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Abstract. Symbolic execution is a successful and very popular tectigsed in software
verification and testing. A key limitation of symbolic exdian is in dealing with code con-
taining loops. The problem is that even a single loop canmggé@a huge number of different
symbolic execution paths, corresponding to different neindf loop iterations and taking var-
ious paths through the loop.

We introduce a technique which, given a start location alsovee loops and a target location
anywhere below these loops, returns a feasible path betiliesa two locations, if such a path
exists. The technique infers a collection of constraintesys from the program and uses them
to steer the symbolic execution towards the target. On fegehloop it iteratively solves the
appropriate constraint system to find out which path thrabghloop to take, or, alternatively,
whether to continue below the loop. To construct the coimgtsystems we express the values
of variables modified in a loop as functions of the number w8 a given path through the
loop was executed.

We have built a prototype implementation of our technique: @mpared it to state-of-the-art
symbolic execution tools on simple programs with loops. Témults show significant im-
provements in the running time. We found instances wheralgarithm finished in seconds,
whereas the other tools did not finish within an hour. Our apph also shows very good
results in the case when the target location is not reaclgtday feasible path.

1 Introduction

Symbolic execution has been studied since 70/s [6,21]. Tamidea of symbolic execution is to
represent input by symbols and then to symbolically perfoparations on values dependent on
these inputs. l.e. symbolic execution is a generalizatioooocrete execution. Symbolic execu-
tion is usually used in the context of automatic test gefi@ratVith the arrival of powerful SMT
(Satisfiability-Modulo-Theories) solvers, e.q.]30,278me a generation of powerful software tools
for verification and test generatidn |28,7[23,26].

However symbolic execution quickly reaches its limits witemfronted with loops. As loops
are widely used this is a significant problem. A typical diitorais that reaching a particular location
below a loop depends on the number of times this loop wasté@r&ven worse, reaching that
location may depend not only on the number of iterationsataa on what particular paths through
the loop were chosen, and the order in which they were takierneSn symbolic execution any
iteration of a loop creates a new branch in the tree of syralmiecutions, the size of the tree
can become very large with even a single loop. Without degidny information about the loop
symbolic execution is forced to systematically explorébadinches of this tree, running out of time
even on small programs.

We aim to solve the following problem: Given a start locatidiove a piece of code containing
complicated loops, including loop sequences and loopmgséind a target location anywhere in
the code below, the goal is to find some feasible path betweeatart and target location, if such
a path exists.
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The idea behind our algorithm is relatively simple. Assunegp@rform symbolic execution and
want to reach a given target location. On reaching a loop weieman oracle which paths through
this loop, and in which order, we should execute in order éazhehe target location. Following the
oracle’s advice we get to our target, building path condititong the way. Only in our approach the
oracle is replaced by a constraint system, which is less galv€or each iteration it may suggest
the next path to take, or to finish iterating this loop.

To build the constraint system we express the values ofbl@sanodified in a loop as functions
of the number of times a given path through the loop was erelclithis concept extends the simple
one of counting loop iterations. Moreover, multiple cousttr each path through the loop may
be needed to correctly handle loop nesting. The expresdeésvare then 'merged’ over all paths
through a given loop. Constraint system is then creatediigdadranching conditions of the code
below the loop and replacing all variables with the corresfioeg functions of loop counters.

We suggest that our algorithm is most useful when integratedexisting tools based on sym-
bolic execution. Since the algorithm is itself based on sylickexecution the integration should
not be a big problem. Our algorithm would work as a specifiedeatrategy, activated when a
global search strategy needs to navigate to a specific prolgreation below some complicated
loop structure. This would greatly improve the loop hangllability of such symbolic execution
tool and allow it to explore more code in less time.

To evaluate our approach, we have built an experimentalkimehtation of our technique — a
tool called CBA. We tested CBA on nine benchmarks we desigmedpture those loop structures
which often appear in practice. CBA was able to solve all taedhmarks in seconds, confirm-
ing that the approach we decided to use is correct. We alsgathe performance of CBA
to successful symbolic execution toolgP[28/24] and KLEE [[7] and show that, on our set of
benchmarks, CBA is several orders of magnitude faster thheref these tools.

The rest of the paper is organized as follows. In Sedfion 2 eeall the basics of symbolic
execution and then show how our technique works on an exarfipke algorithm is explained
in SectiorB. In Section]4 we first describe the set of bencksnased for testing loop handling
capabilities and compare the running times of CBA to thosetbér tools. We also evaluate the
performance data from various stages of our algorithm. Weesurelated work in Sectidnl 5, and
conclude with Sectionl 6.

2 Overview

In this section we start with an example showing the limitasi of symbolic execution when it
comes to dealing with loops. We then present an overview pépproach to solving this problem
on this example. Detailed description of our algorithm ifedeed to the next section.

2.1 Symbolic Execution and Loops

The idea behind symbolic execution can be explained asislinstead of executing the program
on a concrete input, we introduce for each input variabéesymbolic valuey;, standing for some
concrete, but yet unknown value from the domain of he execution of the program then proceeds
in much the same way as normal (concrete) execution. Thertapalifference is that now many
variables can contain symbolic values. For examplealahdb be input variables with symbolic
valuesa, andas,. Then after executing the statement= 2«xa + b the variablec will contain
the symbolic valu€ - a, + .

Branching is treated in the following way. During symbolieeution we maintain a boolean
formulay called thepath condition, originally set tot rue. Assume that the symbolic execution



reached a branching statement andulebe the associated condition. ¢f A 1) is satisfiable we
continue with the true branch and we update the path condiip A«. (Similarly for the condition
pA—p and false branch.) If both A andp A=) are satisfiable we fork the execution and work on
the resulting branches independently. When the symboécwion is terminated, e.g. by reaching
the desired location, we use an SMT solver to derive conéngtgt values from the actual path
condition.

Symbolic execution works very well on programs with comald branching sequencek[8,28,24].
Using a SMT solver symbolic execution can effectively gateinputs systematically examining
all branches of the code. However, symbolic execution resds limits when confronted with a
code containing loops. Presence of even a single simpleitoaprogram may cause a very large
(or even infinite) number of forks in the symbolic execution.

The problem with loops can be demonstrated on the progranginé{d (a). The goal is to
find a feasible path to thessert statement on lin®. It is easy to see (at least for a human) that
more than one such path exists and that it must iterate betlotps. However, there are abadt
different execution paths which must be explored in the wease to show that the code at linés
reachable. The problem here is that the condition referisdwalues ot andb, which depend on
the input (the arraya andB) only indirectly. Thus the condition on ling does not affect the path
condition of any trace and therefore it is not possible foMar'solver to compute an input leading
to theassert branch. Even though this seems to be a very simple exampd@kitthe symbolic
execution tool Bx 99 seconds to find an input reaching thesert statement. Moreover when
we substituted the predicase-12 on line 8 with a>17 (thus line9 becomes unreachable)z R
was not able to finish within 5 hours.

. C1 C3
1 int a=0, b=0; co i<15 j<15
2 for (int i=0; i<15; ++i) a=0 Alil==1 B[j]==2
3 if (Ali]==1) b=0 ++a ++b
4 ++a; =0 ++i 4
5 for (int j=0; j<15; ++j) i>=15 : {c1,c2}
6 if (B[j]==2) 3=0
7 ++b; j>=15 : {C37C4} 22<15 (]:4<15
8 if (a>12 && a+b==23) a>12 A[i]!=1 B[3]!=2
9 assert (0); atb==23 t1i 145

(@) (b)

Fig. 1. Example used throughout Sect{dn(&) C program containing loopgb) Its chain program
form.

2.2 Algorithm Overview

We introduce our technique of handling loops on the exampb®a, in three distinct phases:

Phase 1: Conversion to chain normal form To better facilitate reasoning about loops we repre-
sent the program using linear code fragments calleihs. The decomposition of our program to
chains (what we calthain programform later in the text) is shown in Figuté 1 (b). Chainis the
topmost chain (calletbot chain later in the paper), corresponding to a path through the abdee

we replace the outermost loops by constructs of the form {c¢;, ¢z, ...} with the following
meaning: at this point chains, cs, . . . may be executed any number of times and in any order, but
the conditiony must hold after we finish executing them. Note that the caomion line 8 was
replaced by a pair of assertions.



As to the other chains, chain represents the path through the loop on lineg which goes
through the positive branch of thier statement and, the only other path through this loop. The
same holds for the chaing andc, and the loop at lines—-7. One can easily see that there is a
natural correspondence between the program (FIgure 1rd)itslinear representation (Figure 1
(b)).

The task of finding some feasible path to thesert statement now depends on finding a
proper interleaving of chaing andc; for the first loop, and; andc, for the second one.

Ci C2 C3 Ca
i(k1) = K1+ s i(k2) = ko + J(k3) = K3 + oy j(Ka) = ka +
a(k1) = k1 + aa a(k2) = aa b(k3) = ks +ap  b(ka) =
{c1,c2} {cs,ca}
i(k1, K2) = K1+ K2 + as J(k3, ka) = K3 + Ka + oy
a(k1) = k1 + Qa b(k3) = ks + o
(1) K1+ ke > 15 (4)K3+I€4—1<15 if k3 +K4>0
(2) K1+ Ko —1<15 if kK1 +Kro >0 (5) K1 > 12
3) K3 + kg > 15 (6) K1+ K3 = 23 K1, k2, K3, ka € N

Fig. 2. Top: Recurrent variables expressed as functions of countenisidimg the functions after
merging.
Bottom: Constraint systen§(co) of the root chaireg.

Phase 2: Building a constraint system We start by expressing the values of variables in each
chain (except root chains) as functions of the number ofgithes chain was executeds;. Each
chaing; is linked tochain counter «;, which takes values from. The link is given by the bottom
index of the counter. We show how to compute the values oabstes on chair;, using counter
k1. Leta; anda, be the initial symbolic values of variablesanda, which are not known to this
chain. Theni(k1) = k1 + «; anda(k1) = k1 + «a, are the values of these variables expressed
as functions of«;. The functions for the other chains are shown in Fidlire 2)(topterms of the
original program we have introduced a counter for each wnjpth through each loop.

Now for any given variable and each path through a given loop there may be differentifumc
expressing the value df in terms of the relevant counter. In the second step we trxpoess the
value ofi by a single function of multiple counters. This abstractsrfrany concrete interleaving
of the subchains, but the value of the variable is expressaigely. So in the case of chainsand
¢o the value ofi can be expressed @81, k2) = k1 + k2 + ;. The results for our example are
presented in Figufd 2 under the headifigs, c2} and{cs, c4}.

We can now build a constraint system for the topmost chairThe constraints are obtained
by processing all its assertions. There are four asseriiotie chaincy: i>=15, §>=15, a>12,
and a+b==23. We replace the variables by their previously computedeslfi.e. functions of
counters), arriving the constraint systeftr,) depicted at Figurgl2 (bottom). The constraints (1),
and (2) came from the assertian=15, (3), and (4) from the assertiop»=15, (5) froma>12, and
finally (6) froma+b==23. The constraint (1) was computed as follows. First we stuistvariables
in the assertion by their values, obtainiiig1, ko) = k1 + k2 + a; > 15. a; represents the value
of i on reaching thei>=15 : {¢1, c2} instruction. Heren; = 0, giving us the constraint (1),
which speaks about the values of and x4 just after the associated loop was executed for the
last time. However, this also means that for all previousetiens, where the values a#¢ < x;
andry < ko such thatk] + k5, < k1 + ko, the negated conditioi{x}, x5) < 15 must hold —

i.e. there is an additional constraint for each such chofce| and«x). This can be rephrased as



K1+ K2 —a <15fora € {1,2,...,Kk1 + ko — 1}. Our experimentation shows that it is sufficient
to take only a single constraint far= 1, giving us the constraint (2). Constraints (3), (5) and (6)
are derived similarly to (1) and constraint (4) in the samg a&(2). Note that we do not construct
constraint systems for chains, ¢, c3, ¢4 Since they do not contain any subchains.

The point of the constructed constraint syst8tny) is that only those executions which reach
the assert statement satisfi5(cy) (if we instantiate the counters by the number of times the
corresponding path through a loop was executed). Whichrmmeans that solving our constraint
system will limit the space of counter values we need to aersiE.g. from (5) we know that
k1 € [13,00], and therefore the chaiey, which is linked to the countet;, must be executed
at least 13 times on any feasible path. Similarly once we kttewalue forxq, then from the
constraint (6) and the fact thag is not modified in the second loop (there is no link between
and eithewr:s or ¢4) we can derive the number of times chajneeds to be executed.

Phase 3: Navigating the symbolic executionWith the chains, counters and constraint systems in
place we may proceed with the final stage of the algorithm -ifiqndome feasible path to line
We do this by employing slightly modified symbolic executide initialize all counters to 0 and
proceed down the chaify in a standard way until we reach the lineids=15: {c;, ¢} (i.e. the
entry point of the first loop). There are two subchaipngndc, for this loop, linked to counters;
andk,. Now we iteratively do the following:
— Check whether we can improve current solution of the systgindrementing<; or x». If we
cannot, we stop iterating and continue down the chgin
— Otherwise we call a decision procedure to tell us which ceuttt increment. This procedure
will be described in more detail in Sectibh 3.
— Lets assume:; was chosen. In that case we symbolically execute the chairditox, i.e.
c1. We also increment the countey.

Note that it may happen that the symbolic execution may getksbecause a wrong choice of
counter (counters) to increment. In that case we backti@siing the decision procedure for the
next best counter to be incremented. Also note that by fitabéshing the values of countexs
and ko, before proceeding any further in the chain we significantly cut down the number of
paths which need to be explored.

Having solved the loop related to chaimsand ¢, we proceed with the execution, handling
the loop related to chaing; andc, in the same way. Once we arrive at the end:pfve return
the current path condition, which identifies a feasible phtlour case one such path condition is
A[0] = 1A ...AA[12] = T AA[13] # 1 AA[14] #1 AB[0O] = 2A ... AB[9] = 2 AB[10] #

2 A...AB[14] # 2. By construction this path condition is also the soughtpiath condition for the
original program.

2.3 Additional Notes

Our technique holds a significant edge over the standard sljgréxecution in proving no feasible
path to a target location exists. Consider the example inreid where the predicate-12 on line
8 is replaced bya>17. The only change in the constraint system is (5) to (§')> 17. From
the constraints (2), and (5’) we can derive thathas to have a negative value. Since all counters
obtain values fronlN, the constraint system has no solution. This means ther fisasible path
to the target location. The important fact is that we were ablprove this even before starting the
symbolic execution.

The existence of a solution to the constraint system doegumentantee existence of a feasible
path. There are two possible problems: 1) not all soluti@mrsespond to feasible paths that lead



to the target location, and 2) single solution may correggormultiple paths with different inter-
leaving of the iterations through a loop. So while the caistrsystem effectively prunes the paths
which do not lead to the target, it is not able to give us a fdagiath on its own. We therefore still
need to use the symbolic execution. For the same reasonsimaolve fail we need to backtrack to
check the other possible solutions.

3 Algorithm

As we have explained in the previous section, the algorithotgeds in a three phases. In this
section we give detailed description of all three phaseforBave present our algorithm we want
to state its limitations: Currently our technique is inttegedural — i.e. we do not support function
calls. We also deal only with integer variables and arrags, lkandle neither heap manipulation
operations nor pointer arithmetic.

3.1 Phase 1: Programs as Chains

In this section we describe how to convert a program to chaagnam form. It may be helpful for
the reader to follow the example in FIg. 1. We understand gnar P to be an oriented graph,
in which the vertices are the program instructions and eeégpsess the control flow. We write
u — v (u —* v) if there is an edge (path) fromto v. We assume that there is a single start and a
single terminal vertexs; andty) and that the prograrf? contains no unreachable code. Moreover
we assume that the successors of a branching vertex aredabehd ! ¢ (for some conditiort),
indicating what condition must hold in order to enter theresponding branch. Converting e.g. a
C program to this form is obvious (program in our definitiot&sically a control flow graph). We
also require the program to be in the static single assighi®3A) form, i.e. for each program
variable there is at most one place this variable is assigm@gsing the standard conversion).

We define thechain program form C(P) of P to be the set of all chains i. A chainin P
is a path inP which is of one of the two specific typeRoot chain is a simple path (no vertex
appear twicekg —* to. Subchain is a simple path’ —* v such that it is a suffix of some path
T s = v — v —* vin P wherev is the only vertex which appears twicen (If there are
two different pathsy —* v, then the same pathi —* v is treated as two different subchains.) In
the rest of the paper we treat chains as linear sequencesgictgeand call their verticasdes. In
our examplecg is the root chain, and; . .. c4 are the subchains. The set of all chains can be easily
obtained by unfolding the graph &f into a tree, starting iy and stopping each time a vertex is
repeated on a path frosy (or when we reachy).

In chains there are three types of nodes — assume nodedptramodes and loop nodeAs-
sume nodes, e.g.a>12 in cg, correspond to branching conditiof$ansform nodes, e.g. =0 in
co, correspond to assignment statements which change theapnegtate. Finalljoop nodes, e.qg.
i>=15 : {c¢1, ca2}inco, are those nodes, from which there is at least one ed@etithe first
vertex of some subchain. We call such a subchain a @dsaatiated to this node ¢; andcs in this
case). Note that each subchain corresponds to a uniquehpatiyh a loop and there can be many
subchains associated to the same loop node. Moreover elachesn can also contain loop nodes,
each having its own associated subchains. In the followirngghases of the algorithm we assume
that there is only one root chain. If there are multiple rdwdios, we run the remaining two phases
of the algorithm separately for each root chain. The resdtsthen be combined in an obvious
way.

Let C(P) be the chain program form associated to a progfanThen anexecution path in
C(P) is a sequence of nodes, which is created as follows: we take soot chain and take the



nodes one by one. On reaching a loop node, we may either centiith the next node in the chain,

or choose one of the subchains associated with this loop. modieat case we take this subchain
and proceed recursively. On reaching the end in the subuleago “one level up” to the associated

loop node in the parent chain and repeat our choice to eikerthe next node of the parent chain or
choose another associated subchain. We finish once we teatérininal node for the root chain.

Itis easy to check that the following statement holds:

Theorem 1 The algorithm described above converts each program P to chain normal form C'(P)
such that for each path in P there is a corresponding execution path in C'(P) and vice versa. (By
correspondence we mean that the sequences of instructions along these two paths are the same).
Moreover if P isin SSA form, then so is each chain of C'(P).

Exponential growth of chain program form It can be seen that representing a progfam chain
program form can bring an exponential blowup in size. Suckvbp is caused by the presence of
branching statements. However, in our experience the nuailebains is quite often very low. On
the other hand it is not difficult to come up with a program fdrieh the transformation to chain
program form will actually cause an exponential increassize. Indeed, such a growth can be
observed for three of our benchmarks Hello/HW/HWM in Sat#od.

However, compared to vanilla symbolic execution our apgincill offers significant improve-
ments. If we look at a symbolic execution tree of even a vemyp$ loop structure, we can see
that every path through a loop (represented by a single ¢haiar case) can appear many times in
the tree — both on the same branch and on different branaheghér words, the size of the chain
program form is usually much smaller then the standard syimégrecution tree for the same loop
structure. Moreover, in the last stage of the algorithm (sglic execution of”'( P)) the use of con-
straint systems allows us to early prune branches not Igadithe terminal node. So we can have
significant space and time savings over vanilla symbolicetien despite the exponential growth
of chain program form.

3.2 Phase 2: Building the Constraint Systems

In our approach constraint systems are used to guide thedigneliecution in search for a feasible
path from the start to the target node. Here we show how tal lthé constraint system(§ for
each chaire. An important idea behind the construction is to expresséthges of variables used in
loops as functions of counters for the subchains. The cosiiteeach constraint system are linked
to concrete chains. This link between constraint systemsters and concrete chains (in the chain
program form) is the key idea of the algorithm.

The pseudocode for this phase is shown as Algorithm 1. Weeprbasing modified symbolic
execution. The modification is twofold: First, it works oraghs, not programs. Second, the domain
of symbolic values is extended to contain counters (andesgions using counters) and a special
valuex with the intended meaning “do not know”. (Any expressiontadmngx evaluates te..)

Letus take a chaia Atthe beginning each variabiehas a symbolic value; and the constraint
system $¢) is empty. Next we symbolically execute the chain: Handlifthe transform nodes is
clear. Assume nodes are treated as sources of constrai®s:joEach assertion is first instantiated
with the current values of variables, and then insertedecctinstraint system only if it references
some counter. (As per the example in Secfiod 2.2 multiplesitaimts can be produced from a
single assertion.) On reaching a loop nedee first recursively build the constraint systems for all
subchains associated to this node, obtaining symbolicegadfi variables (which can now depend
on counters of some (possibly nested) subchains). For ea@ble we then merge the symbolic



input : chainc = i1, 12, ..., (i; is thej-th instruction)
output: constraint systen§ (c), and symbolic values of variables
S(c)=0
for j=0; j<k; j++ do
switch node type of i; do
caselLoop node
for 1=1; I< |subchains(n)|; |++ do
BuildConstraintSystem (I-thsubchain)
merge symbolic values returned from subchains
update the symbolic state ofvith merged values
for each variable v st. cisthereset chain for v do
remember that is the reset chain fo¢
caseAssume node
instantiate the assertien(using the current symbolic state)
if a contains a counter then
add relevant constraints to the constraint sys&ie) of ¢
break
caseTransform node
modify the current symbolic state according to the assediassignment statement
for each variable vin c do express the symbolic value as a function of the temporarpteou;.

return symbolic values of variables
Algorithm 1: BuildConstraintSystem

values obtained in the subchains (see the sedfienging values ... below). The current symbolic
state ofc is then updated with the merged values. At this point we a¢ted the variables for which
this chain is the reset chain (see the secEgpressing values ... below). Since each loop node has
an associated branching condition, we finish processisgctindition as we would for the assume
node. Finally, when we reach the end of the chain, we exphesgalues of variables as functions
of loop counters (and return these valueg).) ®iow contains the complete constraint system for the
chainc. We now describe the process in more detail. We start by eptathe last step, because it
is here where counters are dealt with and the notion of rentivariables introduced.

Expressing values using countersLet us fix a chaire. The goal is for each variable to compute a
function expressing its value in terms of counters. We faruso calledecurrent variables, which
are the variables whose value 1) changes on the executibnecpatsponding te and 2) their
value is function of their initial value before executiagAn example of a recurrent variable is the
variablei in the chainc, for which we geti = a3 + 1. To detect recurrent variables for a given
chainc we simply analyze symbolic state resulting from symbolieaxion of this chain.

For each recurrent variable we express its value in term®wfrhany times the chaiawas
executed — using the counterassociated with the chainln our examplei(k1) = a;+k1. We use
a very simple custom difference equation solver to exptessalues of variables using counters.
Our solver handles only those recurrences which corresppadthmetic (e.gi = a; + 7) and
geometric (e.gi = 3 - «;) progressions. This restriction is justified by the fact tla@cording to
our experience, overwhelming majority of code uses onljguwogressions. In case we are not able
to solve a recurrence, we use the “do not know” value

An important point to make is that the initial value for «;, can be set by some chain of
which the current chair is a subchain. Therefore the value Dfdoes not depend only on the
number of times: was executed, but, more specifically, on the number of timeas executed
since last execution of. Therefore the value of in fact depends on a countef parametrized
by two chains: theipdate chain ¢ and thereset chain r —i.e.i(k%) = ay + 2 - k%. This counter is



incremented each time the chairis executed, and set to zero each time the chawrecuted. If
there is no reset chain for a given variable, we use the ptaintersx., wherec is the update chain
and the root chain is used as the reset chain. Note that altemused in our example in Figlide 1
are of this type. The following statement is true for chaiogzeam forms, and follows from the fact
all chains are in the SSA form:

Lemma 1 Let v be arecurrent variable whose update chain is ¢. Then v is not reset (to itsinitial
value) in any subchain of ¢ and there exists at most one superchain of ¢ where v isreset.

At the time of processing the update chaifor v we do not know yet what superchain of
is the reset chain for. Therefore we use a temporary countérto express the value af. When
processing a chaith such that 1)/ is a superchain of and 2) the value of is no longer given by
a recurrence expression,(does not occur in the symbolic valueef, we know thatd is the reset
chain forv. We remember this information, and once all constraintessystare built we replace all
occurrences of each temporary countgin all constraint systems with the correct countér

Merging values from subchains We explain the merging process on the case of two subchains.
The extension to multiple subchains is straightforward.

Let us assume that a chain has two subchains with the asstbciatinters being. andx, (as
the reset chains are not important here, we omit the upp&masgand there is a variablevalue of
which is expressed as= i (k) in the first chain and = i2(x4) in the second. We would like to
“merge” the values of —i.e. to find a functior(-, -) such that = i(k., xq). Leta; be the symbolic
value ofi on entering the subchains. There are some simple cases: & (@..) = i2(xq) = v for
some constant, then obviously alsa(k., xq) = v. Similarly if i1 (k.) = i2(kq) = a;. On the
other hand ifi; (k.) = v1 # va = i2(kq) then there is no such functiafk,., x4). In that case we
puti(ke, £q) = *.

The most interesting case is when btfk,.) andis(k,) depend omy; —€.9.41(ke) = v1 - ke +
a; andis(kq) = va - kg + ;. This means that the value afis updated in both subchains. In this
case we can easily derive thék., kq) = v1 - k. +v2-Kkq+ay. Tablel sums up all supported merge
operations for functions of a single counter. In all othesesawe pui(s.., kq) = *. From TabldL
we see that our ability to merge is limited. E.g. we are not &bimerge eveiy (k.) = v1 - ke + s
andiz(kq) = s - v5?. Also x propagates quickly through the system and constraints witfe
not useful in our approach. On the other hand we can mergeidmsowith different numbers of
counters, e.gi(k., kq) With i(k3) etc.

il(ﬁc) i2(f€d) i("{cv Kd)
Qi (%1 Qi
v v v
U1+ Ke + Qi|V2 - Kg + Qi|VU1 - Ke + V2 - Kd + Qi
a; - vfe a; - vy? a; - ve - vyl

Table 1. Supported merge operations for unary functions

3.3 Phase 3: Constraints-Driven Symbolic Execution

The last stage of our algorithm is to navigate (modified) sgliatexecution in order to find a feasi-
ble path froms, to tg. We modify standard symbolic execution in order to run oncifiein program
form described in Sectidn 3.1. To do so, we first extend thebsjim state by extra variables rep-
resenting the values of counters. Second, on entering a,olhaiinstantiate all symbols, in the
constraint system associated with the chain by their asytrabolic values.



The symbolic execution starts by setting all counters forcWlithe current chain is the reset
chain to zero and then proceeds on the root chain as norméltuetches a loop node, which
will play a role of a branching statement in standard syntetecution. A symbolic execution tool
typically asks an oracle (a heuristic), when an executiaches forking branch. Since two or more
branches can be simultaneously taken from that point, atleimresponsible to choose a branch
which is more likely to reach the goal of exploration thenesth In our case branching points are
the loop nodes, and the oracle is the decision procedura bivélgorithm[2.

input : ¢, D :: achain and an subset of its sub-chains
A :: constraint system far
output: Chosen chain (i.e: or somed € D) or null.
if A hasno solutionthen return null
if counters’ values represent a solution of A then return c
R :={reset chains of counters for (subchains Bf)whose reset gets closer to a solutionAdf
U :={update chains of counters for (subchainsof)whose update gets closer to a solutiomgf
if RUU = 0 then return ¢
else returnarbitrary element from R U U

Algorithm 2: chooseChain

Let ¢ be the currently executed chaid, its (instantiated) constraint systemthe processed
loop node, and) be the subset of the set of subchains associatédcmntaining those subchains
which have not been yet explored during backtracking)4 Ihas no solution, we immediately
stop symbolic execution for this branch. Otherwise, if therent values of counters already form
a solution of A, we continue executing, as there is no reason to execute any of the subchains.
Otherwise we need to choose a chéia D which, hopefully, brings us closer to a solutionAfIf
there is suchi, we continue with the symbolic execution@fFinally if there is no suchl, then we
also continue executing hoping that we can closer to a solution4fit some loop node below.

Now we describe what we mean by “getting closer to a solutioA’oLet w be a vector of
current values of all the counters such thats not a solution toA. We now ask whether there is a
vectorv on natural numbers such thatd}+ w is a solution toA, and 2) there is a countersuch
thatd € D (or some of its subchains) is the update chainddreset chain fok) and there is a
positive (negative) number in in the corresponding positiov. If yes, then executing the chaih
gets us “closer to a solution of”.

There are many possible approaches to compute the wedore is to simply use a SMT solver
to obtain a solution tod. In our implementation we use interval abstraction: we agproximate
the set of all solutions by giving a set of intervals for eachrter. These intervals are derived from
the constraint system, and we have a solutionltd the value of each counter lies in one of its
intervals. In this abstraction individual components of aolution vector are independent. Thus
choosing some vectaris trivial.

Finally we have to say what happens when the symbolic exatiaches the terminal node of
a chainc. We first increment all the associated countefgfor all d). If ¢ is a subchain we continue
by (again) executing the associated loop node in the pahaih cotherwise: is a root chain and
we reached the target node.

We conclude by stating the soundness and incompleteneas afi@thod (the latter follows
immediately from incompleteness of the standard symbakcetion):

Theorem 2 (Soundness)f the symbolic execution of C'(P) (as described in Section[3) terminates
with success, then the returned path condition represents a feasible path from start to target instruc-



tion in the original program P. Moreover if the symbolic execution fails, then there is no feasible
path in P to the target instruction.

Theorem 3 (Incompleteness)There existsa program P with reachabletarget instruction for which
the symbolic execution of C(P) never terminates.

4 Experimental Results

To evaluate the effectiveness of our technique we impleetkih{with all the restrictions mentioned
at the beginning of Sectidd 3) in our tool CBA, and tested iamet of nine benchmarks. We also
compared the performance of CBA to that of two very succésshis Pex [28[24] and KLEE
[7]. All the nine benchmarks share some common propertiethelcode contains loops (so the
benchmarks produce a huge symbolic execution tree) 2. iheranique location to be reached 3.
they consist of only one function (since our technique dagshandle function calls). In the first
six benchmarks the goal is to find a feasible path to the tdogetion. On the other hand in the
last three benchmarks there is no feasible path to the tcgtion and the goal is to show that no
feasible path exists.

Benchmark Description The first three benchmarktello/HW/HWM are adapted fromh[1] (there
is only verbal description, no code). The HWM benchmark ptac string as an input and scans
the string for the presence of substringsello","World", "At" and"Microsoft!". HW
and Hello are simplified versions of the HWM benchmark, logkfor the first two words (one
word) only.

In DOIF we model a typical piece of code which scans an input and, doh enember of
the input array, performs an action which depends on itsevalilnis benchmark is supposed to
exercise primarily the third stage of the algorithm. Braingtinside the loops enormously expands
the number of paths in the mod&IOIFex is an extension of this benchmark, and tests behaviour
on sequences of loops with internal branching.

TheEQCNT benchmark contains nested loops with branching, whereiablardefined in the
outermost scope is modified in the innermost IdBRICNTex is a modified benchmark (in a sense
two instances of EQCNT in sequence), however the numberitetgtions is now given explicitly
(in contrast to the two remaining benchmarks, where it isdéelent on the input). For an algorithm
to be efficient on this benchmark it has to aggressively pmifeasible paths.

The OneLoop benchmark consists of simple loop in which the variablevith initial valueO0,
is increased byl in every iteration. Once the loop is finished we check whetkef1 5, which is
false for any value of the input variabte TwoLoopsis a an extension of the previous benchmark
by adding a second loop, whose loop condition depends oreflne eomputed in the first loop.

4.1 Tool Comparison

In this section we present the experimental results we étaby running Bx, KLEE and our
tool CBA on our set of benchmarks. We ran our test on an Int@2i0 2.67GHz Windows machine
with 6GB of RAM. Since KLEE is native C++ Linux applicationeaused the Cygwin library to
run KLEE on Windows, resulting in an overhead caused by ¢allS€ygwin’s dynamic library.
We decided to reduce this negative effect by usingtthae utility to measure the 'user’ time of
KLEE. However this was as close as we could get to runningpaltdols in the same environment.
For PEx we present two results for each of the benchmarks. This iausecthe performance
of PEX is affected by a set of configurable parameters. The firsitrissobtained in the way rec-
ommended by Px developers — with all parameters set to infinity. The secasdlt (indicated



by an asterisk), which is usually better, is obtained byaiigely running Ex and adjusting the
parameters according to suggestions provided with theagessful runs.

Comparison results The results are presented in Table 2. We measured the tinugreddgo
reach the target location. Each benchmark has an assotimesalit (columrtimeout), which was

set according to the perceived difficulty of that particldanchmark. The success was defined as
reaching the target location (or demonstrating it is notsfime to reach this location) within the
specified time limit.

Looking at the table one can see that, on our set of benchi@B& significantly outperforms
both FEx and KLEE. This shows that on short pieces of code containogtnivial loops our
technique can effectively guide the symbolic executiorh®¢hosen target location. On the other
hand FEx and KLEE clearly suffer from the limitations of the symbodéigecution when dealing
with loops.

| Test [timeout] PEx | PEx” [KLEE|CBA]|

Hello 30m | 3.234s| 7.233s| 0.093s|0.0264
HW 1h |14.890811.1079 37m 0s|0.1754
HWM 1lh fail | 8m 54s|timeout|1.997
DOIF 30m |[timeout|20m 27stimeout|0.3884
DOIFex | 1h |timeout|timeout|timeout|1.745s
EQCNT | 30m | 1m 43s|11.5925timeout|0.191
EQCNTex 1h |46m 12$42m 20stimeout|2.4589
OnelLoop| 30m |2m 14s| 4m 27s|timeout|0.002¢
TwoLoopsg 30m | 1m 4s |57.426stimeout|0.0039

Table 2. Running times of Bx, KLEE and CBA.

4.2 Performance Analysis of CBA

In this section we discuss the behaviour of CBA on our setio¢ hienchmarks. Tahlé 3 shows the
performance data. The three enclosing columns refer tohifee tstages of our algorithrChain
prog. formrefers to the conversion of a program into chain program f@imains gives the number
of root/all chains,Time the time needed for the conversion aBghce the size of resulting data
structuresConstr. Systems covers the second staddlim shows how many root chains were shown
to be infeasible even before getting to the last stageSmed)ives the total number of constraints left
after pruning. FinallyConstraints-Driven Sym. Exe. refers to the last stag€3at gives the number
of symbolic states (i.e. vertices of a symbolic executi@e)rvisited.CSOL gives the number of
calls to the constraint solver: The first number is for theiahisolution, the second one for the
remaining callsSMT is the number of calls to the Z3 SMT solver and find&g counts the number
of predicates in the resulting path condition.

The number of chains for the HWM benchmark is quite largeréleere 161 chains, including
81 root chains. The high number of chains for HWM is reflectedhie time and space needed
to build the chain program form. We can see the negative teffeexponential growth of chain
program form here. If we compare the running time and the rarmabchains for the three related
benchmarks Hello/HW/HWM we see that number of chains grae&d exponentially.

Another interesting observation is that it is hard to pretiow long will the last stage take
based on the performance of the first two stages. To see tmisider the results obtained for the
HWM and DOIFex benchmarks. In the case of HWM there Hie chains (before pruning) and
20 constraints in remaining chains (after pruning), whileDOIFex there are only 9 chains and 4
constraints. However in both cases the last stage explaresiparable number of symbolic states



Chain Prog. Form Constr. Systems | Constraints-Driven Sym. Exe.
Test |Chaing Time | SpaceElim[Sizd Time [SpaceSStaf CSOL [SMT] Time [PC
Hello 3/6 10.003s 1kB | 2 | 5 |0.001$3.1kB| 10 8/36 19 |0.023s3 5
HW 9/17 |0.009320kB| 8 | 10|0.040s6 kB | 44 | 30/170 | 92 |0.144510
HWM 81/1610.0975 369 kB| 80 | 20 |0.719$12 kB| 174 | 112 /686 | 376|1.456$22
DOIF 1/5 |0.003s 1 kB 0.01432kB| 98 | 97/349 | 136|0.380$26

DOIFex | 1/9 |0.004s 3 kB 0.00835kB | 211 | 209/728|212|1.757$26
EQCNT | 1/4 |0.004s 1kB 0.00332kB| 45 | 44245 | 45 |0.187343

EQCNTex 1/7 |0.004s 2 kB 0.005% 4 kB |1192/1022 / 728612332.458s 0

OneLoop| 1/2 |0.0033293 B 0.0013698 B 0 1/0 0 |0.0013 0

TwoLoops 1/3 |0.003$578 B| O 0.001s1kB| O 1/0 0 |0.001s 0

(0]

[eNellolNeNe]

NNOOW~W

Table 3. Performance data for CBA on our set of benchmarks.

in similarly comparable time. This indicates that, in regge our algorithm, the number of chains
and constraints are not the only important parameters.

The last negative output can be seen on the EQCNTex benchitekvalues for the last stage
are an order of a magnitude higher than for the other teste that this is despite the number of
chains being very low. Remember that in EQCNTex there is aeilide path to the target location,
and many paths need to be explored to prove it. EQCNTex beadhshows the limitations of
our algorithm with respect to solving such problems. Evesugh it can effectively prune away
many paths (as witnessed by the last two benchmarks, Onedrabpwoloops) this is not always
sufficient. Nevertheless CBA still fared significantly lsetbn EQCNTex than bothex and KLEE.

5 Related Work

The earliest work dealing with symbolic executibii [6,21¢wled that symbolic execution can be an
effective approach to test generation. However the astnicad blowup of program model caused
by loops was not in the centre of interest. Usability evaturabf symbolic execution for proving
correctness of program implementing Floyd’'s metHod [10% wa[21], but problems with loops
were handled by manually inserting SUME statements where necessary.

Modern effective techniques based on symbolic executiemarstly hybrid, combine symbolic
execution with some other approaches. The first group ahaitgees based of combining (alternat-
ing) concrete and symbolic execution [13,26,28,15]. Tpisraach primarily avoids the problems
caused by limitations of SMT solvers. Although the pradticsability is greatly improved, these
techniques have no effect on the ability to handle loops.Sdw®nd group combines symbolic ex-
ecution with some validation technique ]16/19,2.28,1HisTapproach is much more successful
from the point of handling loops. Thanks to employing the ptementary techniques, many sym-
bolic paths can be effectively pruned away when explorirgsmbolic state space. This can often
lead to effective navigation of symbolic execution in prams with loops. There is also a group
of techniques which aim to make symbolic execution effeciivthe general case, not specifically
focused on just programs with loopis| [5[1T]1/8.7,14].

The idea of using constraint system for analyzing loops wasiclered before in different con-
texts. First approach, dating back to 70’s, infers relatibatween program variablés [20,9], while
the more recent techniques are primarily focused on forragfigation, and inductive invariant
computation[[8,18]. Analysis of loops using loop-countsshe artificial program variables is also
well known [22].

The technique of Loop-Extended Symbolic Execution [25] 8]} is probably the one most
closely related to our approach. The LESE approach intreglagmbolic variables for the number
of times each loop was executed, and links these with feminfra known input grammar such as



variable-length or repeating fields. This allows the syrnd@dnstraints to cover a class of paths that
includes different number of loop iterations, expressoaptdependent program values in terms of
properties of the input.

Our approach is very different: Instead of extending theuiripy new symbolic variables to
reason about multiple symbolic execution paths at oncegoakis to build a constraint systems to
steer the symbolic execution through loops towards a spddiirget. For this reason we introduce
counters which are linked to different paths through a gyctmtrasting to the overall iteration
count used by the LESE approach. Our technique therefoifeeapp a much more general class of
programs.

Finally there is an orthogonal line of research which treéprove the symbolic execution
for programs with some special types of inputs. Some exasmgle techniques for dealing with
programs with string inputs ]4,29], and techniques whiatuee input space given by an input
grammar([12,25]. These approaches can be effective on lesbpa such loops are closely related
to the input.

6 Conclusion and Future Work

In this paper we introduced a new algorithm for effectiveigation of symbolic execution through
loop containing code. The algorithm infers a collection@fistraint systems and uses them to steer
the symbolic execution towards a target location. To buikbe constraint systems we express the
values of variables modified in a loop as functions of the neinalf times a particular path through
the loop was executed.

We have also built an experimental implementation of ounégue and tested its effectiveness
on a set of nine benchmarks. Our tool was able to correctiyesedch of these benchmarks within
seconds, being several orders of magnitude faster thardlinlg symbolic execution tools. More-
over we have demonstrated that our technique is also usefprdving that no feasible path to a
target location exists.

Finally, we argue that it would be beneficial for generalgmse tools based on symbolic execu-
tion to integrate our technique as a new search strategy.stitategy would then be activated each
time the symbolic execution needs to navigate to a specifietéocation below some complicated
loop structure. Since our algorithm is itself based on syliolexecution, such integration should
not be too difficult.

There are many interesting open directions for future warkobvious task would be to extend
our approach to interprocedural setting. Moreover, so fahave considered only integer variables
and arrays. It would be interesting to extend our techniguieaindle more sequential containers
(e.q. lists or vectors) and/or floating point arithmeticaogher approach is to try to curb the growth
of the chain program form, for example by merging those chaihich have the same effect on
program execution. Finally it would be nice to actually gnr&te our approach with the existing
symbolic execution tools like KLEE.
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