Skip to main content

Least Absolute Deviation Cut

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

  • 1849 Accesses

Abstract

The paper discussed a new additive extension of minimum cut by simultaneously minimizing intra cluster similarity bias and inter cluster similarity, Least Absolute Deviation Cut (LAD cut). The LAD cut can be proved convergent in finite iterative steps, and its theoretical conditions that the LAD cut can work well is also presented. Furthermore, its computational complexity is also analyzed. Numerical experimental results show that LAD cut may be useful for image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreetto, M., Zelnik-Manor, L., Perona, P.: Non-parametric probabilistic image segmentation. In: ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  2. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors: a multilevel approach. IEEE Transaction on Pattern Analysis and Machine Intelligence 29, 1944–1957 (2007)

    Article  Google Scholar 

  3. Ding, C.H.Q., He, X., Zha, H., Gu, M., Simon, H.D.: A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings of IEEE International Conference on Data Mining, pp. 107–114 (2001)

    Google Scholar 

  4. Ester, M., Kriegel, H.-P., Jörg, S., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  5. Fischer, B., Buhmann, J.M.: Bagging for path-based clustering. IEEE Transaction on Pattern Analysis and Machine Intelligence 25(11), 1141–1145 (2003)

    Article  Google Scholar 

  6. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Transactions Computer Aided Design 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  7. Huber, P.J.: Robust Statistics. John Wiley and Sons, New York (1981)

    Book  MATH  Google Scholar 

  8. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  9. Kadir, T., Brady, M.: Saliency, scale and image description. International Journal of Computer Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  10. Koenderink, J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, M.: Generating additive clustering models with limited stochastic complexity. Journal of Classification 19(1), 69–85 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X., Tian, Z.: Optimum cut-based clustering. Signal Processing 87(11), 2491–2502 (2007)

    Article  MATH  Google Scholar 

  13. Martin, D.R., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, pp. 416–423 (2001)

    Google Scholar 

  14. Shepard, R.N., Arabie, P.: Additive clustering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review 86(2), 87–123 (1979)

    Article  Google Scholar 

  15. Shi, J.B., Malik, J.: Normalized cuts and image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  16. Stoer, M., Wagner, F.: A simple min-cut algorithm. Journal of ACM 44(4), 585–591 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wei, Y.-C., Cheng, C.-K.: Towards efficient hierarchical designs by ratio cut partitioning. In: Proc. IEEE Int. Conf. on Computer-Aided Design, pp. 298–301 (1989)

    Google Scholar 

  19. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  20. Zahn, C.: Graphic-theoretic methods for detecting and describing gestalt clusters. IEEE Trans. Computers 20, 68–86 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, J., Jing, L. (2011). Least Absolute Deviation Cut. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics