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Abstract. Symbolic execution is a successful and very popular technique used in software
verification and testing. A key limitation of symbolic execution is in dealing with code con-
taining loops. The problem is that even a single loop can generate a huge number of different
symbolic execution paths, corresponding to different number of loop iterations and taking var-
ious paths through the loop.
We introduce a technique which, given a start location abovesome loops and a target location
anywhere below these loops, returns a feasible path betweenthese two locations, if such a path
exists. The technique infers a collection of constraint systems from the program and uses them
to steer the symbolic execution towards the target. On reaching a loop it iteratively solves the
appropriate constraint system to find out which path throughthis loop to take, or, alternatively,
whether to continue below the loop. To construct the constraint systems we express the values
of variables modified in a loop as functions of the number of times a given path through the
loop was executed.
We have built a prototype implementation of our technique and compared it to state-of-the-art
symbolic execution tools on simple programs with loops. Theresults show significant im-
provements in the running time. We found instances where ouralgorithm finished in seconds,
whereas the other tools did not finish within an hour. Our approach also shows very good
results in the case when the target location is not reachableby any feasible path.

1 Introduction

Symbolic execution has been studied since 70’s [6,21]. The main idea of symbolic execution is to
represent input by symbols and then to symbolically performoperations on values dependent on
these inputs. I.e. symbolic execution is a generalization of concrete execution. Symbolic execu-
tion is usually used in the context of automatic test generation. With the arrival of powerful SMT
(Satisfiability-Modulo-Theories) solvers, e.g. [30,27],came a generation of powerful software tools
for verification and test generation [28,7,23,26].

However symbolic execution quickly reaches its limits whenconfronted with loops. As loops
are widely used this is a significant problem. A typical situation is that reaching a particular location
below a loop depends on the number of times this loop was iterated. Even worse, reaching that
location may depend not only on the number of iterations, butalso on what particular paths through
the loop were chosen, and the order in which they were taken. Since in symbolic execution any
iteration of a loop creates a new branch in the tree of symbolic executions, the size of the tree
can become very large with even a single loop. Without deriving any information about the loop
symbolic execution is forced to systematically explore allbranches of this tree, running out of time
even on small programs.

We aim to solve the following problem: Given a start locationabove a piece of code containing
complicated loops, including loop sequences and loop nesting, and a target location anywhere in
the code below, the goal is to find some feasible path between the start and target location, if such
a path exists.
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The idea behind our algorithm is relatively simple. Assume we perform symbolic execution and
want to reach a given target location. On reaching a loop we enquire an oracle which paths through
this loop, and in which order, we should execute in order to reach the target location. Following the
oracle’s advice we get to our target, building path condition along the way. Only in our approach the
oracle is replaced by a constraint system, which is less powerful. For each iteration it may suggest
the next path to take, or to finish iterating this loop.

To build the constraint system we express the values of variables modified in a loop as functions
of the number of times a given path through the loop was executed. This concept extends the simple
one of counting loop iterations. Moreover, multiple counters for each path through the loop may
be needed to correctly handle loop nesting. The expressed values are then ’merged’ over all paths
through a given loop. Constraint system is then created by taking branching conditions of the code
below the loop and replacing all variables with the corresponding functions of loop counters.

We suggest that our algorithm is most useful when integratedinto existing tools based on sym-
bolic execution. Since the algorithm is itself based on symbolic execution the integration should
not be a big problem. Our algorithm would work as a specific search strategy, activated when a
global search strategy needs to navigate to a specific program location below some complicated
loop structure. This would greatly improve the loop handling ability of such symbolic execution
tool and allow it to explore more code in less time.

To evaluate our approach, we have built an experimental implementation of our technique – a
tool called CBA. We tested CBA on nine benchmarks we designedto capture those loop structures
which often appear in practice. CBA was able to solve all the benchmarks in seconds, confirm-
ing that the approach we decided to use is correct. We also compare the performance of CBA
to successful symbolic execution tools PEX [28,24] and KLEE [7] and show that, on our set of
benchmarks, CBA is several orders of magnitude faster than either of these tools.

The rest of the paper is organized as follows. In Section 2 we recall the basics of symbolic
execution and then show how our technique works on an example. The algorithm is explained
in Section 3. In Section 4 we first describe the set of benchmarks used for testing loop handling
capabilities and compare the running times of CBA to those ofother tools. We also evaluate the
performance data from various stages of our algorithm. We survey related work in Section 5, and
conclude with Section 6.

2 Overview

In this section we start with an example showing the limitations of symbolic execution when it
comes to dealing with loops. We then present an overview of our approach to solving this problem
on this example. Detailed description of our algorithm is deferred to the next section.

2.1 Symbolic Execution and Loops

The idea behind symbolic execution can be explained as follows: Instead of executing the program
on a concrete input, we introduce for each input variablei a symbolic valueαi, standing for some
concrete, but yet unknown value from the domain ofi. The execution of the program then proceeds
in much the same way as normal (concrete) execution. The important difference is that now many
variables can contain symbolic values. For example leta andb be input variables with symbolic
valuesαa andαb. Then after executing the statementc = 2*a + b the variablec will contain
the symbolic value2 · αa + αb.

Branching is treated in the following way. During symbolic execution we maintain a boolean
formulaϕ called thepath condition, originally set totrue. Assume that the symbolic execution



reached a branching statement and letψ be the associated condition. Ifϕ ∧ ψ is satisfiable we
continue with the true branch and we update the path condition toϕ∧ψ. (Similarly for the condition
ϕ∧¬ψ and false branch.) If bothϕ∧ψ andϕ∧¬ψ are satisfiable we fork the execution and work on
the resulting branches independently. When the symbolic execution is terminated, e.g. by reaching
the desired location, we use an SMT solver to derive concreteinput values from the actual path
condition.

Symbolic execution works very well on programs with complicated branching sequences [8,28,24].
Using a SMT solver symbolic execution can effectively generate inputs systematically examining
all branches of the code. However, symbolic execution reaches its limits when confronted with a
code containing loops. Presence of even a single simple loopin a program may cause a very large
(or even infinite) number of forks in the symbolic execution.

The problem with loops can be demonstrated on the program in Figure 1 (a). The goal is to
find a feasible path to theassert statement on line9. It is easy to see (at least for a human) that
more than one such path exists and that it must iterate both the loops. However, there are about230

different execution paths which must be explored in the worst case to show that the code at line9 is
reachable. The problem here is that the condition refers to the values ofa andb, which depend on
the input (the arraysA andB) only indirectly. Thus the condition on line8 does not affect the path
condition of any trace and therefore it is not possible for a SMT solver to compute an input leading
to theassert branch. Even though this seems to be a very simple example, ittook the symbolic
execution tool PEX 99 seconds to find an input reaching theassert statement. Moreover when
we substituted the predicatea>12 on line8 with a>17 (thus line9 becomes unreachable), PEX

was not able to finish within 5 hours.

1 i n t a =0 , b =0;
2 f o r ( i n t i =0 ; i <15; ++ i )
3 i f (A[ i ]==1)
4 ++a ;
5 f o r ( i n t j =0 ; j <15; ++ j )
6 i f (B[ j ]==2)
7 ++b ;
8 i f ( a>12 && a+b==23)
9 a s s e r t ( 0 ) ;

c0

a=0

b=0

i=0

i>=15 : {c1, c2}
j=0

j>=15 : {c3, c4}
a>12

a+b==23

c1

i<15

A[i]==1

++a

++i

c3

j<15

B[j]==2

++b

++j

c2

i<15

A[i]!=1

++i

c4

j<15

B[j]!=2

++j

(a) (b)

Fig. 1. Example used throughout Section 2.(a) C program containing loops.(b) Its chain program
form.

2.2 Algorithm Overview

We introduce our technique of handling loops on the example above, in three distinct phases:

Phase 1: Conversion to chain normal form To better facilitate reasoning about loops we repre-
sent the program using linear code fragments calledchains. The decomposition of our program to
chains (what we callchain program form later in the text) is shown in Figure 1 (b). Chainc0 is the
topmost chain (calledroot chain later in the paper), corresponding to a path through the codewhere
we replace the outermost loops by constructs of the formϕ : {c1, c2, . . .} with the following
meaning: at this point chainsc1, c2, . . . may be executed any number of times and in any order, but
the conditionϕ must hold after we finish executing them. Note that the condition on line8 was
replaced by a pair of assertions.



As to the other chains, chainc1 represents the path through the loop on lines2-4 which goes
through the positive branch of theif statement andc2 the only other path through this loop. The
same holds for the chainsc3 andc4 and the loop at lines5-7. One can easily see that there is a
natural correspondence between the program (Figure 1 (a)) and its linear representation (Figure 1
(b)).

The task of finding some feasible path to theassert statement now depends on finding a
proper interleaving of chainsc1 andc2 for the first loop, andc3 andc4 for the second one.

c1 c2

i(κ1) = κ1 + αi i(κ2) = κ2 + αi

a(κ1) = κ1 + αa a(κ2) = αa

{c1, c2}
i(κ1, κ2) = κ1 + κ2 + αi

a(κ1) = κ1 + αa

c3 c4

j(κ3) = κ3 + αj j(κ4) = κ4 + αj

b(κ3) = κ3 + αb b(κ4) = αb

{c3, c4}
j(κ3, κ4) = κ3 + κ4 + αj

b(κ3) = κ3 + αb

(1) κ1 + κ2 ≥ 15
(2) κ1 + κ2 − 1 < 15 if κ1 + κ2 > 0
(3) κ3 + κ4 ≥ 15

(4) κ3 + κ4 − 1 < 15 if κ3 + κ4 > 0
(5) κ1 > 12
(6) κ1 + κ3 = 23 κ1, κ2, κ3, κ4 ∈ N

Fig. 2. Top: Recurrent variables expressed as functions of counters, including the functions after
merging.

Bottom: Constraint systemS(c0) of the root chainc0.

Phase 2: Building a constraint system We start by expressing the values of variables in each
chain (except root chains) as functions of the number of times this chain was executed –κi. Each
chainci is linked tochain counter κi, which takes values fromN0. The link is given by the bottom
index of the counter. We show how to compute the values of variables on chainc1, using counter
κ1. Letαi andαa be the initial symbolic values of variablesi anda, which are not known to this
chain. Theni(κ1) = κ1 + αi anda(κ1) = κ1 + αa are the values of these variables expressed
as functions ofκ1. The functions for the other chains are shown in Figure 2 (top). In terms of the
original program we have introduced a counter for each unique path through each loop.

Now for any given variablei and each path through a given loop there may be different function
expressing the value ofi in terms of the relevant counter. In the second step we try to express the
value ofi by a single function of multiple counters. This abstracts from any concrete interleaving
of the subchains, but the value of the variable is expressed precisely. So in the case of chainsc1 and
c2 the value ofi can be expressed asi(κ1, κ2) = κ1 + κ2 + αi. The results for our example are
presented in Figure 2 under the headings{c1, c2} and{c3, c4}.

We can now build a constraint system for the topmost chainc0. The constraints are obtained
by processing all its assertions. There are four assertionsin the chainc0: i>=15, j>=15, a>12,
anda+b==23. We replace the variables by their previously computed values (i.e. functions of
counters), arriving the constraint systemS(c0) depicted at Figure 2 (bottom). The constraints (1),
and (2) came from the assertioni>=15, (3), and (4) from the assertionj>=15, (5) froma>12, and
finally (6) froma+b==23. The constraint (1) was computed as follows. First we substitute variables
in the assertion by their values, obtainingi(κ1, κ2) = κ1 + κ2 + αi ≥ 15. αi represents the value
of i on reaching thei>=15 : {c1,c2} instruction. Hereαi = 0, giving us the constraint (1),
which speaks about the values ofκ1 andκ2 just after the associated loop was executed for the
last time. However, this also means that for all previous executions, where the values areκ′1 ≤ κ1
andκ′

2
≤ κ2 such thatκ′

1
+ κ′

2
< κ1 + κ2, the negated conditioni(κ′

1
, κ′

2
) < 15 must hold –

i.e. there is an additional constraint for each such choice of κ′
1

andκ′
2
. This can be rephrased as



κ1 + κ2 − a < 15 for a ∈ {1, 2, . . . , κ1 + κ2 − 1}. Our experimentation shows that it is sufficient
to take only a single constraint fora = 1, giving us the constraint (2). Constraints (3), (5) and (6)
are derived similarly to (1) and constraint (4) in the same way as (2). Note that we do not construct
constraint systems for chainsc1, c2, c3, c4 since they do not contain any subchains.

The point of the constructed constraint systemS(c0) is that only those executions which reach
the assert statement satisfyS(c0) (if we instantiate the counters by the number of times the
corresponding path through a loop was executed). Which in turn means that solving our constraint
system will limit the space of counter values we need to consider. E.g. from (5) we know that
κ1 ∈ [13,∞], and therefore the chainc1, which is linked to the counterκ1, must be executed
at least 13 times on any feasible path. Similarly once we knowthe value forκ1, then from the
constraint (6) and the fact thatκ1 is not modified in the second loop (there is no link betweenκ1
and eitherc3 or c4) we can derive the number of times chainc3 needs to be executed.

Phase 3: Navigating the symbolic executionWith the chains, counters and constraint systems in
place we may proceed with the final stage of the algorithm – finding some feasible path to line9.
We do this by employing slightly modified symbolic execution. We initialize all counters to 0 and
proceed down the chainc0 in a standard way until we reach the line 4:i>=15: {c1,c2} (i.e. the
entry point of the first loop). There are two subchainsc1 andc2 for this loop, linked to countersκ1
andκ2. Now we iteratively do the following:

– Check whether we can improve current solution of the system by incrementingκ1 or κ2. If we
cannot, we stop iterating and continue down the chainc0.

– Otherwise we call a decision procedure to tell us which counter to increment. This procedure
will be described in more detail in Section 3.

– Lets assumeκ1 was chosen. In that case we symbolically execute the chain linked toκ1, i.e.
c1. We also increment the counterκ1.

Note that it may happen that the symbolic execution may get stuck because a wrong choice of
counter (counters) to increment. In that case we backtrack,asking the decision procedure for the
next best counter to be incremented. Also note that by first establishing the values of countersκ1
andκ2, before proceeding any further in the chainc0, we significantly cut down the number of
paths which need to be explored.

Having solved the loop related to chainsc1 andc2 we proceed with the execution, handling
the loop related to chainsc3 andc4 in the same way. Once we arrive at the end ofc0 we return
the current path condition, which identifies a feasible path. In our case one such path condition is
A[0] = 1 ∧ . . . ∧ A[12] = 1 ∧ A[13] 6= 1 ∧ A[14] 6= 1 ∧ B[0] = 2 ∧ . . . ∧ B[9] = 2 ∧ B[10] 6=
2∧ . . .∧B[14] 6= 2. By construction this path condition is also the sought-forpath condition for the
original program.

2.3 Additional Notes

Our technique holds a significant edge over the standard symbolic execution in proving no feasible
path to a target location exists. Consider the example in Figure 1 where the predicatea>12 on line
8 is replaced bya>17. The only change in the constraint system is (5) to (5’)κ1 > 17. From
the constraints (2), and (5’) we can derive thatκ2 has to have a negative value. Since all counters
obtain values fromN0, the constraint system has no solution. This means there is no feasible path
to the target location. The important fact is that we were able to prove this even before starting the
symbolic execution.

The existence of a solution to the constraint system does notguarantee existence of a feasible
path. There are two possible problems: 1) not all solutions correspond to feasible paths that lead



to the target location, and 2) single solution may correspond to multiple paths with different inter-
leaving of the iterations through a loop. So while the constraint system effectively prunes the paths
which do not lead to the target, it is not able to give us a feasible path on its own. We therefore still
need to use the symbolic execution. For the same reasons eachtime we fail we need to backtrack to
check the other possible solutions.

3 Algorithm

As we have explained in the previous section, the algorithm proceeds in a three phases. In this
section we give detailed description of all three phases. Before we present our algorithm we want
to state its limitations: Currently our technique is intraprocedural – i.e. we do not support function
calls. We also deal only with integer variables and arrays, and handle neither heap manipulation
operations nor pointer arithmetic.

3.1 Phase 1: Programs as Chains

In this section we describe how to convert a program to chain program form. It may be helpful for
the reader to follow the example in Fig. 1. We understand a programP to be an oriented graph,
in which the vertices are the program instructions and edgesexpress the control flow. We write
u → v (u →∗ v) if there is an edge (path) fromu to v. We assume that there is a single start and a
single terminal vertex (s0 andt0) and that the programP contains no unreachable code. Moreover
we assume that the successors of a branching vertex are labeledc and!c (for some conditionc),
indicating what condition must hold in order to enter the corresponding branch. Converting e.g. a
C program to this form is obvious (program in our definition isbasically a control flow graph). We
also require the program to be in the static single assignment (SSA) form, i.e. for each program
variable there is at most one place this variable is assignedto (using the standard conversion).

We define thechain program form C(P) of P to be the set of all chains inP . A chain in P

is a path inP which is of one of the two specific types:Root chain is a simple path (no vertex
appear twice)s0 →∗ t0. Subchain is a simple pathv′ →∗ v such that it is a suffix of some path
π : s0 →∗ v → v′ →∗ v in P wherev is the only vertex which appears twice inπ. (If there are
two different pathss0 →∗ v, then the same pathv′ →∗ v is treated as two different subchains.) In
the rest of the paper we treat chains as linear sequences of vertices, and call their verticesnodes. In
our examplec0 is the root chain, andc1 . . . c4 are the subchains. The set of all chains can be easily
obtained by unfolding the graph ofP into a tree, starting ins0 and stopping each time a vertex is
repeated on a path froms0 (or when we reacht0).

In chains there are three types of nodes – assume nodes, transform nodes and loop nodes.As-
sume nodes, e.g.a>12 in c0, correspond to branching conditions.Transform nodes, e.g.j=0 in
c0, correspond to assignment statements which change the programs state. Finallyloop nodes, e.g.
i>=15 : {c1, c2} in c0, are those nodes, from which there is at least one edge inP to the first
vertex of some subchain. We call such a subchain a chainassociated to this node (c1 andc2 in this
case). Note that each subchain corresponds to a unique path through a loop and there can be many
subchains associated to the same loop node. Moreover each subchain can also contain loop nodes,
each having its own associated subchains. In the following two phases of the algorithm we assume
that there is only one root chain. If there are multiple root chains, we run the remaining two phases
of the algorithm separately for each root chain. The resultscan then be combined in an obvious
way.

Let C(P ) be the chain program form associated to a programP . Then anexecution path in
C(P ) is a sequence of nodes, which is created as follows: we take some root chain and take the



nodes one by one. On reaching a loop node, we may either continue with the next node in the chain,
or choose one of the subchains associated with this loop node. In that case we take this subchain
and proceed recursively. On reaching the end in the subchainwe go “one level up” to the associated
loop node in the parent chain and repeat our choice to either take the next node of the parent chain or
choose another associated subchain. We finish once we reach the terminal node for the root chain.
It is easy to check that the following statement holds:

Theorem 1 The algorithm described above converts each program P to chain normal form C(P )
such that for each path in P there is a corresponding execution path in C(P ) and vice versa. (By
correspondence we mean that the sequences of instructions along these two paths are the same).
Moreover if P is in SSA form, then so is each chain of C(P ).

Exponential growth of chain program form It can be seen that representing a programP in chain
program form can bring an exponential blowup in size. Such blowup is caused by the presence of
branching statements. However, in our experience the number of chains is quite often very low. On
the other hand it is not difficult to come up with a program for which the transformation to chain
program form will actually cause an exponential increase insize. Indeed, such a growth can be
observed for three of our benchmarks Hello/HW/HWM in Section 4.2.

However, compared to vanilla symbolic execution our approach still offers significant improve-
ments. If we look at a symbolic execution tree of even a very simple loop structure, we can see
that every path through a loop (represented by a single chainin our case) can appear many times in
the tree – both on the same branch and on different branches. In other words, the size of the chain
program form is usually much smaller then the standard symbolic execution tree for the same loop
structure. Moreover, in the last stage of the algorithm (symbolic execution ofC(P )) the use of con-
straint systems allows us to early prune branches not leading to the terminal node. So we can have
significant space and time savings over vanilla symbolic execution despite the exponential growth
of chain program form.

3.2 Phase 2: Building the Constraint Systems

In our approach constraint systems are used to guide the symbolic execution in search for a feasible
path from the start to the target node. Here we show how to build the constraint system S(c) for
each chainc. An important idea behind the construction is to express thevalues of variables used in
loops as functions of counters for the subchains. The counters in each constraint system are linked
to concrete chains. This link between constraint systems, counters and concrete chains (in the chain
program form) is the key idea of the algorithm.

The pseudocode for this phase is shown as Algorithm 1. We proceed using modified symbolic
execution. The modification is twofold: First, it works on chains, not programs. Second, the domain
of symbolic values is extended to contain counters (and expressions using counters) and a special
value⋆ with the intended meaning “do not know”. (Any expression containing⋆ evaluates to⋆.)

Let us take a chainc. At the beginning each variablei has a symbolic valueαi and the constraint
system S(c) is empty. Next we symbolically execute the chain: Handling of the transform nodes is
clear. Assume nodes are treated as sources of constraints for S(c). Each assertion is first instantiated
with the current values of variables, and then inserted to the constraint system only if it references
some counter. (As per the example in Section 2.2 multiple constraints can be produced from a
single assertion.) On reaching a loop noden we first recursively build the constraint systems for all
subchains associated to this node, obtaining symbolic values of variables (which can now depend
on counters of some (possibly nested) subchains). For each variable we then merge the symbolic



input : chainc = i1, i2, . . . , ik (ij is thej-th instruction)
output: constraint systemS(c), and symbolic values of variables
S(c)=∅
for j=0; j<k; j++ do

switch node type of ij do
caseLoop node

for l=1; l< |subchains(n)|; l++ do
BuildConstraintSystem(l-th subchain)

merge symbolic values returned from subchains
update the symbolic state ofc with merged values
for each variable v s.t. c is the reset chain for v do

remember thatc is the reset chain forv
caseAssume node

instantiate the assertiona (using the current symbolic state)
if a contains a counter then

add relevant constraints to the constraint systemS(c) of c
break

caseTransform node
modify the current symbolic state according to the associated assignment statement

for each variable v in c do express the symbolic value as a function of the temporary counterκv
c

return symbolic values of variables

Algorithm 1 : BuildConstraintSystem

values obtained in the subchains (see the sectionMerging values ... below). The current symbolic
state ofc is then updated with the merged values. At this point we also detect the variables for which
this chain is the reset chain (see the sectionExpressing values ... below). Since each loop node has
an associated branching condition, we finish processing this condition as we would for the assume
node. Finally, when we reach the end of the chain, we express the values of variables as functions
of loop counters (and return these values). S(c) now contains the complete constraint system for the
chainc. We now describe the process in more detail. We start by explaining the last step, because it
is here where counters are dealt with and the notion of recurrent variables introduced.

Expressing values using countersLet us fix a chainc. The goal is for each variable to compute a
function expressing its value in terms of counters. We focuson so calledrecurrent variables, which
are the variables whose value 1) changes on the execution path corresponding toc and 2) their
value is function of their initial value before executingc. An example of a recurrent variable is the
variablei in the chainc1, for which we geti = αi + 1. To detect recurrent variables for a given
chainc we simply analyze symbolic state resulting from symbolic execution of this chain.

For each recurrent variable we express its value in terms of how many times the chainc was
executed – using the counterκc associated with the chainc. In our example,i(κ1) = αi+κ1. We use
a very simple custom difference equation solver to express the values of variables using counters.
Our solver handles only those recurrences which correspondto arithmetic (e.g.i = αi + 7) and
geometric (e.g.i = 3 · αi) progressions. This restriction is justified by the fact that, according to
our experience, overwhelming majority of code uses only such progressions. In case we are not able
to solve a recurrence, we use the “do not know” value⋆.

An important point to make is that the initial value fori, αi, can be set by some chainr, of
which the current chainc is a subchain. Therefore the value ofi does not depend only on the
number of timesc was executed, but, more specifically, on the number of timesc was executed
since last execution ofr. Therefore the value ofi in fact depends on a counterκr

c
parametrized

by two chains: theupdate chain c and thereset chain r – i.e. i(κr
c
) = αi + 2 · κr

c
. This counter is



incremented each time the chainc is executed, and set to zero each time the chainr executed. If
there is no reset chain for a given variable, we use the plain counterκc, wherec is the update chain
and the root chain is used as the reset chain. Note that all counters used in our example in Figure 1
are of this type. The following statement is true for chain program forms, and follows from the fact
all chains are in the SSA form:

Lemma 1 Let v be a recurrent variable whose update chain is c. Then v is not reset (to its initial
value) in any subchain of c and there exists at most one superchain of c where v is reset.

At the time of processing the update chainc for v we do not know yet what superchain ofc
is the reset chain forv. Therefore we use a temporary counterκvc to express the value ofv. When
processing a chaind such that 1)d is a superchain ofc and 2) the value ofv is no longer given by
a recurrence expression (αv does not occur in the symbolic value ofv), we know thatd is the reset
chain forv. We remember this information, and once all constraint systems are built we replace all
occurrences of each temporary counterκv

c
in all constraint systems with the correct counterκd

c
.

Merging values from subchains We explain the merging process on the case of two subchains.
The extension to multiple subchains is straightforward.

Let us assume that a chain has two subchains with the associated counters beingκc andκd (as
the reset chains are not important here, we omit the upper indices) and there is a variablei value of
which is expressed asi = i1(κc) in the first chain andi = i2(κd) in the second. We would like to
“merge” the values ofi – i.e. to find a functioni(·, ·) such thati = i(κc, κd). Letαi be the symbolic
value ofi on entering the subchains. There are some simple cases: e.g.if i1(κc) = i2(κd) = v for
some constantv, then obviously alsoi(κc, κd) = v. Similarly if i1(κc) = i2(κd) = αi. On the
other hand ifi1(κc) = v1 6= v2 = i2(κd) then there is no such functioni(κc, κd). In that case we
put i(κc, κd) = ⋆.

The most interesting case is when bothi1(κc) andi2(κd) depend onαi – e.g.i1(κc) = v1 ·κc+
αi andi2(κd) = v2 · κd + αi. This means that the value ofi is updated in both subchains. In this
case we can easily derive thati(κc, κd) = v1 ·κc+v2 ·κd+αi. Table 1 sums up all supported merge
operations for functions of a single counter. In all other cases we puti(κc, κd) = ⋆. From Table 1
we see that our ability to merge is limited. E.g. we are not able to merge eveni1(κc) = v1 ·κc +αi

andi2(κd) = αi · v
κd

2
. Also ⋆ propagates quickly through the system and constraints with⋆ are

not useful in our approach. On the other hand we can merge functions with different numbers of
counters, e.g.i(κc, κd) with i(κ3) etc.

i1(κc) i2(κd) i(κc, κd)

αi αi αi

v v v

v1 · κc + αi v2 · κd + αi v1 · κc + v2 · κd + αi

αi · v
κc

1
αi · v

κd

2
αi · v

κc

1
· vκd

2

Table 1.Supported merge operations for unary functions

3.3 Phase 3: Constraints-Driven Symbolic Execution

The last stage of our algorithm is to navigate (modified) symbolic execution in order to find a feasi-
ble path froms0 to t0. We modify standard symbolic execution in order to run on thechain program
form described in Section 3.1. To do so, we first extend the symbolic state by extra variables rep-
resenting the values of counters. Second, on entering a chain, we instantiate all symbolsαv in the
constraint system associated with the chain by their actualsymbolic values.



The symbolic execution starts by setting all counters for which the current chain is the reset
chain to zero and then proceeds on the root chain as normal until it reaches a loop node, which
will play a role of a branching statement in standard symbolic execution. A symbolic execution tool
typically asks an oracle (a heuristic), when an execution reaches forking branch. Since two or more
branches can be simultaneously taken from that point, an oracle is responsible to choose a branch
which is more likely to reach the goal of exploration then others. In our case branching points are
the loop nodes, and the oracle is the decision procedure given by Algorithm 2.

input : c,D :: a chain and an subset of its sub-chains
A :: constraint system forc

output: Chosen chain (i.e.c or somed ∈ D) or null .
if A has no solution then return null
if counters’ values represent a solution of A then return c
R := {reset chains of counters for (subchains of)D, whose reset gets closer to a solution ofA}
U := {update chains of counters for (subchains of)D, whose update gets closer to a solution ofA}
if R ∪ U = ∅ then return c
else return arbitrary element from R ∪ U

Algorithm 2 : chooseChain

Let c be the currently executed chain,A its (instantiated) constraint system,i the processed
loop node, andD be the subset of the set of subchains associated toi (containing those subchains
which have not been yet explored during backtracking). IfA has no solution, we immediately
stop symbolic execution for this branch. Otherwise, if the current values of counters already form
a solution ofA, we continue executingc, as there is no reason to execute any of the subchains.
Otherwise we need to choose a chaind ∈ D which, hopefully, brings us closer to a solution ofA. If
there is suchd, we continue with the symbolic execution ofd. Finally if there is no suchd, then we
also continue executingc, hoping that we can closer to a solution ofA at some loop node below.

Now we describe what we mean by “getting closer to a solution of A”. Let w be a vector of
current values of all the counters such thatw is not a solution toA. We now ask whether there is a
vectorv on natural numbers such that 1)v +w is a solution toA, and 2) there is a counterκ such
thatd ∈ D (or some of its subchains) is the update chain forκ (reset chain forκ) and there is a
positive (negative) number in in the corresponding position in v. If yes, then executing the chaind
gets us “closer to a solution ofA”.

There are many possible approaches to compute the vectorv. One is to simply use a SMT solver
to obtain a solution toA. In our implementation we use interval abstraction: we overapproximate
the set of all solutions by giving a set of intervals for each counter. These intervals are derived from
the constraint system, and we have a solution toA if the value of each counter lies in one of its
intervals. In this abstraction individual components of any solution vector are independent. Thus
choosing some vectorv is trivial.

Finally we have to say what happens when the symbolic execution reaches the terminal node of
a chainc. We first increment all the associated countersκd

c
(for all d). If c is a subchain we continue

by (again) executing the associated loop node in the parent chain, otherwisec is a root chain and
we reached the target node.

We conclude by stating the soundness and incompleteness of our method (the latter follows
immediately from incompleteness of the standard symbolic execution):

Theorem 2 (Soundness)If the symbolic execution of C(P ) (as described in Section 3) terminates
with success, then the returned path condition represents a feasible path from start to target instruc-



tion in the original program P . Moreover if the symbolic execution fails, then there is no feasible
path in P to the target instruction.

Theorem 3 (Incompleteness)There exists a programP with reachable target instruction for which
the symbolic execution of C(P ) never terminates.

4 Experimental Results

To evaluate the effectiveness of our technique we implemented it (with all the restrictions mentioned
at the beginning of Section 3) in our tool CBA, and tested it ona set of nine benchmarks. We also
compared the performance of CBA to that of two very successful tools PEX [28,24] and KLEE
[7]. All the nine benchmarks share some common properties: 1. the code contains loops (so the
benchmarks produce a huge symbolic execution tree) 2. thereis a unique location to be reached 3.
they consist of only one function (since our technique does not handle function calls). In the first
six benchmarks the goal is to find a feasible path to the targetlocation. On the other hand in the
last three benchmarks there is no feasible path to the targetlocation and the goal is to show that no
feasible path exists.

Benchmark Description The first three benchmarksHello/HW/HWM are adapted from [1] (there
is only verbal description, no code). The HWM benchmark accepts aC string as an input and scans
the string for the presence of substrings"Hello","World", "At" and"Microsoft!". HW
and Hello are simplified versions of the HWM benchmark, looking for the first two words (one
word) only.

In DOIF we model a typical piece of code which scans an input and, for each member of
the input array, performs an action which depends on its value. This benchmark is supposed to
exercise primarily the third stage of the algorithm. Branching inside the loops enormously expands
the number of paths in the model.DOIFex is an extension of this benchmark, and tests behaviour
on sequences of loops with internal branching.

TheEQCNT benchmark contains nested loops with branching, where a variable defined in the
outermost scope is modified in the innermost loop.EQCNTex is a modified benchmark (in a sense
two instances of EQCNT in sequence), however the number loopiterations is now given explicitly
(in contrast to the two remaining benchmarks, where it is dependent on the input). For an algorithm
to be efficient on this benchmark it has to aggressively pruneinfeasible paths.

TheOneLoopbenchmark consists of simple loop in which the variablei, with initial value0,
is increased by4 in every iteration. Once the loop is finished we check whetheri==15, which is
false for any value of the input variablen. TwoLoops is a an extension of the previous benchmark
by adding a second loop, whose loop condition depends on the value computed in the first loop.

4.1 Tool Comparison

In this section we present the experimental results we obtained by running PEX, KLEE and our
tool CBA on our set of benchmarks. We ran our test on an Intel i7/920 2.67GHz Windows machine
with 6GB of RAM. Since KLEE is native C++ Linux application, we used the Cygwin library to
run KLEE on Windows, resulting in an overhead caused by callsto Cygwin’s dynamic library.
We decided to reduce this negative effect by using thetime utility to measure the ’user’ time of
KLEE. However this was as close as we could get to running all the tools in the same environment.

For PEX we present two results for each of the benchmarks. This is because the performance
of PEX is affected by a set of configurable parameters. The first result is obtained in the way rec-
ommended by PEX developers – with all parameters set to infinity. The second result (indicated



by an asterisk), which is usually better, is obtained by iteratively running PEX and adjusting the
parameters according to suggestions provided with the unsuccessful runs.

Comparison results The results are presented in Table 2. We measured the time required to
reach the target location. Each benchmark has an associatedtimeout (columntimeout), which was
set according to the perceived difficulty of that particularbenchmark. The success was defined as
reaching the target location (or demonstrating it is not possible to reach this location) within the
specified time limit.

Looking at the table one can see that, on our set of benchmarks, CBA significantly outperforms
both PEX and KLEE. This shows that on short pieces of code containing non-trivial loops our
technique can effectively guide the symbolic execution to the chosen target location. On the other
hand PEX and KLEE clearly suffer from the limitations of the symbolicexecution when dealing
with loops.

Test timeout PEX PEX ∗ KLEE CBA

Hello 30m 3.234s 7.233s 0.093s 0.026s
HW 1h 14.890s 11.107s 37m 0s 0.175s

HWM 1h fail 8m 54s timeout 1.997s
DOIF 30m timeout 20m 27stimeout 0.388s

DOIFex 1h timeout timeout timeout 1.745s
EQCNT 30m 1m 43s 11.592stimeout 0.191s

EQCNTex 1h 46m 12s42m 20stimeout 2.458s
OneLoop 30m 2m 14s 4m 27s timeout 0.002s
TwoLoops 30m 1m 4s 57.426stimeout 0.003s

Table 2.Running times of PEX, KLEE and CBA.

4.2 Performance Analysis of CBA

In this section we discuss the behaviour of CBA on our set of nine benchmarks. Table 3 shows the
performance data. The three enclosing columns refer to the three stages of our algorithm:Chain
prog. form refers to the conversion of a program into chain program form. Chains gives the number
of root/all chains,Time the time needed for the conversion andSpace the size of resulting data
structures.Constr. Systems covers the second stage.Elim shows how many root chains were shown
to be infeasible even before getting to the last stage andSize gives the total number of constraints left
after pruning. FinallyConstraints-Driven Sym. Exe. refers to the last stage.SStat gives the number
of symbolic states (i.e. vertices of a symbolic execution tree) visited.CSOL gives the number of
calls to the constraint solver: The first number is for the initial solution, the second one for the
remaining calls.SMT is the number of calls to the Z3 SMT solver and finallyPC counts the number
of predicates in the resulting path condition.

The number of chains for the HWM benchmark is quite large. There were 161 chains, including
81 root chains. The high number of chains for HWM is reflected in the time and space needed
to build the chain program form. We can see the negative effect of exponential growth of chain
program form here. If we compare the running time and the number of chains for the three related
benchmarks Hello/HW/HWM we see that number of chains grow indeed exponentially.

Another interesting observation is that it is hard to predict how long will the last stage take
based on the performance of the first two stages. To see this, consider the results obtained for the
HWM and DOIFex benchmarks. In the case of HWM there are161 chains (before pruning) and
20 constraints in remaining chains (after pruning), while for DOIFex there are only 9 chains and 4
constraints. However in both cases the last stage explores acomparable number of symbolic states



Chain Prog. Form Constr. Systems Constraints-Driven Sym. Exe.
Test Chains Time SpaceElim Size Time SpaceSStat CSOL SMT Time PC

Hello 3/6 0.003s 1kB 2 5 0.001s3.1kB 10 8 / 36 19 0.023s 5
HW 9/17 0.009s 20 kB 8 10 0.040s 6 kB 44 30 / 170 92 0.144s10

HWM 81/1610.097s369 kB 80 20 0.719s12 kB 174 112 / 686 376 1.456s22
DOIF 1/5 0.003s 1 kB 0 3 0.014s 2 kB 98 97 / 349 136 0.380s26

DOIFex 1/9 0.004s 3 kB 0 4 0.008s 5 kB 211 209 / 728 212 1.757s26
EQCNT 1/4 0.004s 1 kB 0 3 0.003s 2 kB 45 44 / 245 45 0.187s43

EQCNTex 1/7 0.004s 2 kB 0 6 0.005s 4 kB 1192 1022 / 728612332.458s 0
OneLoop 1/2 0.003s 293 B 0 2 0.001s698 B 0 1 / 0 0 0.001s 0
TwoLoops 1/3 0.003s 578 B 0 2 0.001s 1 kB 0 1 / 0 0 0.001s 0

Table 3.Performance data for CBA on our set of benchmarks.

in similarly comparable time. This indicates that, in respect to our algorithm, the number of chains
and constraints are not the only important parameters.

The last negative output can be seen on the EQCNTex benchmark. The values for the last stage
are an order of a magnitude higher than for the other tests. Note that this is despite the number of
chains being very low. Remember that in EQCNTex there is no feasible path to the target location,
and many paths need to be explored to prove it. EQCNTex benchmark shows the limitations of
our algorithm with respect to solving such problems. Even though it can effectively prune away
many paths (as witnessed by the last two benchmarks, OneLoopand TwoLoops) this is not always
sufficient. Nevertheless CBA still fared significantly better on EQCNTex than both PEX and KLEE.

5 Related Work

The earliest work dealing with symbolic execution [6,21] showed that symbolic execution can be an
effective approach to test generation. However the astronomical blowup of program model caused
by loops was not in the centre of interest. Usability evaluation of symbolic execution for proving
correctness of program implementing Floyd’s method [10] was in [21], but problems with loops
were handled by manually insertingASSUME statements where necessary.

Modern effective techniques based on symbolic execution are mostly hybrid, combine symbolic
execution with some other approaches. The first group are techniques based of combining (alternat-
ing) concrete and symbolic execution [13,26,28,15]. This approach primarily avoids the problems
caused by limitations of SMT solvers. Although the practical usability is greatly improved, these
techniques have no effect on the ability to handle loops. Thesecond group combines symbolic ex-
ecution with some validation technique [16,19,2,23,17]. This approach is much more successful
from the point of handling loops. Thanks to employing the complementary techniques, many sym-
bolic paths can be effectively pruned away when exploring the symbolic state space. This can often
lead to effective navigation of symbolic execution in programs with loops. There is also a group
of techniques which aim to make symbolic execution effective in the general case, not specifically
focused on just programs with loops [5,11,1,8,7,14].

The idea of using constraint system for analyzing loops was considered before in different con-
texts. First approach, dating back to 70’s, infers relations between program variables [20,9], while
the more recent techniques are primarily focused on formal verification, and inductive invariant
computation [3,18]. Analysis of loops using loop-countersas the artificial program variables is also
well known [22].

The technique of Loop-Extended Symbolic Execution [25] (LESE) is probably the one most
closely related to our approach. The LESE approach introduces symbolic variables for the number
of times each loop was executed, and links these with features of a known input grammar such as



variable-length or repeating fields. This allows the symbolic constraints to cover a class of paths that
includes different number of loop iterations, expressing loop-dependent program values in terms of
properties of the input.

Our approach is very different: Instead of extending the input by new symbolic variables to
reason about multiple symbolic execution paths at once, ourgoal is to build a constraint systems to
steer the symbolic execution through loops towards a specified target. For this reason we introduce
counters which are linked to different paths through a cycle, contrasting to the overall iteration
count used by the LESE approach. Our technique therefore applies to a much more general class of
programs.

Finally there is an orthogonal line of research which tries to improve the symbolic execution
for programs with some special types of inputs. Some examples are techniques for dealing with
programs with string inputs [4,29], and techniques which reduce input space given by an input
grammar [12,25]. These approaches can be effective on loopswhen such loops are closely related
to the input.

6 Conclusion and Future Work

In this paper we introduced a new algorithm for effective navigation of symbolic execution through
loop containing code. The algorithm infers a collection of constraint systems and uses them to steer
the symbolic execution towards a target location. To build these constraint systems we express the
values of variables modified in a loop as functions of the number of times a particular path through
the loop was executed.

We have also built an experimental implementation of our technique and tested its effectiveness
on a set of nine benchmarks. Our tool was able to correctly solve each of these benchmarks within
seconds, being several orders of magnitude faster than the leading symbolic execution tools. More-
over we have demonstrated that our technique is also useful for proving that no feasible path to a
target location exists.

Finally, we argue that it would be beneficial for general-purpose tools based on symbolic execu-
tion to integrate our technique as a new search strategy. This strategy would then be activated each
time the symbolic execution needs to navigate to a specific target location below some complicated
loop structure. Since our algorithm is itself based on symbolic execution, such integration should
not be too difficult.

There are many interesting open directions for future work.An obvious task would be to extend
our approach to interprocedural setting. Moreover, so far we have considered only integer variables
and arrays. It would be interesting to extend our technique to handle more sequential containers
(e.g. lists or vectors) and/or floating point arithmetics. Another approach is to try to curb the growth
of the chain program form, for example by merging those chains which have the same effect on
program execution. Finally it would be nice to actually integrate our approach with the existing
symbolic execution tools like KLEE.
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