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Abstract

We consider the problem of online linear regression on individual sequences. The goal in this paper is for the
forecaster to output sequential predictions which are, after T time rounds, almost as good as the ones output
by the best linear predictor in a given `1-ball in Rd. We consider both the cases where the dimension d is
small and large relative to the time horizon T . We first present regret bounds with optimal dependencies
on d, T , and on the sizes U , X and Y of the `1-ball, the input data and the observations. The minimax
regret is shown to exhibit a regime transition around the point d =

√
TUX/(2Y ). Furthermore, we present

efficient algorithms that are adaptive, i.e., that do not require the knowledge of U , X, Y , and T , but still
achieve nearly optimal regret bounds.
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1. Introduction

In this paper, we consider the problem of online linear regression against arbitrary sequences of input
data and observations, with the objective of being competitive with respect to the best linear predictor in
an `1-ball of arbitrary radius. This extends the task of convex aggregation. We consider both low- and
high-dimensional input data. Indeed, in a large number of contemporary problems, the available data can
be high-dimensional—the dimension of each data point is larger than the number of data points. Examples
include analysis of DNA sequences, collaborative filtering, astronomical data analysis, and cross-country
growth regression. In such high-dimensional problems, performing linear regression on an `1-ball of small
diameter may be helpful if the best linear predictor is sparse. Our goal is, in both low and high dimensions, to
provide online linear regression algorithms along with bounds on `1-balls that characterize their robustness
to worst-case scenarios.

1.1. Setting

We consider the online version of linear regression, which unfolds as follows. First, the environment
chooses a sequence of observations (yt)t>1 in R and a sequence of input vectors (xt)t>1 in Rd, both initially
hidden from the forecaster. At each time instant t ∈ N∗ = {1, 2, . . .}, the environment reveals the data
xt ∈ Rd; the forecaster then gives a prediction ŷt ∈ R; the environment in turn reveals the observation
yt ∈ R; and finally, the forecaster incurs the square loss (yt − ŷt)2. The dimension d can be either small or
large relative to the number T of time steps: we consider both cases.

In the sequel, u · v denotes the standard inner product between u,v ∈ Rd, and we set ‖u‖∞ ,

max16j6d |uj | and ‖u‖1 ,
∑d
j=1 |uj |. The `1-ball of radius U > 0 is the following bounded subset of Rd:

B1(U) ,
{
u ∈ Rd : ‖u‖1 6 U

}
.
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Given a fixed radius U > 0 and a time horizon T > 1, the goal of the forecaster is to predict almost as well
as the best linear forecaster in the reference set

{
x ∈ Rd 7→ u · x ∈ R : u ∈ B1(U)

}
, i.e., to minimize the

regret on B1(U) defined by

T∑
t=1

(yt − ŷt)2 − min
u∈B1(U)

{
T∑
t=1

(yt − u · xt)2
}
.

We shall present algorithms along with bounds on their regret that hold uniformly over all sequences2

(xt, yt)16t6T such that ‖xt‖∞ 6 X and |yt| 6 Y for all t = 1, . . . , T , where X,Y > 0. These regret bounds
depend on four important quantities: U , X, Y , and T , which may be known or unknown to the forecaster.

1.2. Contributions and related works

In the next paragraphs we detail the main contributions of this paper in view of related works in online
linear regression.

Our first contribution (Section 2) consists of a minimax analysis of online linear regression on `1-balls
in the arbitrary sequence setting. We first provide a refined regret bound expressed in terms of Y , d, and
a quantity κ =

√
TUX/(2dY ). This quantity κ is used to distinguish two regimes: we show a distinctive

regime transition3 at κ = 1 or d =
√
TUX/(2Y ). Namely, for κ < 1, the regret is of the order of dY 2κ

(proportional to
√
T ), whereas it is of the order of dY 2 lnκ (proportional to lnT ) for κ > 1.

The derivation of this regret bound partially relies on a Maurey-type argument used under various forms
with i.i.d. data, e.g., in [1, 2, 3, 4] (see also [5]). We adapt it in a straightforward way to the deterministic
setting. Therefore, this is yet another technique that can be applied to both the stochastic and individual
sequence settings.

Unsurprisingly, the refined regret bound mentioned above matches the optimal risk bounds for stochastic
settings4 [6, 2] (see also [7]). Hence, linear regression is just as hard in the stochastic setting as in the arbi-
trary sequence setting. Using the standard online to batch conversion, we make the latter statement more
precise by establishing a lower bound for all κ at least of the order of

√
ln d/d. This lower bound extends

those of [8, 9], which only hold for small κ of the order of 1/d.

The algorithm achieving our minimax regret bound is both computationally inefficient and non-adaptive
(i.e., it requires prior knowledge of the quantities U , X, Y , and T that may be unknown in practice).
Those two issues were first overcome by [10] via an automatic tuning termed self-confident (since the
forecaster somehow trusts himself in tuning its parameters). They indeed proved that the self-confident

p-norm algorithm with p = 2 ln d and tuned with U has a cumulative loss L̂T =
∑T
t=1(yt − ŷt)2 bounded by

L̂T 6 L∗T + 8UX
√

(e ln d)L∗T + (32e ln d)U2X2

6 8UXY
√
eT ln d+ (32e ln d)U2X2 ,

where L∗T , min{u∈Rd:‖u‖16U}
∑T
t=1(yt − u · xt)2 6 TY 2. This algorithm is efficient, and our lower bound

in terms of κ shows that it is optimal up to logarithmic factors in the regime κ 6 1 without prior knowledge
of X, Y , and T .

Our second contribution (Section 3) is to show that similar adaptivity and efficiency properties can be
obtained via exponential weighting. We consider a variant of the EG± algorithm [9]. The latter has a
manageable computational complexity and our lower bound shows that it is nearly optimal in the regime

2Actually our results hold whether (xt, yt)t>1 is generated by an oblivious environment or a non-oblivious opponent since
we consider deterministic forecasters.

3In high dimensions (i.e., when d > ωT , for some absolute constant ω > 0), we do not observe this transition (cf. Figure 1).
4For example, (xt, yt)16t6T may be i.i.d. , or xt can be deterministic and yt = f(xt) + εt for an unknown function f and

an i.i.d. sequence (εt)16t6T of Gaussian noise.
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κ 6 1. However, the EG± algorithm requires prior knowledge of U , X, Y , and T . To overcome this
adaptivity issue, we study a modification of the EG± algorithm that relies on the variance-based automatic
tuning of [11]. The resulting algorithm – called adaptive EG± algorithm – can be applied to general convex
and differentiable loss functions. When applied to the square loss, it yields an algorithm of the same
computational complexity as the EG± algorithm that also achieves a nearly optimal regret but without
needing to know X, Y , and T beforehand.

Our third contribution (Section 3.3) is a generic technique called loss Lipschitzification. It transforms
the loss functions u 7→ (yt−u ·xt)2 (or u 7→

∣∣yt−u ·xt
∣∣α if the predictions are scored with the α-loss for a

real number α > 2) into Lipschitz continuous functions. We illustrate this technique by applying the generic
adaptive EG± algorithm to the modified loss functions. When the predictions are scored with the square
loss, this yields an algorithm (the LEG algorithm) whose main regret term slightly improves on that derived
for the adaptive EG± algorithm without Lipschtizification. The benefits of this technique are clearer for
loss functions with higher curvature: if α > 2, then the resulting regret bound roughly grows as U instead
of a naive Uα/2.

Finally, in Section 4, we provide a simple way to achieve minimax regret uniformly over all `1-balls B1(U)
for U > 0. This method aggregates instances of an algorithm that requires prior knowledge of U . For the
sake of simplicity, we assume that X, Y , and T are known, but explain in the discussions how to extend the
method to a fully adaptive algorithm that requires the knowledge neither of U , X, Y , nor T .

This paper is organized as follows. In Section 2, we establish our refined upper and lower bounds in terms
of the intrinsic quantity κ. In Section 3, we present an efficient and adaptive algorithm — the adaptive
EG± algorithm with or without loss Lipschitzification — that achieves the optimal regret on B1(U) when
U is known. In Section 4, we use an aggregating strategy to achieve an optimal regret uniformly over all
`1-balls B1(U), for U >0, when X, Y , and T are known. Finally, in Section 5, we discuss as an extension a
fully automatic algorithm that requires no prior knowledge of U , X, Y , or T . Some proofs and additional
tools are postponed to the appendix.

2. Optimal rates

In this section, we first present a refined upper bound on the minimax regret on B1(U) for an arbitrary
U > 0. In Corollary 1, we express this upper bound in terms of an intrinsic quantity κ ,

√
TUX/(2dY ).

The optimality of the latter bound is shown in Section 2.2.
We consider the following definition to avoid any ambiguity. We call online forecaster any sequence

F = (f̃t)t>1 of functions such that f̃t : Rd× (Rd×R)t−1 → R maps at time t the new input xt and the past

data (xs, ys)16s6t−1 to a prediction f̃t
(
xt; (xs, ys)16s6t−1

)
. Depending on the context, the latter prediction

may be simply denoted by f̃t
(
xt) or by ŷt.

2.1. Upper bound

Theorem 1 (Upper bound). Let d, T ∈ N∗, and U,X, Y > 0. The minimax regret on B1(U) for bounded
base predictions and observations satisfies

inf
F

sup
‖xt‖∞6X, |yt|6Y

{
T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2
}

6


3UXY

√
2T ln(2d) if U < Y

X

√
ln(1+2d)
T ln 2 ,

26UXY

√
T ln

(
1 + 2dY√

TUX

)
if Y

X

√
ln(1+2d)
T ln 2 6 U 6 2dY√

TX
,

32 dY 2 ln
(

1 +
√
TUX
dY

)
+ dY 2 if U > 2dY

X
√
T
,

where the infimum is taken over all forecasters F and where the supremum extends over all sequences
(xt, yt)16t6T ∈ (Rd × R)T such that |y1|, . . . , |yT | 6 Y and ‖x1‖∞ , . . . , ‖xT ‖∞ 6 X.
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Theorem 1 improves the bound of [9, Theorem 5.11] for the EG± algorithm. First, our bound depends
logarithmically—as opposed to linearly—on U for U > 2dY/(

√
TX). Secondly, it is smaller by a factor

ranging from 1 to
√

ln d when

Y

X

√
ln(1 + 2d)

T ln 2
6 U 6

2dY√
TX

. (1)

Hence, Theorem 1 provides a partial answer to a question5 raised in [9] about the gap of
√

ln(2d) between
the upper and lower bounds.

Before proving the theorem (see below), we state the following immediate corollary. It expresses the
upper bound of Theorem 1 in terms of an intrinsic quantity κ ,

√
TUX/(2dY ) that relates

√
TUX/(2Y )

to the ambient dimension d.

Corollary 1 (Upper bound in terms of an intrinsic quantity). Let d, T ∈ N∗, and U,X, Y > 0. The upper
bound of Theorem 1 expressed in terms of d, Y , and the intrinsic quantity κ ,

√
TUX/(2dY ) reads:

inf
F

sup
‖xt‖∞6X, |yt|6Y

{
T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2
}

6


6 dY 2κ

√
2 ln(2d) if κ <

√
ln(1+2d)

2d
√
ln 2

,

52 dY 2κ
√

ln(1 + 1/κ) if

√
ln(1+2d)

2d
√
ln 2

6 κ 6 1 ,

32 dY 2
(
ln(1 + 2κ) + 1

)
if κ > 1 .

The parametrization by (d, Y, κ) helps to unify the different upper bounds of Theorem 1: on both regimes
κ 6 1 and κ > 1, the regret bound scales as dY 2, the only difference lies in the dependence in κ (linear
versus logarithmic).

The upper bound of Corollary 1 is shown in Figure 1. Observe that, in low dimension (Figure 1(b)), a
clear transition from a regret of the order of

√
T to one of lnT occurs at κ = 1. This transition is absent

for high dimensions: for d > ωT , where ω ,
(
32(ln(3) + 1)

)−1
, the regret bound 32 dY 2

(
ln(1 + 2κ) + 1

)
is

worse than a trivial bound of TY 2 when κ > 1.

We now prove Theorem 1. The main part of the proof relies on a Maurey-type argument. Although this
argument was used in the stochastic setting [1, 2, 3, 4], we adapt it to the deterministic setting. This is yet
another technique that can be applied to both the stochastic and individual sequence settings.

Proof (of Theorem 1): First note from Lemma 5 in Appendix B that the minimax regret on B1(U) is
upper bounded6 by

min

{
3UXY

√
2T ln(2d), 32 dY 2 ln

(
1 +

√
TUX

dY

)
+ dY 2

}
. (2)

Therefore, the first case U < Y
X

√
ln(1+2d)
T ln 2 and the third case U > dY

X
√
T

are straightforward.

Therefore, we assume in the sequel that Y
X

√
ln(1+2d)
T ln 2 6 U 6 2dY√

TX
.

We use a Maurey-type argument to refine the regret bound (2). This technique was used under various

5The authors of [9] asked: “For large d there is a significant gap between the upper and lower bounds. We would like to
know if it possible to improve the upper bounds by eliminating the ln d factors.”

6As proved in Lemma 5, the regret bound (2) is achieved either by the EG± algorithm, the algorithm SeqSEWB,η
τ of [12]

(we could also get a slightly worse bound with the sequential ridge regression forecaster [13, 14]), or the trivial null forecaster.
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(a) High dimension d > ωT .
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(b) Low dimension d < ωT .

Figure 1: The regret bound of Corollary 1 over B1(U) as a function of κ =
√
TUX/(2dY ). The constant c is chosen to ensure

continuity at κ = 1, and ω ,
(
32(ln(3) + 1)

)−1
. We define: κmin =

√
ln(1 + 2d)/(2d

√
ln 2) and κmax = (e(T/d−1)/c − 1)/2.

forms in the stochastic setting, e.g., in [1, 2, 3, 4]. It consists of discretizing B1(U) and looking at a random
point in this discretization to study its approximation properties. We also use clipping to get a regret bound
growing as U instead of a naive U2.

More precisely, we first use the fact that to be competitive against B1(U), it is sufficient to be compet-
itive against its finite subset

B̃U,m ,


(
k1U

m
, . . . ,

kdU

m

)
: (k1, . . . , kd) ∈ Zd,

d∑
j=1

|kj | 6 m

 ⊂ B1(U) ,

where m , bαc with α ,
UX

Y

√
T (ln 2)/ ln

(
1 +

2dY√
TUX

)
.

By Lemma 7 in Appendix C, and since m > 0 (see below), we indeed have

inf
u∈B̃U,m

T∑
t=1

(yt − u · xt)2 6 inf
u∈B1(U)

T∑
t=1

(yt − u · xt)2 +
TU2X2

m

6 inf
u∈B1(U)

T∑
t=1

(yt − u · xt)2 +
2√
ln 2

UXY

√
T ln

(
1 +

2dY√
TUX

)
, (3)

where (3) follows from m , bαc > α/2 since α > 1 (in particular, m > 0 as stated above).
To see why α > 1, note that it suffices to show that x

√
ln(1 + x) 6 2d

√
ln 2 where we set x ,

2dY/(
√
TUX). But from the assumption U > (Y/X)

√
ln(1 + 2d)/(T ln 2), we have x 6 2d

√
ln(2)/ ln(1 + 2d) ,

y, so that, by monotonicity, x
√

ln(1 + x) 6 y
√

ln(1 + y) 6 y
√

ln(1 + 2d) = 2d
√

ln 2.

Therefore it only remains to exhibit an algorithm which is competitive against B̃U,m at an aggregation
price of the same order as the last term in (3). This is the case for the standard exponentially weighted
average forecaster applied to the clipped predictions[

u · xt
]
Y
, min

{
Y,max

{
−Y,u · xt

}}
, u ∈ B̃U,m ,

5



and tuned with the inverse temperature parameter η = 1/(8Y 2). More formally, this algorithm predicts at
each time t = 1, . . . , T as

ŷt ,
∑

u∈B̃U,m

pt(u)
[
u · xt

]
Y
,

where p1(u) , 1/
∣∣B̃U,m∣∣ (denoting by

∣∣B̃U,m∣∣ the cardinality of the set B̃U,m), and where the weights pt(u)

are defined for all t = 2, . . . , T and u ∈ B̃U,m by

pt(u) ,
exp

(
−η
∑t−1
s=1

(
ys − [u · xs]Y

)2)
∑

v∈B̃U,m exp
(
−η
∑t−1
s=1

(
ys − [v · xs]Y

)2) .

By Lemma 6 in Appendix B, the above forecaster tuned with η = 1/(8Y 2) satisfies

T∑
t=1

(yt − ŷt)2 − inf
u∈B̃U,m

T∑
t=1

(yt − u · xt)2 6 8Y 2 ln
∣∣B̃U,m∣∣

6 8Y 2 ln

(
e(2d+m)

m

)m
(4)

= 8Y 2m
(
1 + ln(1 + 2d/m)

)
6 8Y 2α

(
1 + ln(1 + 2d/α)

)
(5)

= 8Y 2α+ 8Y 2α ln

1 +
2dY√
TUX

√
ln
(
1 + 2dY/(

√
TUX)

)
ln 2


6 8Y 2α+ 16Y 2α ln

(
1 +

2dY√
TUX

)
(6)

6

(
8√
ln 2

+ 16
√

ln 2

)
UXY

√
T ln

(
1 +

2dY√
TUX

)
. (7)

To get (4) we used Lemma 8 in Appendix C. Inequality (5) follows by definition of m 6 α and the fact that
x 7→ x

(
1 + ln(1 + A/x)

)
is nondecreasing on R∗+ for all A > 0. Inequality (6) follows from the assumption

U 6 2dY/(
√
TX) and the elementary inequality ln

(
1 + x

√
ln(1 + x)/ ln 2

)
6 2 ln(1 + x) which holds for all

x > 1 and was used, e.g., at the end of [3, Theorem 2-a)]. Finally, elementary manipulations combined with
the assumption that 2dY/(

√
TUX) > 1 lead to (7).

Putting Eqs. (3) and (7) together, the previous algorithm has a regret on B1(U) which is bounded from
above by (

10√
ln 2

+ 16
√

ln 2

)
UXY

√
T ln

(
1 +

2dY√
TUX

)
,

which concludes the proof since 10/
√

ln 2 + 16
√

ln 2 6 26.

2.2. Lower bound

Corollary 1 gives an upper bound on the regret in terms of the quantities d, Y , and κ ,
√
TUX/(2dY ).

We now show that for all d ∈ N∗, Y > 0, and κ >
√

ln(1 + 2d)/(2d
√

ln 2), the upper bound can not be
improved7 up to logarithmic factors.

7For T sufficiently large, we may overlook the case κ <
√

ln(1 + 2d)/(2d
√

ln 2) or
√
T < (Y/(UX))

√
ln(1 + 2d)/ ln 2.

Observe that in this case, the minimax regret is already of the order of Y 2 ln(1 + d) (cf. Figure 1).
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Theorem 2 (Lower bound). For all d ∈ N∗, Y > 0, and κ >
√

ln(1+2d)

2d
√
ln 2

, there exist T > 1, U > 0, and

X > 0 such that
√
TUX/(2dY ) = κ and

inf
F

sup
‖xt‖∞6X, |yt|6Y

{
T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2
}

>


c1

ln
(
2+16d2

)dY 2κ
√

ln (1 + 1/κ) if

√
ln(1+2d)

2d
√
ln 2

6 κ 6 1 ,

c2

ln
(
2+16d2

)dY 2 if κ > 1 ,

where c1, c2 > 0 are absolute constants. The infimum is taken over all forecasters F and the supremum is
taken over all sequences (xt, yt)16t6T ∈ (Rd×R)T such that |y1|, . . . , |yT | 6 Y and ‖x1‖∞ , . . . , ‖xT ‖∞ 6 X.

The above lower bound extends those of [8, 9], which hold for small κ of the order of 1/d. The proof
is postponed to Appendix A.1. We perform a reduction to the stochastic batch setting—via the standard
online to batch conversion—and employ a version of a lower bound of [2].

Note that in the proof of Theorem 2, we are free to choose the values of two parameters among T , U ,
and X, provided that

√
TUX/(2dY ) = κ. This liberty is possible since the problem is now parametrized by

d, Y , and κ only (as shown in Corollary 1, these three parameters are sufficient to express the regret bound
of Theorem 1, and they actually help to unify the upper bounds of the two regimes). A more ambitious
lower bound would consist in proving that the upper bound of Theorem 1 cannot be substantially improved
for any fixed value of (d, Y, T, U,X). This question is left for future work.

3. Adaptation to unknown X, Y and T via exponential weights

Although the proof of Theorem 1 already gives an algorithm that achieves the minimax regret, the latter
takes as inputs U , X, Y , and T , and it is inefficient in high dimensions. In this section, we present a new
method that achieves the minimax regret both efficiently and without prior knowledge of X, Y , and T
provided that U is known. Adaptation to an unknown U is considered in Section 4. Our method consists of
modifying an underlying efficient linear regression algorithm such as the EG± algorithm [9] or the sequential
ridge regression forecaster [14, 13]. Next, we show that automatically tuned variants of the EG± algorithm
nearly achieve the minimax regret for the regime d >

√
TUX/(2Y ). A similar modification could be applied

to the ridge regression forecaster — with a total computational efficiency of the same order as that of the

standard ridge algorithm — to achieve a nearly optimal regret bound of order dY 2 ln
(
1 +d

(√
TUX
dY

)2)
in the

regime d <
√
TUX/(2Y ). The latter analysis is more technical and hence is omitted.

3.1. An adaptive EG± algorithm for general convex and differentiable loss functions

The second algorithm of the proof of Theorem 1 is computationally inefficient because it aggregates

approximately d
√
T experts. In contrast, the EG± algorithm has a manageable computational complexity

that is linear in d at each time t. Next we introduce a version of the EG± algorithm — called the adaptive
EG± algorithm — that does not require prior knowledge of X, Y and T (as opposed to the original EG±

algorithm of [9]). This version relies on the automatic tuning of [11]. We first present a generic version
suited for general convex and differentiable loss functions. The application to the square loss and to other
α-losses will be dealt with in Sections 3.2 and 3.3.

The generic setting with arbitrary convex and differentiable loss functions corresponds to the online con-
vex optimization setting [15, 16] and unfolds as follows: at each time t > 1, the forecaster chooses a linear
combination ût ∈ Rd, then the environment chooses and reveals a convex and differentiable loss function
`t : Rd → R, and the forecaster incurs the loss `t(ût). In online linear regression under the square loss, the
loss functions are given by `t(u) = (yt − u · xt)2.

7



Parameter: radius U > 0.

Initialization: p1 = (p+1,1, p
−
1,1, . . . , p

+
d,1, p

−
d,1) ,

(
1/(2d), . . . , 1/(2d)

)
∈ R2d.

At each time round t > 1,

1. Output the linear combination ût , U

d∑
j=1

(
p+j,t − p

−
j,t

)
ej ∈ B1(U);

2. Receive the loss function `t : Rd → R and update the parameter ηt+1 according to (8);

3. Update the weight vector pt+1 = (p+1,t+1, p
−
1,t+1, . . . , p

+
d,t+1, p

−
d,t+1) ∈ X2d defined for all j = 1, . . . , d

and γ ∈ {+,−} bya

pγj,t+1 ,

exp

(
−ηt+1

t∑
s=1

γU∇j`s(ûs)

)
∑

16k6d
µ∈{+,−}

exp

(
−ηt+1

t∑
s=1

µU∇k`s(ûs)

) .

aFor all γ ∈ {+,−}, by a slight abuse of notation, γU denotes U or −U if γ = + or γ = − respectively.

Figure 2: The adaptive EG± algorithm for general convex and differentiable loss functions (see Proposition 1).

The adaptive EG± algorithm for general convex and differentiable loss functions is defined in Figure 2.
We denote by (ej)16j6d the canonical basis of Rd, by ∇`t(u) the gradient of `t at u ∈ Rd, and by ∇j`t(u)
the j-th component of this gradient. The adaptive EG± algorithm uses as a blackbox the exponentially
weighted majority forecaster of [11] on 2d experts — namely, the vertices ±Uej of B1(U) — as in [9]. It
adapts to the unknown gradient amplitudes ‖∇`t‖∞ by the particular choice of ηt due to [11] and defined
for all t > 2 by

ηt = min

{
1

Êt−1
, C

√
ln(2d)

Vt−1

}
, (8)

where C ,
√

2(
√

2− 1)/(e− 2) and where we set, for all t = 1, . . . , T ,

z+j,s , U∇j`s(ûs) and z−j,s , −U∇j`s(ûs) , j = 1, . . . , d, s = 1, . . . , t ,

Êt , inf
k∈Z

2k : 2k > max
16s6t

max
16j,k6d
γ,µ∈{+,−}

∣∣zγj,s − zµk,s∣∣
 ,

Vt ,
t∑

s=1

∑
16j6d
γ∈{+,−}

pγj,s

zγj,s − ∑
16k6d
µ∈{+,−}

pµk,sz
µ
k,s


2

.

Note that Êt−1 approximates the range of the zγj,s up to time t− 1, while Vt−1 is the corresponding cumu-
lative variance of the forecaster.
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Proposition 1 (The adaptive EG± algorithm for general convex and differentiable loss functions).
Let U > 0. Then, the adaptive EG± algorithm on B1(U) defined in Figure 2 satisfies, for all T > 1 and all
sequences of convex and differentiable8 loss functions `1, . . . , `T : Rd → R,

T∑
t=1

`t(ût)− min
‖u‖16U

T∑
t=1

`t(u)

6 4U

√√√√( T∑
t=1

‖∇`t(ût)‖2∞

)
ln(2d) + U

(
8 ln(2d) + 12

)
max
16t6T

‖∇`t(ût)‖∞ .

In particular, the regret is bounded by 4U
(
max16t6T ‖∇`t(ût)‖∞

)(√
T ln(2d) + 2 ln(2d) + 3

)
.

Proof: The proof follows straightforwardly from a linearization argument and from a regret bound of [11]
applied to appropriately chosen loss vectors. Indeed, first note that by convexity and differentiability of
`t : Rd → R for all t = 1, . . . , T , we get that

T∑
t=1

`t(ût)− min
‖u‖16U

T∑
t=1

`t(u) = max
‖u‖16U

T∑
t=1

(
`t(ût)− `t(u)

)
6 max
‖u‖16U

T∑
t=1

∇`t(ût) · (ût − u)

= max
16j6d
γ∈{+,−}

T∑
t=1

∇`t(ût) · (ût − γUej) (9)

=

T∑
t=1

∑
16j6d
γ∈{+,−}

pγj,t γU∇j`t(ût)− min
16j6d
γ∈{+,−}

T∑
t=1

γU∇j`t(ût) , (10)

where (9) follows by linearity of u 7→
∑T
t=1∇`t(ût) · (ût−u) on the polytope B1(U), and where (10) follows

from the particular choice of ût in Figure 2.
To conclude the proof, note that our choices of the weight vectors pt ∈ X2d in Figure 2 and of the time-

varying parameter ηt in (8) correspond to the exponentially weighted average forecaster of [11, Section 4.2]
when it is applied to the loss vectors

(
U∇j`t(ût),−U∇j`t(ût)

)
16j6d

∈ R2d, t = 1, . . . , T . Since at time t

the coordinates of the last loss vector lie in an interval of length Et 6 2U ‖∇`t(ût)‖∞, we get from [11,
Corollary 1] that

T∑
t=1

∑
16j6d
γ∈{±1}

pγj,t γU∇j`t(ût)− min
16j6d
γ∈{±1}

T∑
t=1

γU∇j`t(ût)

6 4U

√√√√( T∑
t=1

‖∇`t(ût)‖2∞

)
ln(2d) + U

(
8 ln(2d) + 12

)
max
16t6T

‖∇`t(ût)‖∞ .

Substituting the last upper bound in (10) concludes the proof.

3.2. Application to the square loss

In the particular case of the square loss `t(u) = (yt − u · xt)2, the gradients are given by ∇`t(u) =
−2(yt−u ·xt)xt for all u ∈ Rd. Applying Proposition 1, we get the following regret bound for the adaptive
EG± algorithm.

8Gradients can be replaced with subgradients if the loss functions `t : Rd → R are convex but not differentiable.
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Corollary 2 (The adaptive EG± algorithm under the square loss).
Let U > 0. Consider the online linear regression setting defined in the introduction. Then, the adaptive
EG± algorithm (see Figure 2) tuned with U and applied to the loss functions `t : u 7→ (yt−u ·xt)2 satisfies,
for all individual sequences (x1, y1), . . . , (xT , yT ) ∈ Rd × R,

T∑
t=1

(yt − ût · xt)2 − min
‖u‖16U

T∑
t=1

(yt − u · xt)2

6 8UX

√√√√( min
‖u‖16U

T∑
t=1

(yt − u · xt)2
)

ln(2d) +
(
137 ln(2d) + 24

) (
UXY + U2X2

)
6 8UXY

√
T ln(2d) +

(
137 ln(2d) + 24

) (
UXY + U2X2

)
,

where the quantities X , max16t6T ‖xt‖∞ and Y , max16t6T |yt| are unknown to the forecaster.

Using the terminology of [17, 11], the first bound of Corollary 2 is an improvement for small losses:

it yields a small regret when the optimal cumulative loss min‖u‖16U
∑T
t=1(yt − u · xt)2 is small. As for

the second regret bound, it indicates that the adaptive EG± algorithm achieves approximately the regret
bound of Theorem 1 in the regime κ 6 1, i.e., d >

√
TUX/(2Y ). In this regime, our algorithm thus has a

manageable computational complexity (linear in d at each time t) and it is adaptive in X, Y , and T .

In particular, the above regret bound is similar9 to that of the original EG± algorithm [9, Theorem 5.11],
but it is obtained without prior knowledge of X, Y , and T . Note also that this bound is similar to that of
the self-confident p-norm algorithm of [10] with p = 2 ln d (see Section 1.2). The fact that we were able to get
similar adaptivity and efficiency properties via exponential weighting corroborates the similarity that was
already observed in a non-adaptive context between the original EG± algorithm and the p-norm algorithm
(in the limit p → +∞ with an appropriate initial weight vector, or for p of the order of ln d with a zero
initial weight vector, cf. [18]).

Proof (of Corollary 2): We apply Proposition 1 with the square loss `t(u) = (yt − u · xt)2. It yields

T∑
t=1

`t(ût)− min
‖u‖16U

T∑
t=1

`t(u)

6 4U

√√√√( T∑
t=1

‖∇`t(ût)‖2∞

)
ln(2d) + U

(
8 ln(2d) + 12

)
max
16t6T

‖∇`t(ût)‖∞ . (11)

Using the equality ∇`t(u) = −2(yt − u · xt)xt for all u ∈ Rd, we get that, on the one hand, by the upper
bound ‖xt‖∞ 6 X,

‖∇`t(ût)‖2∞ 6 4X2`t(ût) , (12)

and, on the other hand, max16t6T ‖∇`t(ût)‖∞ 6 2(Y + UX)X (indeed, by Hölder’s inequality,
∣∣ût · xt∣∣ 6

‖ût‖1 ‖xt‖∞ 6 UX). Substituting the last two inequalities in (11), setting L̂T ,
∑T
t=1 `t(ût) as well as

L∗T , min‖u‖16U
∑T
t=1 `t(u), we get that

L̂T 6 L∗T + 8UX

√
L̂T ln(2d) +

(
16 ln(2d) + 24

)(
UXY + U2X2

)︸ ︷︷ ︸
,C

.

9By Theorem 5.11 of [9], the original EG± algorithm satisfies the regret bound 2UX
√

2B ln(2d) + 2U2X2 ln(2d), where B

is an upper bound on min‖u‖16U
∑T
t=1(yt − u · xt)2 (in particular, B 6 TY 2). Note that our main regret term is larger by a

multiplicative factor of 2
√

2. However, contrary to [9], our algorithm does not require the prior knowledge of X and B — or,
alternatively, X, Y , and T .
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Solving for L̂T via Lemma 4 in Appendix B, we get that

L̂T 6 L∗T + C +
(

8UX
√

ln(2d)
)√

L∗T + C +
(

8UX
√

ln(2d)
)2

6 L∗T + 8UX
√
L∗T ln(2d) + 8UX

√
C ln(2d) + 64U2X2 ln(2d) + C .

Using that

UX
√
C ln(2d) = UX ln(2d)

√(
16 + 24/ ln(2d)

)(
UXY + U2X2

)
6
√
U2X2 + UXY ln(2d)

√(
16 + 24/ ln(2)

)(
UXY + U2X2

)
=
√

16 + 24/ ln(2)
(
UXY + U2X2

)
ln(2d)

and performing some simple upper bounds concludes the proof of the first regret bound. The second one
follows immediately by noting that min‖u‖16U

∑T
t=1(yt −u ·xt)2 6

∑T
t=1 y

2
t 6 TY 2 (since 0 ∈ B1(U)).

3.3. A refinement via Lipschitzification of the loss function

In Corollary 2 we used the adaptive EG± algorithm in conjunction with the square loss functions
`t : u 7→ (yt − u · xt)2. In this section we use yet another instance of the adaptive EG± algorithm ap-

plied to a modification ˜̀t : Rd → R of the square loss (or the α-loss, see below) which is Lipschitz continuous
with respect to ‖·‖1. This leads to slightly refined regret bounds; see Theorem 3 below and Corollaries 3
and 4 thereafter.

We first present the Lipschtizification technique; its use with the adaptive EG± algorithm is to be
addressed in a few paragraphs. Since our analysis is generic enough to handle both the square loss and
other loss functions with higher curvature, we consider below a slightly more general setting than online
linear regression stricto sensu. Namely, we fix a real number α > 2 and assume that the predictions ŷt of
the forecaster and the base linear predictions u · xt are scored with the α-loss, i.e., with the loss functions
x 7→ |yt−x|α for all t > 1. The particular case of the square loss (α = 2) is considered in Corollary 3 below,
while loss functions with higher curvature (α > 2) are addressed in Corollary 4.

The Lipschitzification proceeds as follows. At each time t > 1, we set

Bt ,
(

2dlog2(max16s6t−1 |ys|α)e
)1/α

,

where dxe , min{k ∈ Z : k > x} for all x ∈ R. Note that max16s6t−1 |ys| 6 Bt 6 21/α max16s6t−1 |ys|.
The modified (or Lipschitzified) loss function ˜̀t : Rd → R is constructed as follows:

• if |yt| > Bt, then ˜̀
t(u) , 0 for all u ∈ Rd ;

• if |yt| 6 Bt, then ˜̀t is the convex function that coincides with the loss function u 7→ |yt − u · xt|α
when

∣∣u · xt∣∣ 6 Bt and is linear elsewhere. An example of such function is shown in Figure 3 in the
case where α = 2. It can be formally defined as

˜̀
t(u) ,


∣∣yt − u · xt

∣∣α if
∣∣u · xt∣∣ 6 Bt,∣∣yt −Bt∣∣α + α

∣∣yt −Bt∣∣α−1(u · xt −Bt) if u · xt > Bt,∣∣yt +Bt
∣∣α − α∣∣yt +Bt

∣∣α−1(u · xt +Bt) if u · xt < −Bt.

Observe that in both cases |yt| > Bt and |yt| 6 Bt, the function ˜̀t is continuously differentiable. By
construction it is also Lipschitz continuous with respect to ‖·‖1 with an easy-to-control Lipschitz constant
(see Appendix A.2). Another key property that we can glean from Figure 3 is that, when |yt| 6 Bt, the
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modified loss function ˜̀t : Rd → R lies in between the α-loss function u 7→ |yt − u · xt|α and its clipped
version:

∀u ∈ Rd,
∣∣yt − [u · xt]Bt

∣∣α 6 ˜̀t(u) 6
∣∣yt − u · xt

∣∣α , (13)

where the clipping operator [·]B is defined by [x]B , min
{
B,max{−B, x}

}
for all x ∈ R and all B > 0.
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yt

Bt− Bt
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Square loss
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Figure 3: Example with the square loss (α = 2) when |yt| 6 Bt. The square loss (yt−u·xt)2, its clipped version
(
yt−[u·xt]Bt

)2
and its Lipschitzified version ˜̀t(u) are plotted as a function of u · xt.

Next we illustrate the Lipschitzification technique introduced above: we apply the adaptive EG± algo-
rithm to the Lipschitzified loss functions ˜̀t. The resulting algorithm is called the Lipschitzifying Exponen-
tiated Gradient (LEG) algorithm and is formally defined in Figure 4. Recall that (ej)16j6d denotes the
canonical basis of Rd and that ∇j denotes the j-th component of the gradient.

We point out that this technique is not specific to the pair of dual norms (‖·‖1 , ‖·‖∞) and to the EG±

algorithm; it could be used with other pairs (‖·‖q , ‖·‖p) (with 1/p + 1/q = 1) and other gradient-based
algorithms, such as the p-norm algorithm [18, 10] and its regularized variants (SMIDAS and COMID)
[19, 20].

The next theorem bounds the cumulative α-loss of the LEG algorithm. The proof is postponed to
Appendix A.2. It follows from the bound on the adaptive EG± algorithm for general convex and differentiable
loss functions that we derived in Proposition 1 (Section 3.1). See Corollaries 3 and 4 below for regret bounds
in the particular cases of the square loss (α = 2) or of losses with higher curvature (α > 2).

Theorem 3. Assume that the predictions are scored with the α-loss x 7→ |yt − x|α, where α > 2 is a real
number. Let U > 0. Then, the LEG algorithm defined in Figure 4 and tuned with U satisfies, for all T > 1
and all individual sequences (x1, y1), . . . , (xT , yT ) ∈ Rd × R,

T∑
t=1

|yt − ŷt|α 6 inf
‖u‖16U

T∑
t=1

˜̀
t(u) + aαUXY

α/2−1

√√√√( inf
‖u‖16U

T∑
t=1

˜̀
t(u)

)
ln(2d)

+
(
a′α ln(2d) + 12bα

)
UXY α−1 + a′′α ln(2d)U2X2Y α−2 + a′′′α Y

α ,

where the Lipschitzified loss functions ˜̀t are defined above, where the quantities X , max16t6T ‖xt‖∞
and Y , max16t6T |yt| are unknown to the forecaster, and where, setting aα , 4α

(
1 + 21/α

)α/2−1
and
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Parameter: radius U > 0.

Initialization: B1 , 0, p1 = (p+1,1, p
−
1,1, . . . , p

+
d,1, p

−
d,1) ,

(
1/(2d), . . . , 1/(2d)

)
∈ R2d.

At each time round t > 1,

1. Compute the linear combination ût , U

d∑
j=1

(
p+j,t − p

−
j,t

)
ej ∈ B1(U);

2. Get xt ∈ Rd and output the clipped prediction ŷt ,
[
ût · xt

]
Bt

;

3. Get yt ∈ R and define the modified loss function ˜̀t : Rd → R as above;

4. Update the parameter ηt+1 according to (8);

5. Update the weight vector pt+1 = (p+1,t+1, p
−
1,t+1, . . . , p

+
d,t+1, p

−
d,t+1) ∈ X2d defined for all j = 1, . . . , d

and γ ∈ {+,−} bya

pγj,t+1 ,

exp

(
−ηt+1

t∑
s=1

γU∇j ˜̀s(ûs))
∑

16k6d
µ∈{+,−}

exp

(
−ηt+1

t∑
s=1

µU∇k ˜̀s(ûs)) .

6. Update the threshold Bt+1 ,
(
2dlog2(max16s6t |ys|α)e

)1/α
.

aFor all γ ∈ {+,−}, by a slight abuse of notation, γU denotes U or −U if γ = + or γ = − respectively.

Figure 4: The Lipschitzifying Exponentiated Gradient (LEG) algorithm.

bα , α
(
1 + 21/α

)α−1
, the constants a′α, a

′′
α, a
′′′
α > 0 are defined by

a′α , aα

(√
bα
(
4 + 6/ ln 2

)
+ 2
(
1 + 2−1/α

)α/2
/
√

ln 2
)

+ 8bα

a′′α , aα

(√
bα
(
4 + 6/ ln 2

)
+ aα

)
a′′′α , 4

(
1 + 2−1/α

)α
.

Corollary 3 (Application to the square loss). Consider the online linear regression setting under the square
loss (i.e., α = 2). Let U > 0. Then, the LEG algorithm defined in Figure 4 and tuned with U satisfies, for
all T > 1 and all individual sequences (x1, y1), . . . , (xT , yT ) ∈ Rd × R,

T∑
t=1

(yt − ŷt)2 6 inf
‖u‖16U

T∑
t=1

˜̀
t(u) + 8UX

√√√√( inf
‖u‖16U

T∑
t=1

˜̀
t(u)

)
ln(2d)

+
(
134 ln(2d) + 58

) (
UXY + U2X2

)
+ 12Y 2 ,

where the Lipschitzified loss functions ˜̀t are defined above and where the quantities X , max16t6T ‖xt‖∞
and Y , max16t6T |yt| are unknown to the forecaster.

Note that, in the case of the square loss, the first two terms of the bound of Corollary 3 slightly improve
on those obtained without Lipschitzification (cf. Corollary 2) since we always have

inf
‖u‖16U

T∑
t=1

˜̀
t(u) 6 inf

‖u‖16U

T∑
t=1

(yt − u · xt)2 ,
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where we used the key property ˜̀t(u) 6 (yt−u ·xt)2 that holds for all u ∈ Rd and all t = 1, . . . , T (by (13)
if |yt| 6 Bt, obvious otherwise). In particular, the LEG algorithm is adaptive in X, Y , and T ; it achieves
approximately — and efficiently — the regret bound of Theorem 1 in the regime κ 6 1, i.e., d >

√
TUX/(2Y ).

In the case of α-losses with a higher curvature than that of the square loss (α > 2), the improvement is
more substantial as indicated after the following corollary.

Corollary 4 (Application to α-losses with α > 2). Assume that the predictions are scored with the α-loss
x 7→ |yt − x|α, where α > 2. Then, the regret of the LEG algorithm on B1(U) is at most of the order of

UXY α−1
√
T ln(2d) +

(
UXY α−1 + U2X2Y α−2

)
ln(2d) + Y α ,

where X , max16t6T ‖xt‖∞ and Y , max16t6T |yt| are unknown to the forecaster. The above regret bound
improves on the bound we would have obtained via a similar analysis for the adaptive EG± algorithm applied
to the original losses `t(u) = |yt − u · xt|α (without Lipschitzification), namely, a bound of the order of

UX(Y + UX)α/2−1 Y α/2
√
T ln(2d) +

(
UX(Y + UX)α−1 + U2X2(Y + UX)α−2

)
ln(2d) .

The main difference between the two regret bounds above lies in the dependence in U : our main regret
term scales as UXY α−1 while the one obtained without Lipschitzification scales as UX(Y +UX)α/2−1 Y α/2.
The first term grows linearly in U while the second one grows as Uα/2, hence a clear improvement for α > 2.

The last property stems from the fact that, thanks to Lipschitzification, the gradients
∥∥∥∇˜̀t∥∥∥

∞
are bounded

as U → +∞ (cf. (A.29) in Appendix A.2).

Remark 1 (Another benefit of Lipschitzification).
Another benefit of Lipschitzification is that all online convex optimization regret bounds expressed in terms
of the maximal dual norm of the gradients — i.e., max16t6T ‖∇˜̀t‖∞ in our case — can be used fruitfully

with the Lipschitzified loss functions ˜̀t. For instance, in the case of the square loss, using the very last bound
of Proposition 1, we get that

T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2 6 c1UXY
(√

T ln(2d) + 8 ln(2d)
)

+ c2Y
2 ,

where c1 , 8
(√

2 + 1
)

and c2 , 4
(
1 + 1/

√
2
)2

. The bound is no longer an improvement for small losses
(as compared to Corollary 2), but it does not require to solve any quadratic inequality. The corresponding
simple proof is postponed to the end of Appendix A.2.

4. Adaptation to unknown U

In the previous section, the forecaster is given a radius U > 0 and asked to ensure a low worst-case
regret on the `1-ball B1(U). In this section, U is no longer given: the forecaster is asked to be competitive
against all balls B1(U), for U > 0. Namely, its worst-case regret on each B1(U) should be almost as good
as if U were known beforehand. For simplicity, we assume that X, Y , and T are known: we explain in
Section 5 how to simultaneously adapt to all parameters. Note that from now on, we consider again the
main framework of this paper, i.e., online linear regression under the square loss (cf. Section 1.1).

We define

R , dlog2(2T/c)e+ and Ur ,
Y

X

2r√
T ln(2d)

, for r = 0, . . . , R , (14)
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Parameters: X,Y, η > 0, T > 1, and c > 0 (a constant).

Initialization: R = dlog2(2T/c)e+, w1 =
(

1
R+1 , · · · ,

1
R+1

)
∈ RR+1.

For time steps t = 1, . . . , T :

1. For experts r = 0, . . . , R:

• Run the sub-algorithm A(Ur) on the ball B1(Ur) and obtain the pre-

diction ŷ
(r)
t .

2. Output the prediction ŷt =
∑R
r=0

w
(r)
t∑R

r′=0
w

(r′)
t

[
ŷ
(r)
t

]
Y

.

3. Update w
(r)
t+1 = w

(r)
t exp

(
−η
(
yt −

[
ŷ
(r)
t

]
Y

)2)
for r = 0, . . . , R.

Figure 5: The Scaling algorithm.

where c > 0 is a known absolute constant and

dxe+ , min
{
k ∈ N : k > x

}
for all x ∈ R .

The Scaling algorithm of Figure 5 works as follows. We have access to a sub-algorithm A(U) which we run
simultaneously for all U = Ur, r = 0, . . . , R. Each instance of the sub-algorithm A(Ur) performs online
linear regression on the `1-ball B1(Ur). We employ an exponentially weighted forecaster to aggregate these
R + 1 sub-algorithms to perform online linear regression simultaneously on the balls B1(U0), . . . , B1(UR).
The following regret bound follows by exp-concavity of the square loss.

Theorem 4. Suppose that X,Y > 0 are known. Let c, c′ > 0 be two absolute constants. Suppose that for
all U > 0, we have access to a sub-algorithm A(U) with regret against B1(U) of at most

cUXY
√
T ln(2d) + c′Y 2 for T > T0 , (15)

uniformly over all sequences (xt) and (yt) bounded by X and Y . Then, for a known T > T0, the Scaling
algorithm with η = 1/(8Y 2) satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(yt − u · xt)2 + 2c ‖u‖1XY
√
T ln(2d)

}
+ 8Y 2 ln

(
dlog2(2T/c)e+ + 1

)
+ (c+ c′)Y 2. (16)

In particular, for every U > 0,

T∑
t=1

(yt − ŷt)2 6 inf
u∈B1(U)

{
T∑
t=1

(yt − u · xt)2
}

+ 2cUXY
√
T ln(2d)

+ 8Y 2 ln
(
dlog2(2T/c)e+ + 1

)
+ (c+ c′)Y 2.

Remark 2. By Remark 1 the LEG algorithm satisfies assumption (15) with T0 = ln(2d), c , 9c1 =

72
(√

2 + 1
)
, and c′ , c2 = 4

(
1 + 1/

√
2
)2

.

Proof: Since the Scaling algorithm is an exponentially weighted average forecaster (with clipping) applied
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to the R+ 1 experts A(Ur) =
(
ŷ
(r)
t

)
t>1

, r = 0, . . . , R, we have, by Lemma 6 in Appendix B,

T∑
t=1

(yt − ŷt)2 6 min
r=0,...,R

T∑
t=1

(
ŷ
(r)
t − ŷt

)2
+ 8Y 2 ln(R+ 1)

6 min
r=0,...,R

{
inf

u∈B1(Ur)

{
T∑
t=1

(yt − u · xt)2
}

+ cUrXY
√
T ln(2d)

}
+ z , (17)

where the last inequality follows by assumption (15), and where we set

z , 8Y 2 ln(R+ 1) + c′Y 2 .

Let u∗T ∈ arg minu∈Rd
{∑T

t=1(yt − u · xt)2 + 2c ‖u‖1XY
√
T ln(2d)

}
. Next, we proceed by considering

three cases: U0 < ‖u∗T ‖1 < UR, ‖u∗T ‖1 6 U0, and ‖u∗T ‖1 > UR.

Case 1: U0 < ‖u∗T ‖1 < UR. Let r∗ , min
{
r = 0, . . . , R : Ur > ‖u∗T ‖1

}
. Note that r∗ > 1 since ‖u∗T ‖1 > U0.

By (17) we have

T∑
t=1

(yt − ŷt)2 6 inf
u∈B1(Ur∗ )

{
T∑
t=1

(yt − u · xt)2
}

+ cUr∗XY
√
T ln(2d) + z

6
T∑
t=1

(yt − u∗T · xt)2 + 2c ‖u∗T ‖1XY
√
T ln(2d) + z ,

where the last inequality follows from u∗T ∈ B1(Ur∗) and from the fact that Ur∗ 6 2 ‖u∗T ‖1 (since, by defini-

tion of r∗, ‖u∗T ‖1 > Ur∗−1 = Ur∗/2). Finally, we obtain (16) by definition of u∗T and z , 8Y 2 ln(R+1)+c′Y 2.

Case 2: ‖u∗T ‖1 6 U0. By (17) we have

T∑
t=1

(yt − ŷt)2 6

{
T∑
t=1

(yt − u∗T · xt)2 + cU0XY
√
T ln(2d)

}
+ z , (18)

which yields (16) by the equality cU0XY
√
T ln(2d) = cY 2 (by definition of U0), by adding the nonnegative

quantity 2c ‖u∗T ‖1XY
√
T ln(2d), and by definition of u∗T and z.

Case 3: ‖u∗T ‖1 > UR. By construction, we have ŷt ∈ [−Y, Y ], and by assumption, we have yt ∈ [−Y, Y ], so
that

T∑
t=1

(yt − ŷt)2 6 4Y 2T 6
T∑
t=1

(yt − u∗T · xt)2 + 2cURXY
√
T ln(2d)

6
T∑
t=1

(yt − u∗T · xt)2 + 2c ‖u∗T ‖1XY
√
T ln(2d) ,

where the second inequality follows by 2cURXY
√
T ln(2d) = 2cY 22R > 4Y 2T (since 2R > 2T/c by definition

of R), and the last inequality uses the assumption ‖u∗T ‖1 > UR. We finally get (16) by definition of u∗T .
This concludes the proof of the first claim (16). The second claim follows by bounding ‖u‖1 6 U .

16



5. Extension to a fully adaptive algorithm

The Scaling algorithm of Section 4 uses prior knowledge of Y , Y/X, and T . In order to obtain a fully
automatic algorithm, we need to adapt efficiently to these quantities. Adaptation to Y is possible via a
technique already used for the LEG algorithm, i.e., by updating the clipping range Bt based on the past
observations |ys|, s 6 t− 1.

In parallel to adapting to Y , adaptation to Y/X can be carried out as follows. We replace the exponential
sequence {U0, . . . , UR} by another exponential sequence {U ′0, . . . , U ′R′}:

U ′r ,
1

T k
2r√

T ln(2d)
, r = 0, . . . , R′ , (19)

where R′ , R +
⌈
log2 T

2k
⌉

= dlog2(2T/c)e+ +
⌈
log2 T

2k
⌉
, and where k > 1 is a fixed constant. On the one

hand, for T > T0 , max
{

(X/Y )1/k, (Y/X)1/k
}

, we have (cf. (14) and (19)),

[U0, UR] ⊂ [U ′0, U
′
R′ ] .

Therefore, the analysis of Theorem 4 applied to the grid {U ′0, . . . , UR′} yields10 a regret bound of the order
of UXY

√
T ln d + Y 2 ln(R′ + 1). On the other hand, clipping the predictions to [−Y, Y ] ensures the crude

regret bound 4Y 2T0 for small T < T0. Hence, the overall regret for all T > 1 is of the order of

UXY
√
T ln d+ Y 2 ln(k lnT ) + Y 2 max

{
(X/Y )1/k, (Y/X)1/k

}
.

Adaptation to an unknown time horizon T can be carried out via a standard doubling trick on T .
However, to avoid restarting the algorithm repeatedly, we can use a time-varying exponential sequence
{U ′−R′(t)(t), . . . , U

′
R′(t)(t)} where R′(t) grows at the rate of k ln(t). This gives11 us an algorithm that is fully

automatic in the parameters U , X, Y and T . In this case, we can show that the regret is of the order of

UXY
√
T ln d+ Y 2k ln(T ) + Y 2 max

{(√
TX/Y

)1/k
,
(
Y/(
√
TX)

)1/k}
,

where the last two terms are negligible when T → +∞ (since k > 1).
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 2

To prove Theorem 2, we perform a reduction to the stochastic batch setting (via the standard online to
batch trick), and employ a version of the lower bound proved in [2] for convex aggregation.

10The proof remains the same by replacing 8Y 2 ln(R+ 1) with 8Y 2 ln(R′ + 1).
11Each time the exponential sequence (U ′r) expands, the weights assigned to the existing points U ′r are appropriately reassigned

to the whole new sequence.
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We first need the following notations. Let T ∈ N∗. Let (S, µ) be a probability space for which we can find
an orthonormal family12 (ϕj)16j6d with d elements in the space of square-integrable functions on S, which
we denote by L2(S, µ) thereafter. For all u ∈ Rd and γ, σ > 0, denote by Pγ,σu the joint law of the i.i.d.
sequence (Xt, Yt)16t6T such that

Yt = γϕu(Xt) + σεt ∈ R , (A.1)

where ϕu ,
∑d
j=1 ujϕj , where the Xt are i.i.d points in S drawn from µ, and where the εt are i.i.d standard

Gaussian random variables such that (Xt)16t6T and (εt)16t6T are independent.

The next lemma is a direct adaptation of [2, Theorem 2], which we state with our notations in a slightly
more precise form (we make clear how the lower bound depends on the noise level σ and the signal level γ).

Lemma 1 (An extension of Theorem 2 of [2]).
Let d, T ∈ N∗ and γ, σ > 0. Let (S, µ) be a probability space for which we can find an orthonormal family
(ϕj)16j6d in L2(S, µ), and consider the Gaussian linear model (A.1). Then there exist absolute constants
c4, c5, c6, c7 > 0 such that

inf
f̂T

sup
u∈Rd+∑
j uj61

{
EPγ,σu

∥∥∥f̂T − γϕu

∥∥∥2
µ

}

>


c4
dσ2

T if d√
T
6 c5

γ
σ ,

c6γσ

√
1
T ln

(
1 + dσ√

Tγ

)
if c5

γ
σ <

d√
T
6 c7

γd

σ
√

ln(1+d)
,

where the infimum is taken over all estimators13 f̂T : S → R, where the supremum is taken over all
nonnegative vectors with total mass at most 1, and where ‖f‖2µ ,

∫
S
f(x)2µ(dx) for all measurable functions

f : S → R.

Note that the lower bound we stated in Theorem 2 is very similar to T times the above lower bound
with γ ∼ X and σ ∼ Y (recall that κ ,

√
TUX/(2dY )). The main difference is that the latter holds

for unbounded observations, while we need bounded observations yt, 1 6 t 6 T . A simple concentration
argument will show that these observations lie in [−Y, Y ] with high probability, which will yield the desired
lower bound. The proof of Theorem 2 thus consists of the following steps:

• step 1: reduction to the stochastic batch setting;

• step 2: application of Lemma 1;

• step 3: concentration argument.

Proof (of Theorem 2): We first assume that
√

ln(1 + 2d)/
(
2d
√

ln 2
)
6 κ 6 1. The case when κ > 1 will

easily follow from the monotonicity of the minimax regret in κ (see the end of the proof). We set

T , 1 +
⌈
(4dκ)2

⌉
, U , 1 , and X ,

2dκY√
T

, (A.2)

so that T > 2,
√
TUX/(2dY ) = κ, and X 6 Y/2 (since

√
T > 4dκ).

12An example is given by S = [−π, π], µ(dx) = dx/(2π), and ϕj(x) =
√

2 sin(jx) for all 1 6 j 6 d and x ∈ [−π, π]. We will
use this particular case later.

13As usual, an estimator is a measurable function of the sample (Xt, Yt)16t6T , but the dependency on the sample is omitted.
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Step 1: reduction to the stochastic batch setting.
First note that by clipping to [−Y, Y ], we have

inf
(f̃t)t

sup
‖xt‖∞6X
|yt|6Y

{
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2
}

= inf
(f̃t)t
|f̃t|6Y

sup
‖xt‖∞6X
|yt|6Y

{
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2
}
, (A.3)

where the first infimum is taken over all online forecasters14 (f̃t)t, where the second infimum is restricted

to online forecasters (f̃t)t which output predictions in [−Y, Y ], and where both suprema are taken over all
individual sequences (xt, yt)16t6T ∈ (Rd × R)T such that |y1|, . . . , |yT | 6 Y and ‖x1‖∞ , . . . , ‖xT ‖∞ 6 X.

Next we use the standard online to batch conversion to bound from below the right-hand side of (A.3)
by T times the lower bound of Lemma 1, which we apply to the particular case where S = [−π, π], where
µ(dx) = dx/(2π), and where ϕj(x) =

√
2 sin(jx) for all 1 6 j 6 d and x ∈ [−π, π]. Let

γ , c8X and σ ,
c9Y√
lnT

, (A.4)

for some absolute constants c8, c9 > 0 to be chosen by the analysis.

Let (f̃t)t>1 be any online forecaster whose predictions lie in [−Y, Y ], and consider the estimator f̂T defined
for each sample (Xt, Yt)16t6T and each new input X ′ by

f̂T

(
X ′; (Xt, Yt)16t6T

)
,

1

T

T∑
t=1

f̃t

(
γϕ(X ′); (γϕ(Xs), Ys)16s6t−1

)
, (A.5)

where ϕ , (ϕ1, . . . , ϕd), and where we explicitely wrote all the dependencies14 of the f̃t, t = 1, . . . , T .

Take u∗ ∈ Rd+ achieving the supremum15 in Lemma 1 for the estimator f̂T . Note that ‖u∗‖1 6 1. Besides,
consider the i.i.d. random sequence (xt, yt)16t6T in Rd × R defined for all t = 1, . . . , T by

xt ,
(
γϕ1(Xt), . . . , γϕd(Xt)

)
and yt , γϕu∗(Xt) + σεt , (A.6)

where ϕu∗ ,
∑d
j=1 u

∗
jϕj (so that yt = u∗ · xt + σεt for all t), where the Xt are i.i.d points in [−π, π]

drawn from the uniform distribution µ(dx) = dx/(2π), and where the εt are i.i.d standard Gaussian random
variables such that (Xt)t and (εt)t are independent. All the expectations below are thus taken with respect
to the probability distribution Pγ,σu∗ .

By standard manipulations (e.g., using the tower rule and Jensen’s inequality), we get the following lower
bound. A detailed proof can be found after the proof of the present theorem (page 24).

Lemma 2 (Reduction to the batch setting).

With (f̃t)16t6T , f̂T , and u∗ defined above, we have

E

[
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖161

T∑
t=1

(
yt − u · xt

)2]
> T E

∥∥∥f̂T − γϕu∗

∥∥∥2
µ
.

14Recall that an online forecaster is a sequence of functions (f̃t)t>1, where f̃t : Rd× (Rd×R)t−1 → R maps at time t the new

input xt and the past data (xs, ys)16s6t−1 to a prediction f̃t
(
xt; (xs, ys)16s6t−1

)
. However, unless mentioned otherwise, we

omit the dependency in (xs, ys)16s6t−1, and only write f̃t(xt).
15If the supremum in Lemma 1 is not achieved, then we can instead take an ε-almost-maximizer for any ε > 0. Letting ε→ 0

in the end will conclude the proof.
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Step 2: application of Lemma 1.
Next we use Lemma 1 to prove that, for some absolute constants c9, c11 > 0,

T E
∥∥∥f̂T − γϕu∗

∥∥∥2
µ
>

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) . (A.7)

By Lemma 1 and by definition of u∗, we have

E
∥∥∥f̂T − γϕu∗

∥∥∥2
µ
>


c4
dσ2

T if d√
T
6 c5

γ
σ ,

c6γσ

√
1
T ln

(
1 + dσ√

Tγ

)
if c5

γ
σ <

d√
T
6 c7γd

σ
√

ln(1+d)
.

>


c4c

2
9

T (lnT )dY
2 if d√

T
6 c5

γ
σ ,

c6c8c9√
lnT

UXY

√
1
T ln

(
1 + c9dY

c8
√
T (lnT )UX

)
if c5

γ
σ <

d√
T
6 c7γd

σ
√

ln(1+d)
,

(A.8)

where the last inequality follows from (A.4) and from U = 1.

The above lower bound is only meaningful if the following condition holds true:

d√
T

6
c7γd

σ
√

ln(1 + d)
. (A.9)

But, by definition of T , 1+
⌈
(4dκ)2

⌉
and by the assumption

√
ln(1 + 2d)/

(
2d
√

ln 2
)
6 κ, elementary manip-

ulations show that (A.9) actually holds true whenever16 c9 6 c7c8c10, where c10 , 1
2 inf

x>2
√

ln 3
ln 2

{
x√

1+dx2e

}
(note that c10 > 0).

Therefore, if c9 6 c7c8c10, then (A.8) entails that

E
∥∥∥f̂T − γϕu∗

∥∥∥2
µ
> min

 c4c
2
9

T (lnT )
dY 2,

c6c8c9√
lnT

UXY

√√√√ 1

T
ln

(
1 +

c9dY

c8
√
T (lnT )UX

) . (A.10)

Moreover, note that if c9 6 c82
√

ln 2, then c8 > c9/(2
√

ln 2) > c9/(2
√

lnT ). In this case, since x 7→
x
√

ln(1 +A/x) is nondecreasing on R∗+ for all A > 0, we can replace c8 with c9/(2
√

lnT ) in the next
expression and get

c6c8c9√
lnT

UXY

√√√√ 1

T
ln

(
1 +

c9dY

c8
√
T (lnT )UX

)

>
c6c

2
9

2 lnT
UXY

√
1

T
ln

(
1 +

2dY√
TUX

)
=

c6c
2
9

T (lnT )
dY 2κ

√
ln(1 + 1/κ) ,

where we used the definition of κ ,
√
TUX/(2dY ).

In the sequel we will choose the absolute constants c8 and c9 such that

c9 6 c7c8c10 and c9 6 c82
√

ln 2 . (A.11)

16By definition of γ and σ, (A.9) is equivalent to T lnT > c29/(c
2
7c

2
8)(Y/X)2 ln(1 + d). But by definition of X and by the

assumption κ >
√

ln(1 + 2d)/(2d
√

ln 2), we have Y/X 6 1/c10. Therefore, (A.9) is implied by T lnT > c29/(c
2
7c

2
8c

2
10) ln(1 + d),

which in turn is implied by the condition c9 6 c7c8c10 (by definition of T ).
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Therefore, by the above remarks, by the fact that lnT , ln
(
1 + d(4dκ)2e

)
6 ln

(
2 + 16d2

)
(since κ 6 1 by

assumption), and multiplying both sides of (A.10) by T , we get

T E
∥∥∥f̂T − γϕu∗

∥∥∥2
µ
> min

{
c4c

2
9

ln
(
2 + 16d2

)dY 2,
c6c

2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ)

}

>
c11c

2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) ,

where we set c11 , min
{
c4/
√

ln 2, c6
}

, and where we used the fact that x 7→ x
√

ln(1 + 1/x) is nondecreasing

on R∗+, so that its value at x = κ 6 1 is smaller than
√

ln 2. This concludes the proof of (A.7).

Combining Lemma 2 and (A.7), we get

E

[
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖161

T∑
t=1

(
yt − u · xt

)2]
>

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) . (A.12)

Step 3: concentration argument.
At this stage it would be tempting to conclude by using (A.12) that since the expectation is lower bounded,
then there is at least one individual sequence with the same lower bound. However, we have no boundedness
guarantee about such individual sequence since the random observations yt lie outside of [−Y, Y ] with
positive probability. Next we prove that the probability of the event

A ,
T⋂
t=1

{
|yt| 6 Y

}
is actually close to 1, and that

E

[
IA

(
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖161

T∑
t=1

(
yt − u · xt

)2)]
>

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) . (A.13)

(Note a missing factor of 2 between (A.12) and (A.13).) The last lower bound will then enable us to conclude
the proof of this theorem.

Set L̂T ,
∑T
t=1

(
yt− f̃t(xt)

)2
and LT (u) ,

∑T
t=1

(
yt−u ·xt

)2
for all u ∈ Rd. Denote by Ac the complement

of A, and by IA and IAc the corresponding indicator functions. By the equality IA = 1− IAc , we have

E
[
IA
(
L̂T − inf

‖u‖161
LT (u)

)]
= E

[
L̂T − inf

‖u‖161
LT (u)

]
− E

[
IAc

(
L̂T − inf

‖u‖161
LT (u)

)]
>

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ)− E
[
IAcL̂T

]
, (A.14)

where the last inequality follows by (A.12) and by the fact that LT (u) > 0 for all u ∈ Rd. The rest of the

proof is dedicated to upper bounding the above quantity E
[
IAcL̂T

]
by half the term on its left. This way,

we will have proved (A.13).
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First note that

E
[
IAcL̂T

]
, E

[
IAc

T∑
t=1

(
yt − f̃t(xt)

)2]

6 E

[
IAc

T∑
t=1

(
4Y 2I{|yt|6Y } +

(
yt − f̃t(xt)

)2I{|yt|>Y })
]

(A.15)

6 4TY 2P
(
Ac
)

+

T∑
t=1

E
[(
yt − f̃t(xt)

)2 I{|εt|> Y
2σ}
]
, (A.16)

where (A.15) follows from the fact that the online forecaster (f̃t)t outputs its predictions in [−Y, Y ]. As
for (A.16), note by definition of yt that |yt| 6 ‖u∗‖1 γ ‖ϕ(Xt)‖∞ + σ|εt| 6 γ

√
2 + σ|εt| since ‖u∗‖1 6 1 and

|ϕj(x)| , |
√

2 sin(jx)| 6
√

2 for all j = 1, . . . , d and x ∈ R. Therefore, by definition of γ , c8X, and since
X 6 Y/2 (by definition of X), we get |yt| 6 c8

√
2Y/2 + σ|εt| 6 Y/2 + σ|εt| provided that

c8 6
1√
2
, (A.17)

which we assume thereafter. The above remarks show that {|yt| > Y } ⊂ {|εt| > Y/(2σ)}, which entails

(A.16). By the same comments and since |f̃t| 6 Y , we have, for all t = 1, . . . , T ,

E
[(
yt − f̃t(xt)

)2I{|εt|> Y
2σ}
]
6 E

[(
Y/2 + σ|εt|+ Y

)2I{|εt|> Y
2σ}
]

6 2

(
3Y

2

)2

P
(
|εt| >

Y

2σ

)
+ 2σ2E

[
ε2t I{|εt|> Y

2σ}
]

(A.18)

6
9Y 2

2
P
(
|εt| >

Y

2σ

)
+ 2σ2

√
3P1/2

(
|εt| >

Y

2σ

)
(A.19)

6 9Y 2T−1/(8c
2
9) + 2

c29Y
2

ln 2

√
6T−1/(16c

2
9) , (A.20)

where we used the following arguments. Inequality (A.18) follows by the elementary inequality (a + b)2 6
2(a2 + b2) for all a, b ∈ R. To get (A.19) we used the Cauchy-Schwarz inequality and the fact that E

[
ε4t
]

= 3

(since εt is a standard Gaussian random variable). Finally, (A.20) follows by definition of σ , c9Y/
√

lnT 6
c9Y/

√
ln 2 and from the fact that, since εt is a standard Gaussian random variable17,

P
(
|εt| >

Y

2σ

)
6 2e−

1
2 ( Y2σ )

2

= 2e
− 1

2

(√
lnT
2c9

)2

= 2T−1/(8c
2
9) .

Using the fact that P
(
Ac
)
6
∑T
t=1 P

(
|yt| > Y

)
6
∑T
t=1 P

(
|εt| > Y/(2σ)

)
6 2T 1−1/(8c29) by the inequality

above and substituting (A.20) in (A.16), we get

E
[
IAcL̂T

]
6 8Y 2T 2−1/(8c29) + 9Y 2T 1−1/(8c29) +

2c29
√

6

ln 2
Y 2T 1−1/(16c29)

6 8Y 222−1/(8c
2
9) + 9Y 221−1/(8c

2
9) +

2c29
√

6

ln 2
Y 221−1/(16c

2
9) , (A.21)

where the last inequality follows from the fact that Tα 6 2α for all α < 0 (since T > 2) and from a choice
of c9 such that c9 < 1/4 (which we assume thereafter).

17We use a standard deviation inequality for subgaussian random variables; see, e.g., [21, Equation (2.5)] with σ2 = 1.
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In order to further upper bound E
[
IAcL̂T

]
, we use the following technical lemma, which is proved after the

proof of the present theorem (see page 24). It relies on the following elementary argument: since d κ is large
enough and since the left-hand side of the next inequality (Lemma 3) decreases exponentially fast as c9 → 0,
then this inequality holds true for all c9 > 0 small enough.

Lemma 3. There exists an absolute constant c13 > 0 such that, for all c9 ∈ (0, c13),

8Y 222−1/(8c
2
9) + 9Y 221−1/(8c

2
9) +

2c29
√

6

ln 2
Y 221−1/(16c

2
9) 6

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

We can now fix the values of the constants c8 and c9 and conclude the proof. Choosing c9 and c8 ,
max

{
c9/(2

√
ln 2), c9/(c7c10)

}
such that c8 < 1/

√
2 (condition (A.17)), c9 < 1/4, and c9 < c13, then the

condition (A.11) also holds, and (A.21) combined with Lemma 3 entails that

E
[
IAcL̂T

]
6

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

Substituting the last inequality in (A.14), we get that

E
[
IA
(
L̂T − inf

‖u‖161
LT (u)

)]
>

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

By the above lower bound and the fact that, Pγ,σu∗ -almost surely, ‖xt‖∞ 6 γ
√

2 6 X for all t = 1, . . . , T

(since γ , c8X and c8 6 1/
√

2), we get that

sup
‖x1‖∞,...,‖xT ‖∞6X

y1,...,yT∈R

{
IA
(
L̂T − inf

‖u‖161
LT (u)

)}
>

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

Therefore, by definition of A ,
⋂T
t=1

{
|yt| 6 Y

}
, of L̂T ,

∑T
t=1

(
yt − f̃t(xt)

)2
, and of LT (u) ,

∑T
t=1(yt −

u · xt)2, we get that, for all online forecasters (f̃t)t>1 whose predictions lie in [−Y, Y ],

sup
‖x1‖∞,...,‖xT ‖∞6X
|y1|,...,|yT |6Y

{
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2
}

>
1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

Combining the last lower bound with (A.3) and setting c1 , c11c
2
9/2 concludes the proof under the assump-

tion
√

ln(1 + 2d)/
(
2d
√

ln 2
)
6 κ 6 1.

Assume now that κ > 1.
The stated lower bound follows from the case when κ = 1 and by monotonicity of the minimax regret in κ
(when d and Y are kept constant).

More formally, by the first part of this proof (when κ = 1), we can fix T > 1, U1 > 0, and X > 0
such that

√
TU1X/(2dY ) = 1 and

inf
(f̃t)t

sup
‖xt‖∞6X
|yt|6Y

{
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖16U1

T∑
t=1

(yt − u · xt)2
}

>
c1

ln
(
2 + 16d2

)dY 2
√

ln 2 ,

where the infimum is taken over all online forecasters (f̃t)t>1, and where the supremum is taken over all
individual sequences bounded by X and Y .
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Now take κ > 1, and set U , κU1 > U1, so that
√
TUX/(2dY ) = κ (since

√
TU1X/(2dY ) = 1). Moreover,

for all individual sequences bounded by X and Y , the regret on B1(U) is at least as large as the regret on
B1(U1) (since U > U1). Combining the latter remark with the lower bound above and setting c2 , c1

√
ln 2

concludes the proof.

Proof (of Lemma 2): We use the same notations as in Step 1 of the proof of Theorem 2. Let (X ′, y′)
be a random copy of (X1, y1) independent of the sample (Xt, yt)16t6T , and define the random vector
x′ ,

(
γϕ1(X ′), . . . , γϕd(X

′)
)
. By the tower rule, we have

E
[
(yt − f̃t(xt)2

]
= E

[
E
[
(yt − f̃t(xt))2

∣∣(xs, ys)s6t−1]] = E
[
(y′ − f̃t(x′)2

]
,

where we used the fact that f̃t is built on the past data (xs, ys)s6t−1 and that (x′, y′) and (xt, yt) are both
independent of (xs, ys)s6t−1 and are identically distributed. Similarly E

[
(yt − u · xt)2

]
= E

[
(y′ − u · x′)2

]
.

Using the last equalities and the fact that E
[
inf{. . .}

]
6 inf E

[
{. . .}

]
, we get

E

[
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖161

T∑
t=1

(
yt − u · xt

)2]

> T

(
1

T

T∑
t=1

E
[(
y′ − f̃t(x′)

)2]− inf
‖u‖161

E
[(
y′ − u · x′

)2])

> T

(
E
[(
y′ − f̂T (X ′)

)2]− inf
‖u‖161

E
[(
y′ − u · x′

)2])
(A.22)

= T E
[(
γϕu∗(X

′)− f̂T (X ′)
)2]

(A.23)

= T E
∥∥∥f̂T − γϕu∗

∥∥∥2
µ
.

Inequality (A.22) follows by definition of f̂T , T−1
∑T
t=1 f̃t (see (A.5)) and by Jensen’s inequality. As for

Inequality (A.23), it follows by expanding the square(
y′ − f̂T (X ′)

)2
=
(
γϕu∗(X

′)− f̂T (X ′) + y′ − γϕu∗(X
′)
)2
,

by noting that E
[
y′ − γϕu∗(X

′)
∣∣X ′] = 0 (via (A.6)) and by the fact that

inf
‖u‖161

E
[(
y′ − u · x′

)2]
= E

[(
y′ − γϕu∗(X

′)
)2]

,

where we used ‖u∗‖1 6 1 (by definition of u∗) and u · x′ = γϕu(X ′). This concludes the proof.

Proof (of Lemma 3): We use the same notations and assumptions as in the proof of Theorem 2. Since
the function x 7→ x

√
ln(1 + 1/x) is nondecreasing on R∗+ and since κ > κmin ,

√
ln(1 + 2d)/(2d

√
ln 2) by

assumption, we have

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ)

>
c11c

2
9

ln
(
2 + 16d2

)dY 2κmin

√
ln(1 + 1/κmin)

=
c11c

2
9

2
√

ln 2
Y 2

√
ln(1 + 2d)

√
ln
[
1 + 2d

√
ln 2/

√
ln(1 + 2d)

]
ln
(
2 + 16d2

) (A.24)

>
c11c

2
9

2
√

ln 2
Y 2c12 , (A.25)
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where c12 denotes the infimum of the last fraction of (A.24) over all d > 1; in particular, c12 > 0. It is now
easy to see that by choosing the absolute constant c13 > 0 small enough (where c13 can be expressed in
terms of c11 and c12), we have, for all c9 ∈ (0, c13),

8 · 22−1/(8c
2
9) + 9 · 21−1/(8c

2
9) +

2c29
√

6

ln 2
21−1/(16c

2
9) 6

c11c
2
9

2
√

ln 2
c12 .

Multiplying both sides of the last inequality by Y 2 and combining it with (A.25) concludes the proof.

Appendix A.2. Proofs of Theorem 3 and Remark 1

Proof (of Theorem 3): The proof follows directly from Proposition 1 and from the fact that the Lipschitz-
ified losses are larger than their clipped versions. Indeed, first note that, by definition of ŷt and Bt+1 > |yt|,
we have

T∑
t=1

|yt − ŷt|α 6
T∑
t=1

t:|yt|6Bt

∣∣∣yt − [ût · xt]Bt∣∣∣α +

T∑
t=1

t:|yt|>Bt

(Bt+1 +Bt)
α

6
T∑
t=1

t:|yt|6Bt

˜̀
t(ût) +

(
1 + 2−1/α

)α T∑
t=1

t:Bt+1>Bt

Bαt+1

6
T∑
t=1

˜̀
t(ût) + 4

(
1 + 2−1/α

)α
Y α , (A.26)

where the second inequality follows from the fact that:

• if |yt| 6 Bt then |yt − [ût · xt]Bt |
α 6 ˜̀t(ût) by Eq. (13);

• if |yt| > Bt, which is equivalent to Bt+1 > Bt by definition of Bt+1, then Bt 6 Bt+1/2
1/α, so that

Bt+1 +Bt 6
(
1 + 2−1/α

)
Bt+1.

As for the third inequality above, we used the non-negativity of ˜̀t(ût) and upper bounded the geometric

sum
∑T
t:Bt+1>Bt

Bαt+1 in the same way as in [11, Theorem 6], i.e., setting K ,
⌈
log2 max16t6T |yt|α

⌉
,

T∑
t:Bt+1>Bt

Bαt+1 6
K∑

k=−∞

2k = 2K+1 6 4Y α .

To bound (A.26) further from above, we now use the fact that, by construction, the LEG algorithm is the

adaptive EG± algorithm applied to the modified loss functions ˜̀t. Therefore, we get from Proposition 1
that

T∑
t=1

˜̀
t(ût) 6 inf

‖u‖16U

T∑
t=1

˜̀
t(u)

+ 4U

√√√√( T∑
t=1

www∇˜̀t(ût)www2

∞

)
ln(2d) + U

(
8 ln(2d) + 12

)
max
16t6T

www∇˜̀t(ût)www
∞

. (A.27)

We can now follow the same lines as in Corollary 2, except that we use the particular shape of the Lip-
schitzified losses. We first derive some properties of the gradients ∇˜̀t. Observe from the definition of ˜̀t
in Section 3.3 that in both cases |yt| > Bt and |yt| 6 Bt, the function ˜̀t is continuously differentiable.
Moreover, if |yt| 6 Bt, then

∀u ∈ Rd , ∇˜̀t(u) = −α sgn
(
yt − [u · xt]Bt

)
|yt − [u · xt]Bt |

α−1
xt ,
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where for all x ∈ R, the quantity sgn(x) equals 1 (resp. −1, 0) if x > 0 (resp. x < 0, x = 0).

Therefore, in both cases |yt| > Bt and |yt| 6 Bt, the function ˜̀t is Lipschitz continuous with respect to ‖·‖1
with Lipschitz constant supu∈Rd

∥∥∥∇˜̀t∥∥∥
∞

bounded as follows: for all u ∈ Rd,∥∥∥∇˜̀t(u)
∥∥∥
∞

6 α |yt − [u · xt]Bt |
α−1 ‖xt‖∞ (A.28)

6 α
(
|yt|+Bt

)α−1 ‖xt‖∞ 6 α
(
1 + 21/α

)α−1(
max
16s6t

|ys|
)α−1

‖xt‖∞ , (A.29)

where we used the fact that Bt 6 21/α max16s6t−1 |ys|.

We can draw several consequences from the inequalities above. First note that, by (A.29),

max
16t6T

‖∇˜̀t(ût)‖∞ 6 α
(
1 + 21/α

)α−1
XY α−1 . (A.30)

Moreover, using (A.28) and the definition of ŷt in Figure 4, we can see that the gradients ∇˜̀t(ût) satisfywww∇˜̀t(ût)www
∞

6 α |yt − ŷt|α−1 ‖xt‖∞ 6 αX |yt − ŷt|α−1. This entails thatwww∇˜̀t(ût)www2

∞
6 α2X2

∣∣yt − ŷt∣∣2α−2 = α2X2
∣∣yt − ŷt∣∣α−2 ∣∣yt − ŷt∣∣α

6 α2X2
(
(1 + 21/α)Y

)α−2 ∣∣yt − ŷt∣∣α , (A.31)

where we used the upper bounds |yt| 6 Y and |ŷt| ,
∣∣∣[ût · xt]Bt∣∣∣ 6 Bt 6 21/αY . Substituting (A.30)

and (A.31) in (A.27) and combining the resulting bound with (A.26), we get

T∑
t=1

|yt − ŷt|α 6 inf
‖u‖16U

T∑
t=1

˜̀
t(u) + aαUXY

α/2−1

√√√√( T∑
t=1

|yt − ŷt|α
)

ln(2d)

+
(
8 ln(2d) + 12

)
bα UXY

α−1︸ ︷︷ ︸
,C1

+ 4
(
1 + 2−1/α

)α
Y α︸ ︷︷ ︸

,C2

,

where we set aα , 4α
(
1 + 21/α

)α/2−1
and bα , α

(
1 + 21/α

)α−1
.

To simplify the notations we also set L̂T ,
∑T
t=1 |yt − ŷt|

α
and L̃∗T , min‖u‖16U

∑T
t=1
˜̀
t(u), so that the

previous inequality can be rewritten as

L̂T 6 L̃∗T + C1 + C2 + aαUXY
α/2−1

√
L̂T ln(2d) .

Solving for L̂T via Lemma 4 in Appendix B (used with a = L̃∗T + C1 + C2 and b = aαUXY
α/2−1

√
ln(2d)),

we get that

L̂T 6 L̃∗T + C1 + C2 +
(
aαUXY

α/2−1
√

ln(2d)
)√

L̃∗T + C1 + C2 +
(
aαUXY

α/2−1
√

ln(2d)
)2

6 L̃∗T + aαUXY
α/2−1

√
L̃∗T ln(2d)

+ aαUXY
α/2−1

√
(C1 + C2) ln(2d) + a2αU

2X2Y α−2 ln(2d) + C1 + C2 . (A.32)

To conclude the proof, it just suffices to bound the term aαUXY
α/2−1

√
(C1 + C2) ln(2d) from above. First

note that √
(C1 + C2) ln(2d) 6

√
C1 ln(2d) +

√
C2 ln(2d)

6
√
C1 ln(2d) + 2

(
1 + 2−1/α

)α/2
Y α/2

√
ln(2d) , (A.33)
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where the last inequality follows by definition of C2 above. Now, to upper bound
√
C1 ln(2d), we note that,

by definition of C1, √
C1 ln(2d) = ln(2d)

√(
8 + 12/ ln(2d)

)
bα UXY α−1

6 ln(2d)
√(

8 + 12/ ln 2
)
bα

UXY α/2−1 + Y α/2√
2

,

where we used the elementary upper bound
√
ab 6 (a+b)/2 with a = UXY α/2−1 and b = Y α/2. Substituting

the last inequality in (A.33) and using
√

ln(2d) 6 ln(2d)/
√

ln 2, we finally get that

aαUXY
α/2−1

√
(C1 + C2) ln(2d)

6 aα ln(2d)

(√
bα
(
4 + 6/ ln 2

)
+ 2
(
1 + 2−1/α

)α/2
/
√

ln 2

)
UXY α−1

+ aα ln(2d)
√
bα
(
4 + 6/ ln 2

)
U2X2Y α−2 .

Substituting the last inequality into (A.32) and rearranging terms concludes the proof.

Proof (of Remark 1): Recall that in this remark, we focus on the square loss (i.e., α = 2) and that we

set c1 , 8
(√

2 + 1
)

and c2 , 4
(
1 + 1/

√
2
)2

. By the key property (13) that holds for all rounds t such that
|yt| 6 Bt (the other rounds accounting only for an additional total loss at most of c2Y

2, see (A.26)), we get

T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2 6
T∑
t=1

˜̀
t(ût)− inf

‖u‖16U

T∑
t=1

˜̀
t(u) + c2Y

2

6 4U max
16t6T

∥∥∥∇˜̀t(ût)∥∥∥
∞

(√
T ln(2d) + 2 ln(2d) + 3

)
+ c2Y

2

(A.34)

6 c1UXY
(√

T ln(2d) + 8 ln(2d)
)

+ c2Y
2 , (A.35)

where (A.34) follows from the remark in Proposition 1 involving the uniform bound max16t6T ‖∇˜̀t(ût)‖∞,

and where (A.35) follows from max16t6T ‖∇˜̀t(ût)‖∞ 6 2
(
1+
√

2
)
XY (by (A.29)) and from the elementary

inequality 3 6 6 ln(2d).

Appendix B. Lemmas

The next elementary lemma is due to [22, Appendix III]. It is useful to compute an upper bound on the

cumulative loss L̂T of a forecaster when L̂T satisfies an inequality of the form (B.1).

Lemma 4. Let a, b > 0. Assume that x > 0 satisfies the inequality

x 6 a+ b
√
x . (B.1)

Then,
x 6 a+ b

√
a+ b2 .

The next lemma is useful to prove Theorem 1. At the end of this section, we also provide an elementary
lemma about the exponentially weighted average forecaster combined with clipping.
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Lemma 5. Let d, T ∈ N∗, and U,X, Y > 0. The minimax regret on B1(U) for bounded base predictions
and observations satisfies

inf
F

sup
‖xt‖∞6X, |yt|6Y

{
T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2
}

6 min

{
3UXY

√
2T ln(2d), 32 dY 2 ln

(
1 +

√
TUX

dY

)
+ dY 2

}
,

where the infimum is taken over all forecasters F and where the supremum extends over all sequences
(xt, yt)16t6T ∈ (Rd × R)T such that |y1|, . . . , |yT | 6 Y and ‖x1‖∞ , . . . , ‖xT ‖∞ 6 X.

Proof: We treat each of the two terms in the above minimum separately.

Step 1: We prove that their exists a forecaster F whose worst-case regret on B1(U) is upper bounded by
3UXY

√
2T ln(2d).

First note that if U > (Y/X)
√
T/(2 ln(2d)), then the upper bound 3UXY

√
2T ln(2d) > 3TY 2 > TY 2

is trivial (by choosing the forecaster F which outputs ŷt = 0 at each time t).

We can thus assume that U < (Y/X)
√
T/(2 ln(2d)). Consider the EG± algorithm as given in [9,

Theorem 5.11], and denote by ût ∈ B1(U) the linear combination it outputs at each time t > 1. Then, by
the aforementioned theorem, this forecaster satisfies, uniformly over all individual sequences bounded by X
and Y , that

T∑
t=1

(yt − ût · xt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

6 2UXY
√

2T ln(2d) + 2U2X2 ln(2d)

6 2UXY
√

2T ln(2d) + 2

(
Y

√
T

2 ln(2d)

)
UX ln(2d) (B.2)

6 3UXY
√

2T ln(2d) ,

where (B.2) follows from the assumption UX < Y
√
T/(2 ln(2d)). This concludes the first step of this proof.

Step 2: We prove that their exists a forecaster F whose worst-case regret on B1(U) is upper bounded by

32 dY 2 ln
(

1 +
√
TUX
dY

)
+ dY 2.

Such a forecaster is given by the sparsity-oriented algorithm SeqSEWB,η
τ of [12] (we could also get a

slightly worse bound with the sequential ridge regression forecaster of [13, 14]). Indeed, by [12, Proposition 1],
the cumulative square loss of the algorithm SeqSEWB,η

τ tuned with B = Y , η = 1/(8Y 2) and τ = Y/(
√
TX)

is upper bounded by

inf
u∈Rd

{
T∑
t=1

(
yt − u · xt

)2
+ 32 ‖u‖0 Y

2 ln

(
1 +

√
TX ‖u‖1
‖u‖0 Y

)}
+ dY 2

6 inf
‖u‖16U

{
T∑
t=1

(
yt − u · xt

)2}
+ 32dY 2 ln

(
1 +

√
TXU

dY

)
+ dY 2 ,
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where the last inequality follows by monotonicity18 in ‖u‖0 and ‖u‖1 of the second term of the left-hand
side. This concludes the proof.

Next we recall a regret bound satisfied by the standard exponentially weighted average forecaster applied
to clipped base forecasts. Assume that at each time t > 1, the forecaster has access to K > 1 base forecasts

ŷ
(k)
t ∈ R, k = 1, . . . ,K, and that for some known bound Y > 0 on the observations, the forecaster predicts

at time t as

ŷt ,
K∑
k=1

pk,t
[
ŷ
(k)
t

]
Y
.

In the equation above, [x]Y , min{Y,max{−Y, x}} for all x ∈ R, and the weight vectors pt ∈ RK are given
by p1 = (1/K, . . . , 1/K) and, for all t = 2, . . . , T , by

pk,t ,
exp

(
−η
∑t−1
s=1

(
ys −

[
ŷ
(k)
s

]
Y

)2)
∑K
j=1 exp

(
−η
∑t−1
s=1

(
ys −

[
ŷ
(j)
s

]
Y

)2) , 1 6 k 6 K ,

for some inverse temperature parameter η > 0 to be chosen below. The next lemma is a straigthforward
consequence of Theorem 3.2 and Proposition 3.1 of [17].

Lemma 6 (Exponential weighting with clipping). Assume that the forecaster knows beforehand a bound
Y > 0 on the observations |yt|, t = 1, . . . , T . Then, the exponentially weighted average forecaster tuned with
η 6 1/(8Y 2) and with clipping [ · ]Y satisfies

T∑
t=1

(
yt − ŷt

)2
6 min

16k6K

T∑
t=1

(
yt − ŷ(k)t

)2
+

lnK

η
.

Proof (of Lemma 6): The proof follows straightforwardly from Theorem 3.2 and Proposition 3.1 of [17].
To apply the latter result, recall from [14, Remark 3] that the square loss is 1/(8Y 2)-exp-concave on [−Y, Y ]
and thus η-exp-concave19 (since η 6 1/(8Y 2) by assumption). Therefore, by definition of our forecaster
above, Theorem 3.2 and Proposition 3.1 of [17] yield

T∑
t=1

(
yt − ŷt

)2
6 min

16k6K

T∑
t=1

(
yt −

[
ŷ
(k)
t

]
Y

)2
+

lnK

η
.

To conclude the proof, note for all t = 1, . . . , T and k = 1, . . . ,K that |yt| 6 Y by assumption, so that

clipping the base forecasts to [−Y, Y ] can only improve prediction, i.e.,
(
yt −

[
ŷ
(k)
t

]
Y

)2
6
(
yt − ŷ(k)t

)2
.

Appendix C. Additional tools

The next approximation argument is originally due to Maurey, and was used under various forms, e.g.,
in [1, 2, 3, 4] (see also [5]).

18Note that for all A > 0, the function x 7→ x ln(1 +A/x) (continuously extended at x = 0) has a nonnegative first derivative
and is thus nondecreasing on R+.

19This means that for all y ∈ [−Y, Y ], the function x 7→ exp
(
−η(y − x)2

)
is concave on [−Y, Y ].
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Lemma 7 (Approximation argument). Let U > 0 and m ∈ N∗. Define the following finite subset of B1(U):

B̃U,m ,


(
k1U

m
, . . . ,

kdU

m

)
: (k1, . . . , kd) ∈ Zd,

d∑
j=1

|kj | 6 m

 ⊂ B1(U) .

Then, for all (xt, yt)16t6T ∈
(
Rd × R

)T
such that max16t6T ‖xt‖∞ 6 X,

inf
u∈B̃U,m

T∑
t=1

(yt − u · xt)2 6 inf
u∈B1(U)

T∑
t=1

(yt − u · xt)2 +
TU2X2

m
.

Proof: The proof is quite standard and follows the same lines as [1, Proposition 5.2.2] or [3, Theorem 2]
who addressed the aggregation task in the stochastic setting. We rewrite this argument below in our online
deterministic setting.

Fix u∗ ∈ argminu∈B1(U)

∑T
t=1(yt − u · xt)2. Define the probability distribution π = (π−d, . . . , πd) ∈ R2d+1

+

by

πj ,



(u∗j )+

U
if j > 1;

(u∗j )−

U
if j 6 −1;

1−
d∑
j=1

|u∗j |
U

if j = 0 .

Let J1, . . . , Jm ∈ {−d, . . . , d} be i.i.d. random integers drawn from π, and set

ũ ,
U

m

m∑
k=1

eJk ,

where (ej)16j6d is the canonical basis of Rd, where e0 , 0, and where e−j , −ej for all 1 6 j 6 d. Note

that ũ ∈ B̃U,m by construction. Therefore,

inf
u∈B̃U,m

T∑
t=1

(yt − u · xt)2 6 E

[
T∑
t=1

(yt − ũ · xt)2
]
. (C.1)

The rest of the proof is dedicated to upper bounding the last expectation. Expanding all the squares
(yt − ũ · xt)2 = (yt − u∗ · xt + u∗ · xt − ũ · xt)2, first note that

E

[
T∑
t=1

(yt − ũ · xt)2
]

=
T∑
t=1

(yt − u∗ · xt)2 +

T∑
t=1

E
[
(u∗ · xt − ũ · xt)2

]
+ 2

T∑
t=1

(yt − u∗ · xt)E
[
u∗ · xt − ũ · xt

]
. (C.2)

But by definition of ũ and π,

E
[
ũ
]

= U E
[
eJ1
]

= U

d∑
j=−d

πjej

= U

d∑
j=1

((
u∗j
)
+

U
ej +

(
u∗j
)
−

U
(−ej)

)
= U

d∑
j=1

u∗j
U

ej = u∗ ,
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so that E
[
ũ · xt

]
= u∗ · xt for all 1 6 t 6 T . Therefore, the last sum in (C.2) above equals zero, and

E
[(
u∗ · xt − ũ · xt

)2]
= Var

(
ũ · xt

)
=
U2

m2

m∑
k=1

Var
(
eJk · xt

)
6
U2X2

m
,

where the second equality follows from ũ · xt = (U/m)
∑m
k=1 eJk · xt and from the independence of the Jk,

1 6 k 6 m, and where the last inequality follows from |eJk · xt| 6 ‖eJk‖1 ‖xt‖∞ 6 X for all 1 6 k 6 m.

Combining (C.2) with the remarks above, we get

E

[
T∑
t=1

(yt − ũ · xt)2
]
6

T∑
t=1

(yt − u∗ · xt)2 +
TU2X2

m

= inf
u∈B1(U)

T∑
t=1

(yt − u · xt)2 +
TU2X2

m
,

where the last line follows by definition of u∗. Substituting the last inequality in (C.1) concludes the
proof.

The combinatorial result below (or variants of it) is well-known; see, e.g., [2, 3]. We reproduce its proof for
the convenience of the reader. We use the notation e , exp(1).

Lemma 8 (An elementary combinatorial upper bound).
Let m, d ∈ N∗. Denoting by |E| the cardinality of a set E, we have∣∣∣∣∣∣

(k1, . . . , kd) ∈ Zd :

d∑
j=1

|kj | 6 m


∣∣∣∣∣∣ 6

(
e(2d+m)

m

)m
.

Proof (of Lemma 8): Setting (k′−j , k
′
j) ,

(
(kj)−, (kj)+

)
for all 1 6 j 6 d, and k′0 , m −

∑d
j=1 |kj |, we

have ∣∣∣∣∣∣
(k1, . . . , kd) ∈ Zd :

d∑
j=1

|kj | 6 m


∣∣∣∣∣∣ 6

∣∣∣∣∣∣
(k′−d, . . . , k

′
d) ∈ N2d+1 :

d∑
j=−d

k′j = m


∣∣∣∣∣∣

=

(
2d+m

m

)
(C.3)

6

(
e(2d+m)

m

)m
. (C.4)

To get inequality (C.3), we used the (elementary) fact that the number of 2d + 1 integer-valued tuples
summing up to m is equal to the number of lattice paths from (1, 0) to (2d + 1,m) in N2, which is equal
to
(
2d+1+m−1

m

)
. As for inequality (C.4), it follows straightforwardly from a classical combinatorial result

stated, e.g., in [21, Proposition 2.5].
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