optimal
from q0 in G. Let ρ ∈ OutG(σ, q0). If ρ stays in T , it is consistent with σT
and must have payoff at least valG�T (σT , q0) ≥ valG(q0). Otherwise, there exists
i ∈ N such that ρ(i) ∈ A and ρ[i,∞) is consistent with σA, which implies
payoff(ρ) = payoff(ρ[i,∞)) ≥ valG�A(σA, ρ(i)) ≥ valG(q0). ut

3.3 Computational complexity

In this section, we prove that the value problem for mean-payoff parity games
lies in NP ∩ coNP. Although this has already been proved by Chatterjee and
Doyen [6], our proof has the advantage that it works immediately on mean-payoff
parity games, and not on energy parity games as in [6].

In order to put the value problem for mean-payoff parity games into coNP,
we first show that the value can be decided in polynomial time in games where
Player 2 is absent.

Proposition 5. The problem of deciding, given a mean-payoff parity game G
with Q2 = ∅, a state q0 ∈ Q, and x ∈ Q, whether valG(q0) ≥ x, is in P.

Proof. Deciding whether valG(q0) ≥ x is achieved by Algorithm 1, which employs
as subroutines Tarjan’s linear-time algorithm [10] for SCC decomposition and
Karp’s polynomial-time algorithm [15] for computing the minimum/maximum
cycle weight, (i.e. the minimum/maximum average weight on a cycle) in a given
strongly connected graph.

The algorithm is sound: If the algorithm accepts, then there is an even
priority p and a reachable SCC C in Gp with p ∈ χ(C) that has maximum
cycle weight w ≥ x. We construct a strategy σ for Player 1 with valG(σ, q0) = w.
Let q ∈ C be a state with priority p. Since q is reachable from q0 and C is
strongly connected, both q0 and C lie inside Attr1({q}). Let σq be the memoryless
attractor strategy for {q}. Now, since w is the maximum cycle weight in C, there
exists a simple cycle γ = q1 · · · qnq1 in C with cycle weight w. We construct a
(memoryless) strategy σγ on C by setting σγ(qn) = q1 and σγ(qi) = qi+1 for
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Algorithm 1. A polynomial-time algorithm for deciding the value of a state
in a one-player mean-payoff parity game.
Input: mean-payoff parity game G with Q2 = ∅, q0 ∈ Q, x ∈ Q.
Output: whether valG(q0) ≥ x.

G′ = G � {q ∈ Q | q is reachable from q0}
for each even p ∈ χ(Q) do
Gp = G′ � {q ∈ Q | χ(q) ≥ p}
decompose Gp into SCCs
for each SCC C of Gp with p ∈ χ(C) do
compute maximum cycle weight w in C
if w ≥ x then accept

done
done
reject

every 1 ≤ i < n; this strategy is extended to the whole game by combining it
with an attractor strategy for {q1, . . . , qn}. The strategies σq and σγ are then
combined to a strategy σ, which is played in rounds: in the ith round, Player 1
first forces a visit to χ−1(p)∩C by playing according to σq; once χ−1(p)∩C has
been reached, Player 1 plays σγ for i steps before proceeding to the next round.
Note that σ fulfils the parity condition because q is visited infinitely often and
all other priorities that appear infinitely often obey χ(q) ≥ p. Finally, the payoff
of ρ(σ, q0) equals the cycle weight of γ, i.e., valG(q0) ≥ valG(σ, q0) = w ≥ x.

The algorithm is complete: Assume that valG(q0) = v ≥ x and let ρ ∈ OutG(q0)
be a play with payoffG(ρ) = v; such a play exists due to Lemma 2. Consider the
set Inf(ρ) and let p = minχ(Inf(ρ)) (which is even since payoff(ρ) is finite). Since
Inf(ρ) is strongly connected, Inf(ρ) ⊆ C for an SCC C of Gp with p ∈ χ(C).
Since optimal memoryless strategies exist in mean-payoff games, there exists a
simple cycle with average weight ≥ v in C. Hence the algorithm accepts.

Since SCC decomposition and maximum cycle weight computation both take
polynomial time, the whole algorithm runs in polynomial time. ut

It follows from Theorem 3 and Proposition 5 that the value problem for mean-
payoff parity games is in coNP: to decide whether valG(q0) < x, a nondeterministic
algorithm can guess a memoryless strategy τ for Player 2 and check whether
valG(τ, q0) < x in polynomial time.

Corollary 6. The value problem for mean-payoff parity games is in coNP.

Following ideas from [6], we prove that the value problem is not only in coNP,
but also in NP. The core of Algorithm 2 is the procedure Check that on input S
checks whether the value of all states in the game G � S is at least x. If the
least priority p in S is even, this is witnessed by a strategy in the mean-payoff
game (G � S, 0) that ensures payoff ≥ x and the fact that the values of all
states in the game G � S \ AttrG�S1 (χ−1(p)) are greater than x, which we can
check by calling Check recursively. If, on the other hand, the least priority p
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Algorithm 2. A nondeterministic algorithm for deciding the value of a state
in a mean-payoff parity game.
Input: mean-payoff parity game G, state q0 ∈ Q, x ∈ Q

guess 2-trap T in G with q0 ∈ T
Check(T )
accept

procedure Check(S)
if S 6= ∅ then
p := min{χ(q) | q ∈ S}
if p is even then

guess memoryless strategy σM for Player 1 in G � S
if val(G�S,0)(σM, q) < x for some q ∈ S then reject
Check(S \AttrG�S

1 (χ−1(p)))
else

guess 2-trap T 6= ∅ in G � (S \AttrG�S
2 (χ−1(p)))

Check(T ); Check(S \AttrG�S
1 (T ))

end if
end if

end procedure

in S is odd, then valG�S(q) ≥ x for all q ∈ S is witnessed by a 2-trap T inside
S \AttrG�S2 (χ−1(p)) such that both the values in the game G � T and the values
in the game G � S \ AttrG�S1 (T ) are bounded from below by x; the latter two
properties can again be checked by calling Check recursively. The correctness of
the algorithm relies on the following two lemmas.

Lemma 7. Let G be a mean-payoff parity game with least priority p even, T =
Q \Attr1(χ−1(p)), and x ∈ R. If val(G,0)(q) ≥ x for all q ∈ Q and valG�T (q) ≥ x
for all q ∈ T , then valG(q) ≥ x for all q ∈ Q.

Proof. Assume that val(G,0)(q) ≥ x for all q ∈ Q and valG�T (q) ≥ x for all
q ∈ T , and let q∗ ∈ Q. By Theorem 3, it suffices to show that for every
memoryless strategy τ of Player 2 there exists a strategy σ of Player 1 such that
payoff(ρ(σ, τ, q∗)) ≥ x. Hence, assume that τ is a memoryless strategy of Player 2
in G. Moreover, let σM be a memoryless strategy for Player 1 in (G, 0) with
val(G,0)(σM, q) ≥ x for all q ∈ Q, let σT be a strategy for Player 1 in G � T with
valG�T (σT , q) ≥ x for all q ∈ T , and let σA be a memoryless attractor strategy of
Player 1 on Attr1(χ−1(p)) that ensures to reach χ−1(p). We combine these three
strategies to a new strategy σ, which is played in rounds. In the kth round, the
strategy behaves as follows:

1. while the play stays inside T , play σT ;
2. as soon as the play reaches Attr1(χ−1(p)), switch to strategy σA and play σA

until the play reaches χ−1(p);
3. when the play reaches χ−1(p), play σM for exactly k steps and proceed to

the next round.
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Let ρ := ρ(σ, τ, q∗). To complete the proof, we need to show that payoff(ρ) ≥ x.
We distinguish whether ρ visits Attr1(χ−1(p)) infinitely often or not.

In the first case, we divide ρ into ρ = γ0γ1γ2 · · · where each γi = γTi γ
A
i γ

M
i con-

sists of a part consistent with σT (thus staying inside T ), a part consistent with σA
(thus staying in Attr1(χ−1(p))), and one that starts with a state in χ−1(p) and is
consistent with σM. Since τ is a memoryless strategy, there can only be |T | many
different γTi , and the length of each γTi is bounded by some constant k. Since
each γA

i is consistent with an attractor strategy, the length of each γA
i is bounded

by |Q|. Hence, the length of γM
i grows continuously while the length of γTi γA

i

is bounded. Therefore, lim infn→∞ payoffn(ρ) = lim infn→∞ payoffn(γM
1 γ

M
2 · · · ).

Since val(G,0)(σM, q) ≥ x for all q ∈ Q and priority p is visited infinitely often,
we have payoff(ρ) = lim infn→∞ payoffn(ρ) ≥ x.

In the second case, ρ = γ · ρ′, where ρ′ is a play of G � T that is consistent
with σT . Hence, payoff(ρ) = payoff(ρ′) ≥ valG�T (σT , ρ′(0)) ≥ x. ut

Lemma 8. Let G be a mean-payoff parity game with least priority p odd, T =
Q \ Attr2(χ−1(p)), and x ∈ R. If valG(q) ≥ x for some q ∈ Q, then T 6= ∅ and
valG�T (q) ≥ x for some q ∈ T .

Proof. Let q∗ ∈ Q be a state with valG(q∗) ≥ 0. If T = ∅, then Attr2(χ−1(p)) = Q
and there is a memoryless attractor strategy τ for Player 2 in G that ensures to
visit χ−1(p) infinitely often. This implies valG(τ, q∗) = −∞, a contradiction to
valG(q∗) ≥ x. Thus T 6= ∅.

Now assume that valG�T (q) < x for all q ∈ T , and let τ be a (w.l.o.g. memo-
ryless) strategy for Player 2 in G � T that ensures valG�T (τ, q) < x for all q ∈ T .
We extend τ to a strategy τ ′ in G by combining it with a memoryless attractor
strategy for χ−1(p) on the states in Q \ T . Let ρ ∈ OutG(τ ′, q∗). Either ρ reaches
χ−1(p) infinitely often, in which case payoffG(ρ) = −∞, or there is a position i
from which onwards ρ stays in T , in which case payoffG(ρ) = payoffG�T (ρ[i,∞)) ≤
valG�T (τ, ρ(i)). In any case, valG(τ ′, q∗) ≤ maxq∈T valG�T (τ, q) < x, a contradic-
tion to valG(q∗) ≥ x. ut

Finally, Algorithm 2 runs in polynomial time because the value of a memoryless
strategy in a mean-payoff game can be computed in polynomial time [24] and
because recursive calls are limited to disjoint subarenas.

Theorem 9. The value problem for mean-payoff parity games is in NP.

Proof. We claim that Algorithm 2 is a nondeterministic polynomial-time algo-
rithm for the value problem. To analyse the running time, denote by T (n) the
worst-case running time of the procedure Check on a subarena S of size n. Since
the value of a memoryless strategy for Player 1 in a mean-payoff game can be
computed in polynomial time [24] and attractor computations take linear time,
there exists a polynomial f : N× N→ N such that the numbers T (n) satisfy the
following recurrence:

T (1) ≤ f(‖G‖, ‖x‖),
T (n) ≤ max

1≤k<n
T (k) + T (n− k) + f(‖G‖, ‖x‖) .
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Solving this recurrence, we get that T (n) ≤ (2n − 1)f(‖G‖, ‖x‖) for all n ≥ 1,
again a polynomial. Consequently, the algorithm runs in polynomial time.

To prove the correctness of the algorithm, we need to prove that the algorithm
is both sound and complete. We start by proving soundness: If the algorithm
accepts its input, then valG(q0) ≥ x. In fact, we prove the following stronger
statement. We say that Check(S) succeeds if the procedure terminates without
rejection (for at least one sequence of guesses).

Claim. Let S ⊆ Q. If S is a subarena of G and Check(S) does succeed, then
valG�S(q) ≥ x for all q ∈ S.

Assume that the claim is true and that the algorithm accepts its input. Then
there exists a 2-trap T with q0 ∈ T such that valG�T (q) ≥ x for all q ∈ T . Since
T is a 2-trap, it follows that valG(q0) ≥ x.

To prove the claim, we proceed by induction over the cardinality of S. If
|S| = 0, the claim is trivially fulfilled. Hence, assume that |S| > 0 and that the
claim is true for all sets S′ ⊆ Q with |S′| < |S|. Let p = min{χ(q) | q ∈ S}. We
distinguish two cases:

1. The minimal priority p is even. Since Check(S) succeeds, there exists a
memoryless strategy σM of Player 1 in G � S such that val(G�S,0)(σM, q) ≥ x
for all q ∈ S, i.e. val(G�S,0)(q) ≥ x for all q ∈ S. Let A = AttrG�S1 (χ−1(p)).
Since Check(S) succeeds, so does Check(S \ A). Hence, by the induction
hypothesis, valG�(S\A)(q) ≥ x for all q ∈ S \A. By Lemma 7, these two facts
imply that valG�S(q) ≥ x for all q ∈ S.

2. The minimal priority p is odd. Since Check(S) succeeds, there exists a
2-trap T 6= ∅ in G � (S \ AttrG�S2 (χ−1(p))) such that both Check(T ) and
Check(S \ AttrG�S1 (T )) succeed. Let A = AttrG�S1 (T )). By the induction
hypothesis, Player 1 has a strategy σT in G � T such that valG�T (σT , q) ≥ x
for all q ∈ T and a strategy σS in G�S\A such that valG�S\A(σS , q) ≥ x for all
q ∈ S \A. We extend σT to a strategy σA in G �A such that valG�A(σA, q) ≥ x
for all q ∈ A by combining σT with a suitable attractor strategy. By playing σS
as long as the play stays in S \ A and switching to σA as soon as the play
enters A, Player 1 can ensure that valG�S(q) ≥ x for all q ∈ S.

Finally, we prove that the algorithm is complete: if valG(q0) ≥ x, then the
algorithm accepts the input G, q0, x. Since the set {q ∈ Q | valG(q) ≥ x} is a trap
for Player 2, it suffices to prove the following claim.

Claim. Let S ⊆ Q. If S is a subarena of G and valG�S(q) ≥ x for all q ∈ S, then
Check(S) succeeds.

As the previous claim, we prove this claim by an induction over the cardinality
of S. Clearly, Check(S) succeeds if |S| = 0. Hence, assume that |S| > 0 and that
the claim is correct for all sets S′ ⊆ Q with |S′| < |S|. Moreover, assume that
S is a subarena of G such that valG�S(q) ≥ x for all q ∈ S (otherwise the claim is
trivially fulfilled). Again, we distinguish whether p := min{χ(q) | q ∈ S} is even
or odd.
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Algorithm SolveMPP(G)

Input: mean-payoff parity game G = (G,χ)
Output: valG

if Q = ∅ then return ∅
p := min{χ(q) | q ∈ Q}
if p is even then
g := SolveMP(G, 0)
if χ(q) = p for all q ∈ Q then return g
T := Q \AttrG1 (χ−1(p)); f := SolveMPP(G � T )
x := min(f(T ) ∪ g(Q)); A := AttrG2 (f−1(x) ∪ g−1(x))
return (Q → R ∪ {−∞} : q 7→ x) t SolveMPP(G �Q \A)

else
T := Q \AttrG2 (χ−1(p))
if T = ∅ then return (Q → R ∪ {−∞} : q 7→ −∞)
f := SolveMPP(G � T ); x := max f(T ); A := AttrG1 (f−1(x))
return (Q → R ∪ {−∞} : q 7→ x) u SolveMPP(G �Q \A)

end if

1. The minimal priority p is even. Since valG�S(q) ≥ x for all q ∈ S, also
val(G�S,0)(q) ≥ x for all q ∈ S, which is witnessed by a memoryless strat-
egy σM. Let A = AttrG�S1 (χ−1(p)). Since S \A is a 1-trap and valG�S(q) ≥ x
for all q ∈ S, we must also have valG�(S\A)(q) ≥ x for all q ∈ S \ A. Hence,
by the induction hypothesis, Check(S \A) succeeds. Therefore, in order to
succeed, Check(S) only needs to guess a suitable memoryless strategy σM.

2. The minimal priority p is odd. Let A := AttrG�S2 (χ−1(p)). We claim that
Check(S) succeeds if it guesses T := {q ∈ S \ A | valG�(S\A)(q) ≥ x}. By
Lemma 8, the set T is nonempty. Note that T is a 2-trap and that valG�T (q) ≥
x for all q ∈ T . Hence, by the induction hypothesis, Check(T ) succeeds. It
remains to be shown that Check(S \AttrG�S1 (T )) succeeds as well. Note that
S \ AttrG�S1 (T ) is a 1-trap, which together with valG�S(q) ≥ x for all q ∈ S
implies that valG�(S\AttrG�S

1 (T ))(q) ≥ x for all q ∈ S \AttrG�S1 (T ). Hence, the
induction hypothesis yields that Check(S \AttrG�S1 (T )) succeeds. ut

3.4 A deterministic algorithm

In this section, we present a deterministic algorithm for computing the values
of a mean-payoff parity game, which runs faster than all known algorithms for
solving these games. Algorithm SolveMPP is based on the classical algorithm
for solving parity games, due to Zielonka [22]. The algorithm employs as a
subprocedure an algorithm SolveMP for solving mean-payoff games. By [24], such
an algorithm can be implemented to run in time O(n3 ·m ·W ) for a game with
n states and m edges. We denote by f t g and f u g the pointwise maximum,
respectively minimum, of two (partial) functions f, g : Q → R ∪ {±∞} (where
(f t g)(q) = (f u g)(q) = f(q) if g(q) is undefined).
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The algorithm works as follows: If the least priority p in G is even, the
algorithm first identifies the least value of G by computing the values of the mean-
payoff game (G, 0) and (recursively) the values of the game G �Q \Attr1(χ−1(p)),
and taking their minimum x. All states from where Player 2 can enforce a visit
to a state with value x in one of these two games must have value x in G. In the
remaining subarena, the values can be computed by calling SolveMPP recursively.
If the least priority is odd, we can similarly compute the greatest value of G and
proceed by recursion.

Theorem 10. The values of a mean-payoff parity game with d priorities can be
computed in time O(|Q|d+2 · |E| ·W ).

Proof. We claim that SolveMPP computes, given a mean-payoff parity game G,
the function valG in the given time bound. Denote by T (n,m, d) the worst-case
running time of the algorithm on a game with n states, m edges and d priorities.
Note that, if G has only one priority, then there are no recursive calls to SolveMPP.
Since attractors can be computed in time O(n + m) and the running time of
SolveMP is O(n3 · m · W ), there exists a constant c such that the numbers
T (n,m, d) satisfy the following recurrence:

T (1,m, d) ≤ c,
T (n,m, 1) ≤ c · n3 ·m ·W,
T (n,m, d) ≤ T (n− 1,m, d− 1) + T (n− 1,m, d) + c · n3 ·m ·W .

We claim that T (n,m, d) ≤ c · (n+ 1)d+2 ·m ·W ∈ O(nd+2 ·m ·W ). The claim
is clearly true if n = 1. Hence, assume that n ≥ 2 and that the claim is true
for all lower values of n. If d = 1, the claim follows from the second inequality.
Otherwise,

T (n,m, d) ≤ T (n− 1,m, d− 1) + T (n− 1,m, d) + c · n3 ·m ·W
≤ c · nd+1 ·m ·W + c · nd+2 ·m ·W + c · n3 ·m ·W
≤ c · (nd+1 + n · nd+1 + nd+1) ·m ·W
≤ c · ((n+ 1)d+1 + n · (n+ 1)d+1) ·m ·W
= c · (n+ 1)d+2 ·m ·W

It remains to be proved that the algorithm is correct, i.e. that SolveMPP(G) =
valG . We prove the claim by induction over the number of states. If there are
no states, the claim is trivial. Hence, assume that Q 6= ∅ and that the claim is
true for all games with less than |Q| states. Let p := min{χ(q) | q ∈ Q}. We only
consider the case that p is even. If p is odd, the proof is similar, but relies on
Lemma 8 instead of Lemma 7.

Let T , f , g, x and A be defined as in the corresponding case of the algorithm,
and let f∗ = SolveMPP(G). If χ(Q) = {p}, then f∗ = g = val(G,0) = valG ,
and the claim is fulfilled. Otherwise, by the definition of x and applying the
induction hypothesis to the game G �T , we have val(G,0)(q) ≥ x for all q ∈ Q and

17



valG�T (q) = f(q) ≥ x for all q ∈ T . Hence, Lemma 7 yields that valG(q) ≥ x for
all q ∈ Q. On the other hand, from any state q ∈ A Player 2 can play an attractor
strategy to f−1(x) ∪ g−1(x), followed by an optimal strategy in the game G � T ,
respectively in the mean-payoff game (G, 0), which ensures that Player 1’s payoff
does not exceed x. Hence, valG(q) = x = f∗(q) for all q ∈ A.

Now, let q ∈ Q \A. We already know that valG(q) ≥ x. Moreover, since Q \A
is a 2-trap and applying the induction hypothesis to the game G � Q \ A, we
have valG(q) ≥ valG�Q\A(q) = SolveMPP(G �Q \A)(q). Hence, valG(q) ≥ f∗(q).
To see that valG(q) ≤ f∗(q), consider the strategy τ of Player 2 that mimics an
optimal strategy in G �Q \A as long as the play stays in Q \A and switches to
an optimal strategy in G as soon as the play reaches A. We have valG(τ, q) ≤
max{valG�Q\A(q), x} = f∗(q). ut

Algorithm SolveMPP is faster and conceptually simpler than the original
algorithm proposed for solving mean-payoff parity games [8]. Compared to the
recent algorithm proposed by Chatterjee and Doyen [6], which uses a reduction
to energy parity games and runs in time O(|Q|d+4 · |E| ·d ·W ), our algorithm has
three main advantages: 1. it is faster; 2. it operates directly on mean-payoff parity
games, and 3. it is more flexible since it computes the values exactly instead of
just comparing them to an integer threshold.

4 Mean-penalty parity games

In this second part of the paper, we define multi-strategies and mean-penalty
parity games. We reduce these games to mean-payoff parity games, show that
their value problem is in NP ∩ coNP, and propose a deterministic algorithm for
computing the values, which runs in pseudo-polynomial time if the number of
priorities is bounded.

4.1 Definitions

Syntactically, a mean-penalty parity game is a mean-payoff parity game with
non-negative weights, i.e. a tuple G = (G,χ), where G = (Q1, Q2, E,weight) is a
weighted game graph with weight : E → R≥0 (or weight : E → N for algorithmic
purposes), and χ : Q → N is a priority function assigning a priority to every
state. As for mean-payoff parity games, a play ρ is parity-winning if the minimal
priority occurring infinitely often (min{χ(q) | q ∈ Inf(ρ)}) is even.

Since we are interested in controller synthesis, we define multi-strategies only
for Player 1 (who represents the system). Formally, a multi-strategy (for Player 1)
in G is a function σ : Q∗Q1 → P(Q)\{∅} such that σ(γq) ⊆ qE for all γ ∈ Q∗ and
q ∈ Q1. A play ρ of G is consistent with a multi-strategy σ if ρ(k+ 1) ∈ σ(ρ[0, k])
for all k ∈ N with ρ(k) ∈ Q1, and we denote by OutG(σ, q0) the set of all plays ρ
of G that are consistent with σ and start in ρ(0) = q0.

18



1
q1

0 q2

1

2

Fig. 2. A mean-penalty
parity game

1
q1

0 q2

(q1, {q1}) (q1, {q1, q2}) (q1, {q2}) (q2, {q1})

−2
0
−4

Fig. 3. The corresponding mean-payoff parity
game

Note that, unlike for deterministic strategies, there is, in general, no unique
play consistent with a multi-strategy σ for Player 1 and a (deterministic) strat-
egy τ for Player 2 from a given initial state. Finally, note that every deterministic
strategy can be viewed as a multi-strategy.

Let G be a mean-penalty parity game, and let σ be a multi-strategy. We in-
ductively define penaltyGσ(γ) (the total penalty of γ wrt. σ) for all γ ∈ Q∗ by
setting penaltyGσ(ε) = 0 as well as penaltyGσ(γq) = penaltyGσ(γ) if q ∈ Q2 and

penaltyGσ(γq) = penaltyGσ(γ) +
∑

q′∈qE\σ(γq)

weight(q, q′)

if q ∈ Q1. Hence, penaltyGσ(γ) is the total weight of transitions blocked by σ
along γ. The mean penalty of an infinite play ρ is then defined as the average
penalty that is incurred along this play in the limit, i.e.

penaltyGσ(ρ) =

lim sup
n→∞

1
n penaltyGσ(ρ[0, n)) if ρ is parity-winning,

∞ otherwise.

The mean penalty of a strategy σ from a given initial state q0 is defined as the
supremum over the mean penalties of all plays that are consistent with σ, i.e.

penaltyG(σ, q0) = sup{penaltyGσ(ρ) | ρ ∈ OutG(σ, q0)}.

The value of a state q0 in a mean-penalty parity game G is the least mean penalty
that a multi-strategy of Player 1 can achieve, i.e. valG(q0) = infσ penaltyG(σ, q0),
where σ ranges over all multi-strategies of Player 1. A multi-strategy σ is called
optimal if penaltyG(σ, q0) = valG(q0) for all q0 ∈ Q.

Finally, the value problem for mean-penalty parity games is the following
decision problem: Given a mean-penalty parity game G = (G,χ), an initial state
q0 ∈ Q, and a number x ∈ Q, decide whether valG(q0) ≤ x.

Example 11. Fig. 2 represents a mean-penalty parity game. Note that weights of
transitions out of Player 2 states are not indicated as they are irrelevant for the
mean penalty. In this game, Player 1 (controlling circle states) has to regularly
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block the self-loop if she wants to enforce infinitely many visits to the state with
priority 0. This comes with a penalty of 2. However, the multi-strategy in which
she blocks no transition can be played safely for an arbitrary number of times.
Hence Player 1 can win with mean-penalty 0 (but infinite memory), by blocking
the self-loop once every k moves, where k grows with the number of visits to q2.

4.2 Strategy complexity

In order to solve mean-penalty games, we reduce them to mean-payoff parity
games. We construct from a given mean-penalty parity game G an exponential-
size mean-payoff parity game G′, similar to [3] but with an added priority
function. Formally, for a mean-penalty parity game G = (G,χ) with game
graph G = (Q1, Q2, E,weight), the game graph G′ = (Q′1, Q′2, E′,weight

′) of the
corresponding mean-payoff parity game G′ is defined as follows:

– Q′1 = Q1 and Q′2 = Q2 ∪ Q̄, where Q̄ := {(q, F ) | q ∈ Q, ∅ 6= F ⊆ qE};
– E′ is the (disjoint) union of three kinds of transitions:
(1) transitions of the form (q, (q, F )) for each q ∈ Q1 and ∅ 6= F ⊆ qE,
(2) transitions of the form (q, (q, {q′})) for each q ∈ Q2 and q′ ∈ qE,
(3) transitions of the form ((q, F ), q′) for each q′ ∈ F ;

– the weight function weight′ assigns 0 to transitions of type (2) and (3), but
weight′(q, (q, F )) = −2

∑
q′∈qE\F weight(q, q′) to transitions of type (1).

Finally, the priority function χ′ of G′ coincides with χ on Q and assigns priority
M := max{χ(q) | q ∈ Q} to all states in Q̄.

Example 12. Fig. 3 depicts the mean-payoff parity game obtained from the
mean-penalty parity game from Example 11, depicted in Fig. 2.

The correspondence between G and G′ is expressed in the following lemma.

Lemma 13. Let G be a mean-penalty parity game, G′ the corresponding mean-
payoff parity game, and q0 ∈ Q.

1. For every multi-strategy σ in G there exists a strategy σ′ for Player 1 in G′
such that val(σ′, q0) ≥ −penalty(σ, q0).

2. For every strategy σ′ for Player 1 in G′ there exists a multi-strategy σ in G
such that penalty(σ, q0) ≤ − val(σ′, q0).

3. valG
′
(q0) = − valG(q0).

Proof. Clearly, 3. is implied by 1. and 2., and we only need to prove the first
two statements. To prove 1., let σ be a multi-strategy in G. For a play prefix
γ = q0(q0, F0) · · · qn(qn, Fn) in G′, let γ̃ := q0 · · · qn be the corresponding play
prefix in G. We set σ′(γq) = (q, F ) if q ∈ Q1 and σ(γ̃q) = F . Clearly, for each

20



ρ′ ∈ Out(σ′, q0) there exists a play ρ ∈ Out(σ, q0) with −penaltyσ(ρ) = payoff(ρ′)
(namely ρ(i) = ρ′(2i) for all i ∈ N). Hence,

valG
′
(σ′, q0) = inf{payoff(ρ′) | ρ′ ∈ Out(σ′, q0)}

≥ inf{− penaltyσ(ρ) | ρ ∈ Out(σ, q0)}
= − sup{penaltyσ(ρ) | ρ ∈ Out(σ, q0)}
= −penalty(σ, q0) .

To prove 2., let σ′ be a strategy for Player 1 in G′. For a play prefix γ = q0 · · · qn
in G, we inductively define the corresponding play prefix γ̃ in G′ by setting q̃ = q
and γ̃q = γ̃ · σ′(γ̃) · q. We set σ(γ) = F if σ′(γ̃) = (q, F ). For each ρ ∈ Out(σ, q0)
there exists a play ρ′ ∈ Out(σ′, q0) with penaltyσ(ρ) = − payoff(ρ′), namely the
play ρ′ defined by ρ′(2i) = ρ(i) and

ρ′(2i+ 1) =
{

(ρ(i), σ(ρ[0, i])) if ρ(i) ∈ Q1,
(ρ(i), {ρ(i+ 1)}) if ρ(i) ∈ Q2,

for all i ∈ N. Hence,

penalty(σ, q0) = sup{penaltyσ(ρ) | ρ ∈ Out(σ, q0)}
≤ sup{−payoff(ρ′) | ρ′ ∈ Out(σ′, q0)}
= − inf{payoff(ρ′) | ρ′ ∈ Out(σ′, q0)}

= − valG
′
(σ′, q0) . ut

It follows from Theorem 3 and Lemma 13 that every mean-penalty parity
game admits an optimal multi-strategy.

Corollary 14. In every mean-penalty parity game, Player 1 has an optimal
multi-strategy.

We now show that Player 2 has a memoryless optimal strategy of a special
kind in the mean-payoff parity game derived from a mean-penalty parity game.
This puts the value problem for mean-penalty parity games into coNP, and is
also a crucial point in the proof of Lemma 17 below.

Lemma 15. Let G be a mean-penalty parity game and G′ the corresponding
mean-payoff parity game. Then in G′ there is a memoryless optimal strategy τ ′
for Player 2 such that for every q ∈ Q there exists a total order ≤q on the set qE
with τ ′((q, F )) = min≤q

F for every state (q, F ) ∈ Q̄.

Proof. Let τ be a memoryless optimal strategy for Player 2 in G′. For a state q,
we consider the set qE and order it in the following way. We inductively define
F1 = qE, qi = τ((q, Fi)) and Fi+1 = Fi \ {qi} for every 1 ≤ i ≤ |qE|. Note
that {q1, . . . , q|qE|} = qE. We set q1 ≤q q2 ≤q · · · ≤q q|qE| and define a new
memoryless strategy τ ′ for Player 2 in G′ by τ ′((q, F )) = min≤q

F for (q, F ) ∈ Q̄
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and τ ′(q) = τ(q) for all q ∈ Q2. To prove the lemma, we have to show that τ ′ is
at least as good as τ and thus optimal.

Let q0 ∈ Q and ρ′ ∈ Out(τ ′, q0). We construct a play ρ ∈ Out(τ, q0) with
payoff(ρ) ≥ payoff(ρ′) in the following way. For every position i with ρ′(i) =
(q, F ′), let F = {q′ ∈ qE | τ ′((q, F ′)) ≤q q′} (then τ((q, F )) = τ ′((q, F ′)) by the
definition of τ ′) and set ρ(i) = (q, F ). For every other position i, let ρ(i) = ρ′(i).
Note that ρ ∈ Out(τ, q0) and minχ(Inf(ρ)) = minχ(Inf(ρ′)). Moreover, we
have F ′ ⊆ F and therefore weight′(q, (q, F ′)) ≤ weight′(q, (q, F )) whenever
ρ′(i) = (q, F ′) and ρ(i) = (q, F ) (because weights in G are nonnegative). Hence,
payoff(ρ) ≥ payoff(ρ′). Since ρ′ was chosen arbitrarily, it follows that

val(τ, q0) = sup{payoff(ρ) | ρ ∈ Out(τ, q0)}
≥ sup{payoff(ρ′) | ρ′ ∈ Out(τ ′, q0)}
= val(τ ′, q0) .

Hence, τ ′ is optimal. ut

4.3 Computational complexity

In order to put the value problem for mean-penalty parity games into NP ∩ coNP,
we propose a more sophisticated reduction from mean-penalty parity games to
mean-payoff parity games, which results in a polynomial-size mean-payoff parity
game. Intuitively, in a state q ∈ Q1 we ask Player 1 consecutively for each outgoing
transition whether he wants to block that transition. If he allows a transition,
then Player 2 has to decide whether she wishes to explore this transition. Finally,
after all transitions have been processed in this way, the play proceeds along the
last transition that Player 2 has desired to explore.

Formally, let us fix a mean-penalty parity game G = (G,χ) with game graph
G = (Q1, Q2, E,weight), and denote by k := max{|qE| | q ∈ Q} the maximal
out-degree of a state. Then the polynomial-size mean-payoff parity game G′′ has
vertices of the form q and (q, a, i,m), where q ∈ Q, a ∈ {choose, allow,block},
i ∈ {1, . . . , k + 1} and m ∈ {0, . . . , k}; vertices of the form q and (q, choose, i,m)
belong to Player 1, while vertices of the form (q, allow, i,m) or (q,block, i,m)
belong to Player 2. To describe the transition structure of G, let q ∈ Q and
assume that qE = {q1, . . . , qk} (a state may occur more than once in this list).
Then the following transitions originate in a state of the form q or (q, a, i,m):

1. a transition from q to (q, choose, 1, 0) with weight 0,
2. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q, choose, i,m) to

(q, allow, i,m) with weight 0,
3. if q ∈ Q1 then for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from

(q, choose, i,m) to (q,block, i,m) with weight 0, except if i = k and m = 0;
4. for all 0 ≤ m ≤ k a transition from (q, choose, k + 1,m) to qm with weight 0

(where q0 can be chosen arbitrarily),
5. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q, allow, i,m) to

(q, choose, i+ 1, i) with weight 0,
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Fig. 4. The game G′′ associated with the game G of Fig. 2

6. for all 1 ≤ i ≤ k and 1 ≤ m ≤ k a transition from (q, allow, i,m) to
(q, choose, i+ 1,m) with weight 0,

7. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q,block, i,m) to
(q, choose, i+ 1,m) with weight −2(k + 1) · weight(q, qi).

Finally, the priority of a state q ∈ Q equals the priority of the same state in G,
whereas all states of the form (q, a, i,m) have priority M = max{χ(q) | q ∈ Q}.

Example 16. For the game of Fig. 2, this transformation would yield the game
depicted in Fig. 4. In this picture, a, b and c stand for allow, block and choose,
respectively; zero weights are omitted.

It is easy to see that the game G′′ has polynomial size and can, in fact, be
constructed in polynomial time from the given mean-penalty parity game G.
The following lemma relates the game G′′ to the mean-payoff parity game G′ of
exponential size constructed in Sect. 4.2 and to the original game G.

Lemma 17. Let G be a mean-penalty parity game, G′ the corresponding mean-
payoff parity game of exponential size, G′′ the corresponding mean-payoff parity
game of polynomial size, and q0 ∈ Q.

1. For every multi strategy σ in G there exists a strategy σ′ for Player 1 in G′′
such that val(σ′, q0) ≥ −penalty(σ, q0).

2. For every strategy τ for Player 2 in G′ there exists a strategy τ ′ for Player 2
in G′′ such that val(τ ′, q0) ≤ val(τ, q0).

3. valG
′′
(q0) = − valG(q0).

Proof. To prove 1., let σ be a multi-strategy in G. For any play prefix γ in G′′,
let γ̃ be the projection to states in G (i.e. all states of the form (q, a, i,m) are

23



omitted). Assuming that q1, . . . , qk is the enumeration of qE used in the definition
of G′′, we set σ′(γ ·(q, choose, i,m)) = (q, allow, i,m) if (and only if) either q ∈ Q1
and qi ∈ σ(γ̃) or q ∈ Q2. It is easy to see that for each ρ′ ∈ Out(σ′, q0) there
exists a play ρ ∈ Out(σ, q0) with −penaltyσ(ρ) = payoff(ρ′). Hence,

val(σ′, q0) = inf{payoff(ρ′) | ρ′ ∈ Out(σ′, q0)}
≥ inf{−penaltyσ(ρ) | ρ ∈ Out(σ, q0)}
= − sup{penaltyσ(ρ) | ρ ∈ Out(σ, q0)}
= −penalty(σ, q0) .

To prove 2., let τ be a strategy for Player 2 in G′. By Lemma 15, there exists
a memoryless strategy τ∗ for Player 2 in G′ such that val(τ∗, q0) ≤ val(τ, q0) and
for all q ∈ Q there exists a total order ≤q on qE with τ∗((q, F )) = min≤q F for
all (q, F ) ∈ Q̄. We define a memoryless strategy τ ′ for Player 2 in G′′ as follows:
Assume that q1, . . . , qk is the enumeration of qE used in the definition of G′′.
Then we set τ ′((q, allow, i,m)) = (q, choose, i + 1, i) if (and only if) one of the
following three conditions is fulfilled: 1. m = 0, or 2. q ∈ Q1 and qi ≤q qm, or
3. q ∈ Q2 and τ∗(q) = (q, {qi}). Now it is easy to see that for each ρ′ ∈ Out(τ ′, q0)
there exists a play ρ ∈ Out(τ∗, q0) with payoff(ρ) = payoff(ρ′). Hence,

val(τ ′, q0) = sup{payoff(ρ′) | ρ′ ∈ Out(τ ′, q0)}
≤ sup{payoff(ρ) | ρ ∈ Out(τ∗, q0)}
= val(τ∗, q0)
≤ val(τ, q0) .

Finally, we prove 3. It follows from 1. that valG
′′
(q0) ≥ − valG(q0), and

it follows from 2. that valG
′′
(q0) ≤ valG

′
(q0). But valG

′
(q0) = − valG(q0) by

Lemma 13, and therefore valG
′′
(q0) = − valG(q0). ut

Since the mean-payoff game G′′ can be computed from G in polynomial time,
we obtain a polynomial-time many-one reduction from the value problem for
mean-penalty parity games to the value problem for mean-payoff parity games.
By Corollary 6 and Theorem 9, the latter problem belongs to NP ∩ coNP.

Theorem 18. The value problem for mean-penalty parity games belongs to
NP ∩ coNP.

4.4 A deterministic algorithm

Naturally, we can use the polynomial translation from mean-penalty parity games
to mean-payoff parity games to solve mean-penalty parity games deterministically.
Note that the mean-payoff parity game G′′ derived from a mean-penalty parity
game has O(|Q| · k2) states and O(|Q| · k2) edges, where k is the maximum
out-degree of a state in G; the number of priorities remains constant. Moreover, if
weights are given in integers and W is the highest absolute weight in G, then the
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highest absolute weight in G′′ is O(k ·W ). Using Theorem 10, we thus obtain a
deterministic algorithm for solving mean-penalty parity games that runs in time
O(|Q|d+3 ·k2d+7 ·W ). If k is a constant, the running time is O(|Q|d+3 ·W ), which
is acceptable. In the general case however, the best upper bound on k is the
number of states, and we get an algorithm that runs in time O(|Q|3d+10 ·W ). Even
if the numbers of priorities is small, this running time would not be acceptable
in practical applications.

The goal of this section is to show that we can do better; namely we will
give an algorithm that runs in time O(|Q|d+3 · |E| ·W ), independently of the
maximum out-degree. The idea is as follows: we use Algorithm SolveMPP on
the mean-payoff parity game G′ of exponential size, but we show that we can
run it on G, i.e., by handling the extra states of G′ symbolically during the
computation. As a first step, we adapt the pseudo-polynomial algorithm by Zwick
and Paterson [24] to compute the values of a mean-penalty parity game with a
trivial parity objective.

Lemma 19. The values of a mean-penalty parity game with priority function
χ ≡ 0 can be computed in time O(|Q|4 · |E| ·W ).

Proof. Let G = (G,χ) with G = (Q1, Q2, E,weight), and G′ = (G′, χ′) with
G′ = (Q′1, Q′2, E′,weight

′). For a state q ∈ Q′, we let v0(q) = 0, and for k > 0,
we define

vk(q) =

 max
q′∈qE′

weight′(q, q′) + vk−1(q′) if q ∈ Q′1,

min
q′∈qE′

weight′(q, q′) + vk−1(q′) if q ∈ Q′2.

If q ∈ Q, then the definition of G′ yields that

vk(q) =

 max
F⊆qE

weight′(q, (q, F )) + min
q′∈F

vk−2(q′) if q ∈ Q1,

min
q′∈qE

vk−2(q′) if q ∈ Q2,

In the first case, a naïve computation would require the examination of an
exponential number of transitions. In order to avoid this blow-up, we use the
same idea as in the proof of Lemma 15: Let qE = {q1, . . . , qr} be sorted in
such a way that i ≤ j implies vk−2(qi) ≤ vk−2(qj). Since weight′(q, (q, F )) ≤
weight′(q, (q, F ′)) if F ⊆ F ′, we have

vk(q) = max
i

weight′(q, (q, {qi, . . . , qr})) + vk−2(qi).

Hence the sequence v2k can be computed in time O(k · |E|) on Q. Now, despite
the exponential size of G′, the length of a simple cycle in G′ is at most 2|Q|.
Hence, Theorem 2.2 in [24] becomes

2k · valG
′
(q)− 4|Q| ·W ′ ≤ v2k(q) ≤ 2k · valG

′
(q) + 4|Q| ·W ′

for all q ∈ Q, where W ′ is the maximal absolute weight in G′. Since W ′ ≤
|Q| · 2W , it follows from [24] that valG = − valG

′
�Q can be computed in time

O(|Q|4 · |E| ·W ). ut
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Now, given a mean-penalty parity game G with associated mean-payoff parity
game G′ and a set T of states of G, we define

MG(T ) = T ∪ {(q, F ) ∈ Q̄ | F ⊆ T};
NG(T ) = T ∪ {(q, F ) ∈ Q̄ | F ∩ T 6= ∅}.

We usually omit to mention the superscript G when it is clear from the context.

Lemma 20. If S is a subarena of G, then M(S) and N(S) are subarenas of G′.

Proof. Assume that S is a subarena of G, and pick a state q in M(S). If q ∈ Q,
then it also belongs to S and, as a state of G, has a successor q′ in S. Then M(S)
contains (q, {q′}), which is a successor of q. If q belongs to Q̄, then qE′ ⊆ S by
definition of M(S); hence it has at least one successor in S. A similar argument
shows that N(S) is also a subarena of G′. ut

Lemma 21. Let G be a mean-penalty parity game with associated mean-payoff
parity game G′, and let A,B ⊆ Q. Then

M(A ∩B) = M(A) ∩ M(B), M(A ∪B) ⊇ M(A) ∪ M(B),
N(A ∪B) = N(A) ∪ N(B), N(A ∩B) ⊆ N(A) ∩ N(B),
M(Q \A) = Q′ \ N(A), N(Q \A) = Q′ \ M(A) .

Proof. Straightforward. ut

Lemma 22. Let G be a mean-penalty parity game with associated mean-payoff
parity game G′, and let F ⊆ Q. Then

M(AttrG1 (F )) = AttrG
′

1 (F ) = AttrG
′

1 (M(F )),

N(AttrG2 (F )) = AttrG
′

2 (F ) = AttrG
′

2 (N(F )) .

Proof. We only prove the first statement; the second can be proved using similar
arguments. Clearly, AttrG

′

1 (F ) = AttrG
′

1 (M(F )), so we only need to prove that
M(AttrG1 (F )) = AttrG

′

1 (F ). First pick q ∈ M(AttrG1 (F )). If q ∈ Q, then the
attractor strategy for reaching F can be mimicked in G′, and therefore q ∈
AttrG

′

1 (F ). On the other hand, if q ∈ Q̄, then all successors of q lie in AttrG1 (F )
and therefore also in AttrG

′

1 (F ). Hence, q ∈ AttrG
′

1 (F ). Now pick q ∈ AttrG
′

1 (F ).
If q ∈ Q, then the attractor strategy for reaching F yields a multi-strategy σ in G
such that all plays ρ ∈ OutG(σ, q) visit F . Hence, q ∈ AttrG1 (F ) ⊆ M(AttrG1 (F )).
On the other hand, if q ∈ Q̄, then all successors of q lie in Q ∩AttrG

′

1 (F ) (since
q is a Player 2 state) and therefore also in AttrG1 (F ). Hence, q ∈ M(AttrG1 (F )). ut

Algorithm SymbSolveMPP is our algorithm for computing the values of a
mean-penalty parity game. The algorithm employs as a subroutine an algorithm
SymbSolveMP for computing the values of a mean-penalty parity with a trivial
priority function (see Lemma 19). Since SymbSolveMP can be implemented to
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Algorithm SymbSolveMPP(G)

Input: mean-penalty parity game G = (G,χ)
Output: valG

if Q = ∅ then return ∅
p := min{χ(q) | q ∈ Q}
if p is even then
g := SymbSolveMP(G, 0)
if χ(q) = p for all q ∈ Q then return g
T := Q \AttrG1 (χ−1(p)); f := SymbSolveMPP(G � T )
x := max(f(T ) ∪ g(Q)); A := AttrG2 (f−1(x) ∪ g−1(x))
return (Q → R ∪ {∞} : q 7→ x) u SymbSolveMPP(G �Q \A)

else
T := Q \AttrG2 (χ−1(p))
if T = ∅ then return (Q → R ∪ {∞} : q 7→ ∞)
f := SymbSolveMPP(G � T ); x := min f(T ); A := AttrG1 (f−1(x))
return (Q → R ∪ {∞} : q 7→ x) t SymbSolveMPP(G �Q \A)

end if

run in time O(|Q|4 · |E| ·W ), the running time of the procedure SymbSolveMPP
is O(|Q|d+3 · |E| ·W ). Notably, the algorithm runs in polynomial time if the
number of priorities is bounded and we are only interested in the average number
of edges blocked by a strategy in each step (i.e. if all weights are equal to 1).

Theorem 23. The values of a mean-penalty parity game with d priorities can
be computed in time O(|Q|d+3 · |E| ·W ).

Proof. From Lemma 19 and with the same runtime analysis as in the proof of
Theorem 10, we get that SymbSolveMPP runs in time O(|Q|d+3 · |E| ·W ). We
now prove that the algorithm is correct, by proving that there is a correspondence
between the values the algorithm computes on a mean-penalty parity game G and
the values computed by Algorithm SolveMPP on the mean-payoff parity game G′.
More precisely, we show that SolveMPP(G′) � Q = −SymbSolveMPP(G). The
correctness of the algorithm thus follows from Lemma 13, which states that
valG

′
�Q = − valG .

The proof is by induction on the number of states in G. The result holds
trivially if Q = ∅. Otherwise, assume that the result is true for all games with
less than |Q| states and let p = min{χ(q) | q ∈ Q}. By construction, p is also the
minimal priority in G′. We only consider the case that p is even; the other case is
proved using the same arguments.

Write g′, T ′, f ′, x′ and A′ for the items computed by SymbSolveMPP on G′,
while q, T , f , x and A are the corresponding items computed by SolveMPP
on G. Then g′(q) = −g(q) for all q ∈ Q, and g′((q, F )) = minq′∈F g

′(q′) for all
(q, F ) ∈ Q̄ (since such states belongs to Player 2). If G has only one priority, the
result follows. Otherwise, by Lemmas 21 and 22, we have T ′ = N(T ). However,
any state (q, F ) ∈ T ′ that is not a state of the game (G � T )′ has no predecessor
in G′ � T ′: if q ∈ T ′ then q ∈ T ∩Q1 and qE \ T 6= ∅, i.e. qE ∩Attr1(χ−1(p)) 6= ∅;
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but then q ∈ Attr1(χ−1(p)) and thus q /∈ T , a contradiction. It follows that
SolveMPP(G′ � T ′) � T = SolveMPP((G � T )′) � T .

Now, since T is a strict subset of Q, the induction hypothesis applies, so
that f ′(t) = −f(t) for all t ∈ T . It follows that x′ = −x. Let S := Q \ A and
S′ := Q′ \A′. By Lemma 22, A′ = N(A), and by Lemma 21, S′ = M(S). Again,
any state (q, F ) ∈ S′ that is not a state of the game (G � S)′ has no predecessor
in G′ � S′. Hence, SolveMPP(G′ � S′) � S = SolveMPP((G � S)′) � S Applying the
induction hypothesis to the game G � S, we get that SolveMPP((G � S)′) � S =
−SymbSolveMPP(G � S), and the result follows for G. ut

5 Conclusion

In this paper, we have studied mean-payoff parity games, with an application
to finding permissive strategies in parity games with penalties. In particular,
we have established that mean-penalty parity games are not harder to solve
than mean-payoff parity games: for both kinds of games, the value problem
is in NP ∩ coNP and can be solved by an exponential algorithm that becomes
pseudo-polynomial when the number of priorities is bounded.

One complication with both kinds of games is that optimal strategies for
Player 1 require infinite memory, which makes it hard to synthesise these strategies.
A suitable alternative to optimal strategies are ε-optimal strategies that achieve
the value of the game by at most ε. Since finite-memory ε-optimal strategies are
guaranteed to exist [2], a challenge for future work is to modify our algorithms
so that they compute not only the values of the game but also a finite-memory
ε-optimal (multi-)strategy for Player 1.

Acknowledgement. We thank an anonymous reviewer for pointing out the
polynomial reduction from mean-penalty parity games to mean-payoff parity
games, which has simplified the proof that mean-penalty parity games are in NP.
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