Implementation Architecture and
Multithreaded Runtime System of S-Net

Clemens Grelck!? and Frank Penczek?

! University of Amsterdam, Institute of Informatics
Science Park 107, 1098 XG Amsterdam, Netherlands
c.grelck@uva.nl
2 University of Hertfordshire, School of Computer Science
Hatfield, Herts, AL10 9AB, United Kingdom
{f .penczek,c.grelck}@herts.ac.uk

Abstract. S-NET is a declarative coordination language and compo-
nent technology aimed at modern multi-core/many-core architectures
and systems-on-chip. It builds on the concept of stream processing to
structure networks of communicating asynchronous components, which
can be implemented using a conventional (sequential) language. In this
paper we present the architecture of our S-NET implementation. Af-
ter sketching out the interplay between compiler and runtime system,
we characterise the deployment and operational behaviour of our mul-
tithreaded runtime system for contemporary multi-core processors. Pre-
liminary runtime figures demonstrate the effectiveness of our approach.

1 Introduction

The free lunch is over! Excessive power consumption and heat dissipation have
eventually set an end to clock frequency scaling, and the current trend in pro-
cessor architecture is to go multi-core [1]. Small-scale dual-core and quad-core
processors already dominate the consumer market while the roadmaps of all ma-
jor hardware manufacturers promise a steep rise in the number of cores [2]. At
the same time, massively parallel processors (e.g. GPGPUs, accelerator boards)
already offer a degree of parallelism in computing resources that very recently
could only be found in dedicated supercomputing installations [3].

This hardware trend towards multi-core/many-core designs puts immense
pressure on software manufacturers: For the first time in history software does
not automatically benefit from a new generation of hardware as was charac-
teristic for the era of clock frequency scaling. Software must become parallel
in order to benefit from future processor generations! However, to the present
day software is predominantly sequential adhering to the von Neumann model
of computing. While parallel computing is an established discipline, it has al-
ways been confined to supercomputing application areas and installations. Now,
parallel computing must go mainstream, but the existing tools and technologies
were developed for experts in the niche, not for the mainstream.

S-NET [4] is a novel approach to ease parallelisation of existing and new
applications. It builds on separation of concerns as the key design principle:
an application engineer uses domain-specific knowledge to provide application
building blocks of suitable granularity in the form of (rather conventional) func-
tions that map inputs into outputs. In a complementary way, a concurrency
engineer uses his expert knowledge on target architectures and concurrency in
general to orchestrate the (sequential) building blocks into a parallel applica-
tion. In fact, S-NET turns regular functions/procedures implemented in a con-
ventional language into asynchronous, state-less components communicating via
uni-directional streams. The choice of a component language solely depend on
the application domain of the components itself. In principle, any conventional
programming language can be used, and a single S-NET network can manage
components implemented using different languages.® Fig. 1 shows an example of
an S-NET streaming network.

e ®

Fig. 1: Tllustration of an S-NET streaming network of asynchronous components

Note that any base component is characterised by a single input and a single
output stream. This restriction is motivated, again, by the principle of sepa-
ration of concerns: The concern of a box is mapping input values into output
values, whereas its purpose within a streaming network is entirely opaque to the
box itself. Concurrency concerns like synchronisation and routing that imme-
diately become evident if a box had multiple input streams or multiple output
streams, respectively, are kept away from boxes. Our solution achieves a near-
complete separation of computing and coordination aspects. We have identified
four fundamental construction principles for streaming networks:

— serial composition of two (potentially) different components where the out-
put stream of one component becomes the input stream of another compo-
nent;

— parallel composition of two (potentially) different networks where some rout-
ing oracle decides on which branch data takes;

— serial replication of a single network where data is streamed through the
same network a dynamically determined number of times; and

— indezed parallel replication of a single network where an index attached to
the data determines which branch (or which replica of the network) is taken.

3 There are, however, technical limitations on the interoperability of languages and on
the technical interplay between coordination and computation layer.

These four construction principles allow concurrency engineers to define complex
streaming networks of asynchronous components and to turn sequential code
blocks into a parallel application ready to effectively exploit the capabilities of
modern multi-core and many-core processors with very little effort.

This paper is the first to report on our implementation of S-NET. The ar-
chitecture of our implementation features a target independent compiler that
generates (C) code dominated by calling functions from the S-NET common
runtime interface. Multiple implementations of the common runtime interface
allow us to support varying concrete hardware platforms in a plug-in manner.
In this paper, we provide an in-depth description of our multithreading based
runtime system for contemporary multi-core processors with shared memory.
We will describe this runtime system at a level of abstraction such that it may
equally well serve as an operational semantics of S-NET.

It is a characteristic feature of our common runtime interface that it does
not prejudice any concrete representation of the streaming network. This proves
essential when it comes to supporting a wide range of target architectures with
highly varying demands and capabilities, e.g. microthreading on the MicroGrid
architecture [5,6]. As a consequence, it is up to any concrete runtime system to
define the dynamic representation of the streaming network, and runtime system
functionality naturally falls into one of two categories: network deployment and
network operation. The former is concerned with instantiating the streaming
network on the target platform while the latter defines the operational behaviour
of the network constituents. As we will see later, these two aspects are not
necessarily consecutive, but interleave in practice.

The specific contributions of the paper are the

presentation of the overall architecture of our S-NET implementation;
— formal description of network deployment;

— formal specification of the operational behaviour of components;

— implementation of guarantees for package ordering; and

— preliminary performance figures.

The remainder of the paper is organised as follows: In Section 2 we provide a
more detailed introduction to S-NET. Section 3 sketches out the architecture of
our S-NET implementation including compiler, runtime system and their inter-
play. Section 4 discusses network instantiation while the operational behaviour
of network components is described in Section 5. In Section 6 we elaborate on
package ordering. Eventually, we provide some preliminary runtime figures in
Section 7, discuss related work in Section 8 and conclude in Section 9.

2 S-Net in a nutshell

As a pure coordination language S-NET relies on a separate component language
to describe computations. Such components are named bozes in S-NET termi-
nology, their implementation language box language. Any box is connected to
the rest of the network by two typed streams: an input stream and an output

stream. Messages on these typed streams are organised as non-recursive records,
i.e. label-value pairs. Labels are subdivided into fields and tags. Fields are as-
sociated with values from the box language domain. They are entirely opaque
to S-NET. Tags are associated with integer numbers that are accessible both on
the S-NET and the box language level. Tag labels are distinguished from field
labels by angular brackets.

On the S-NET level, the behaviour of a box is declared by a type signature:
a mapping from an input type to a disjunction of output types. For example,

box foo ({a,} -> {c} | {c,d,<e>})
declares a box that expects records with a field labelled a and a tag labelled b.
The box responds with a number of records that either have just a field ¢ or
fields c and d as well as tag e. Both the number of output records and the choice
of variants are at the discretion of the box implementation alone.

As soon as a record is available on the input stream, a box consumes that
record, applies its box function to the record and emits the resulting records
on its output stream. In the simple but common case of a one-to-one mapping
between input and output records the box function’s result value may determine
the output record. In the general case, our box language interface provides a box
language specific abstraction named snet_out to dynamically produce output
records during the execution of the box function. As soon as the evaluation of
the box function is complete, the S-NET box is ready to receive and process the
next input record.

S-NET boxes are stateless by definition, i.e., the mapping of an input record
to a stream of output records is free of side-effects or, in other words, purely
functional. We exploit this property for cheap relocation and re-instantiation
of boxes; it distinguishes S-NET from conventional component technologies. In
particular if boxes are implemented using imperative languages, S-NET, how-
ever, can only guarantee that box functions actually adhere to the box language
contract as far as the box language supports such guarantees. This is in the end
the same in any functional language that supports calling non-functional code.

In fact, the above type signature makes box foo accept any input record that
has at least field a and tag , but may well contain further fields and tags.
The formal foundation of this behaviour is structural subtyping on records: Any
record type t; is a subtype of o iff to C ¢;. This subtyping relationship extends
nicely to multivariant types, e.g. the output type of box foo: A multivariant type
x is a subtype of y if every variant v € x is a subtype of some variant w € y.

Subtyping on the input type of a box means that a box may receive input
records that contain more fields and tags than the box is supposed to process.
Such fields and tags are retrieved from the record before the box starts processing
and are added to each record emitted by the box in response to this input record,
unless the output record already contains a field or tag of the same name. We
call this behaviour flow inheritance. In conjunction, record subtyping and flow
inheritance prove to be indispensable when it comes to making boxes that were
developed in isolation to cooperate with each other in a streaming network.

It is a distinguishing feature of S-NET that we do not explicitly introduce
streams as objects. Instead, we use algebraic formulae to define the connectivity

of boxes. The restriction of boxes to a single input and a single output stream
(SISO) is essential for this. As pointed out earlier, S-NET supports four network
construction principles: static serial/parallel composition and dynamic serial/-
parallel replication. We build S-NET on these construction principles because
they are pairwise orthogonal, each represents a fundamental principle of compo-
sition beyond the concrete application to streaming networks (i.e. serialisation,
branching, recursion, indexing), they naturally express the prevailing models of
parallelism (i.e. task parallelism, pipeline parallelism, data parallelism) and, last
not least, we believe that these four principles are sufficient to construct all
useful streaming networks. The four network construction principles are embod-
ied by network combinators. They all preserve the SISO property: any network,
regardless of its complexity, again is a SISO component.

Let A and B denote two S-NET networks or boxes. Serial composition (denoted
A..B) constructs a new network where the output stream of A becomes the
input stream of B while the input stream of A and the output stream of B
become the input and output streams of the compound network, respectively.
As a consequence, instances of A and B operate asynchronously is a pipelined
fashion. In the intuitive example of Fig. 1 serial composition can be identified
between the left, the middle and the right subnetworks.

Parallel composition (denoted (A|B)) constructs a network where all incom-
ing records are either sent to A or to B and the resulting record streams are
merged to form the overall output stream of the compound network. By means
of type inference [7] we associate each operand network with a type signature
similar to the annotated type signatures of boxes. Any incoming record is di-
rected towards the operand network whose input type better matches the type of
the record itself. If both branches in the streaming network match equally well,
one is selected non-deterministically. The example network in Fig. 1 features
parallel composition in combining A and B.

Serial replication (denoted A*type) constructs a conceptually infinite chain
of instances of A. The chain is tapped before every instance to extract records
that match the type pattern given as right operand (i.e. the record’s type is a
subtype of specified type). Such records are merged into the output stream. In
a simplifying view Fig. 1 illustrates serial replication as a feedback loop. While
in a completely stateless setting feedback and replication are equivalent, the
presence of synchronisation facilities (see below) requires us to make this subtle
difference. From a conceptual point of view, their relationship resembles that of
recursion and iteration; from a pragmatic point of view, the separation of data
in different instances of the operand network contributes to an orderly system
behaviour.

Indexed parallel replication (denoted A!<tag>) replicates instances of A in
parallel. Unlike in static parallel composition we do base routing on types and
the best-match rule, but on a tag specified as right operand. All incoming records
must feature this tag; its value determines the instance of the left operand the
record is sent to. Output records are non-deterministically merged into a single
output stream similar to parallel composition. In Fig. 1 we can identify parallel

replication of network C. To summarise we can express the S-NET sketched out
in Fig. 1 by the following expression:

(AIB) .. (C!'<t>)*{p} .. D
assuming previous definitions of A, B, C and D. While this example remains in
the abstract, concrete S-NET applications can be found in [8,9].

Last not least, S-NET features a synchronisation component that we call syn-
chrocell; it takes the syntactic form [| type, type |]. Similar to serial replication
the types act as patterns for incoming records. A record that matches one of the
patterns is kept in the synchrocell. As soon as a record arrives that matches the
other pattern, the two records are merged into one, which is forwarded to the
output stream. Incoming records that only match previously matched patterns
are immediately forwarded to the output stream. Hence, a synchrocell becomes
an identity after successful synchronisation and may be removed by a runtime
system. The extremely simplified behaviour of synchrocells captures the essential
notion of synchronisation in the context of streaming networks. More complex
synchronisation behaviours, e.g. continuous synchronisation of matching pairs in
the input stream, can easily be achieved using synchrocells and network combi-
nators. See [8] for more details on this and on the S-NET language in general.

3 Implementation architecture

The implementation architecture of S-NET is designed in a modular fashion: We
can identify two self-contained modules, the compiler and the runtime system.
We will focus on the runtime system in the remainder of this paper, but nev-
ertheless briefly present the entire system design in Fig. 2 to give a complete
picture of our overall approach. In this two-layered architecture, a network is
transformed into three conceptually different network representations while it is
being processed by the system.

parser
context checker
Compiler: type inference CRI Deployment Functions
optimiser
code generator
JL Runtime Components
Common Runtime Interface @ﬁ {ﬂ} {ﬂ} {ﬂ} @ﬁ
Micro- . Multi-| Types & . Box
Threaded S:queptlal Threadé— 110 Patterns Threading [Streams Iﬁtnégr\;:g:
Runtime Suntlme Runtime %
System ystem System

Fig. 2: The system consists of a compiler and various runtime system implementations

To illustrate this process of transformation from user-written code to an actu-
ally executed program, we apply the presented transformations to our running
example. The S-NET compiler represents the example network from previous

sections as the tree shown in Fig. 3. On this abstract syntax tree (AST) rep-
resentation, the compiler carries out various optimisation and annotation tasks
in addition to the most important task of type inference [7]. From user-defined
types and patterns and from the inferred information, the compiler generates de-
cision functions. The runtime system applies these functions to incoming records
to determine routing of records and match records against patterns. We illus-
trate the compilation process in Fig. 3.The final stage of the compiler is code
generation. Here, the compiler generates a textual representation of the AST.
This representation of the network is a portable format we refer to as common
runtime interface (CRI) representation.

N SN
/N /\ VRN /\
A B *\ D comptilation ABdéd * D

e v—
!/{p} process !/ \E
/\ /\
C <t> C v

Fig. 3: The S-NET compiler reads in a network description and annotates the parse tree
with runtime-specific information, as for example decision functions (e, v,d), without
dissolving the tree structure as such.

The CRI decouples the compilation process from the runtime system. The
compiler does not dissolve the hierarchical structure of the network, which leaves
this traditional compiler task to the runtime system. This achieves high flexibility
for runtime system implementors: as the compiled structure still features a high
level of abstraction, the actual decomposition, i.e. the interpretation of the CRI
format, takes places in the runtime system according to the target architecture.
This approach turns the compiler into a universal component which we can re-use
for any concrete implementation of a runtime system.

The transformation from CRI format to the final and actually executed rep-
resentation of the network is carried out by a component that any runtime-
system implementation has to provide: the deployer. The deployer is specific to
a runtime-system as it implements the final transformation of the network rep-
resentation. As this is an integral part of the runtime system, it is presented in
great detail in the following section. As mentioned above, the concrete imple-
mentation of the runtime representation is entirely decoupled from any stages
above the deployer. For the time being, we are targeting three destination archi-
tectures:

— sequential execution,
— multithreading based on PTHREADS and
— microthreading based on pTC [5].

In this paper, however, we solely focus on the multi-threaded implementation
based on PTHREADS. The main idea of this implementation is to break down
the network into smaller runtime components which are connected to each other
by buffered streams. The compiled program which is being executed in this
implementation resembles the intuitive view of a network in which data elements
are flowing from component to component for processing.

The general implementation design of the runtime system is illustrated in
Fig. 2(right): Apart from the deployer, the runtime system consists of several
smaller modules for type and pattern representation, thread management, com-
munication, box language interfacing, and general I/O. These modules provide
functionality for the runtime components, which form the core of the runtime
system. These components implement the runtime behaviour of all S-NET com-
binators.

4 Network deployment

The deployment process transforms the compiler-generated CRI representation
of a network into a network of runtime components. In this section we will take
a closer look at this process for each S-NET entity. In the presented source code,
we shall use a teletype font for identifiers if these refer to streams.

The deployment of box and synchrocell (Fig. 4) connects an inbound stream
to the appropriate runtime component. From the stream, the box resp. syn-
chrocell reads inbound records for processing. Result records produced by the
component are sent out via an outbound stream, which is created by the de-
ployer by calling new Stream(). In addition to these streams, both components
require auxiliary parameters: For the deployment of the synchrocell, the com-
piler generates two decision functions, p, and up, from the user-defined patterns
of the synchrocell. For box deployment, the user-defined, internal behaviour f of
the box (the box implementation) is required. Additionally, the box component
also requires a compiler-generated type encoding 7 of the box’s input type. The
purpose of these parameters are explained in greater detail in Section 5. The
runtime components are started by a call to spawn.

The new and spawn functions are high-level abstractions of the rather low-level
code of the PTHREADS implementation. We do this for the sake of presentation,
as the concrete code is less concise (but trivial).

The simplest case of combinator deployment is the deployment of a serial
combinator (Fig. 5). Both operands are deployed recursively. The inbound stream
is connected to the first operand. The outbound stream of the deployed first
operand is connected to the second operand, whose outbound stream constitutes
the outbound stream of the compound runtime component network, representing
this serial combination.

The deployment of the choice combinator (Fig. 5) requires two runtime com-
ponents in addition to the components of its operands. These additional com-
ponents implement the implicit splitting and merging points of streams in an
S-NET choice combination. The dispatcher, a multi-outbound stream compo-

2 (box, f, in) =
let out = new Stream ()
box = spawn Box(in, f, T, out)
in out
2 ([l pas pol], in) =
let out = new Stream ()
sync = spawn Sync(in, pe, My, out)
in out

Fig. 4: Deployment of box and synchrocell

nent, forwards inbound records to one of the operands. The output streams of
the operands are connected to a complementary multi-inbound stream compo-
nent, the collector. The collector aggregates the output streams of the operands
and bundles these to a single output stream. The CRI representation of the
choice combinator requires a decision function §, which the compiler generates.
The dispatcher evaluates this function for each inbound record to determine
routing destinations. The deployment of the choice combinator also deploys the
operands of the combinator. This recursive process only ends once an operand
does not have any more operands, i.e., if it is a box or synchrocell.

2(A .. B, in) = let out = Z(A, in) in 2(B, out)
2(A |s B, in) =
let opin; = new Stream ()
opin, = new Stream ()
disp = spawn ChoiceDispatch(in, ¢, opin;, opin,)
opout; = 2 (A, opin;)
opout, = 2(B, opin,)
out = new Stream ()
coll = spawn Collector (nil, {opout,,opout,} ,out)
in out
2 (A *c, in) =
let ctrl = new Stream ()
bypass = new Stream ()
disp = spawn StarDispatch(in, A, €, ctrl, nil, bypass)
out = new Stream ()
coll = spawn Collector (ctrl, {bypass}, out)
in out
2(Al,, in) =
let ctrl = new Stream ()
disp = spawn SplitDispatch(in, A, v, ctrl, 0)
out = new Stream ()
coll = spawn Collector (ctrl, 0, out)
in out

Fig. 5: Deployment of combinators

Similar to the choice deployment, the deployment of a star combinator
(Fig. 5) also sets up a dispatcher and a collector. The operand of the star, how-

ever, is not deployed yet — its deployment is fully demand-driven and postponed
until runtime. For this reason, the operand is passed directly to the dispatcher,
in conjunction with a compiler-generated decision function e. The dispatcher
calls the deployment function for the operand only when needed, driven by the
outcome of the decision function. As the operand network of the star combi-
nator may evolve (unfold) over time, the associated collector has to be able to
manage a potentially growing set of inbound streams. A control stream between
dispatcher and collector is set up to serve the purpose of communicating the
appearance of new streams to the collector.

From the deployment perspective, the split combinator (Fig. 5) is very sim-
ilar to the star combinator. The operand instantiation is demand driven and
triggered by a decision function v. After the initial deployment, no operand in-
stance is present, and thus, the stream set of the collector is empty. A control
stream is established between dispatcher and collector to register the outbound
streams of dynamically created, new instances of the operand.

To illustrate the deployment process, the resulting component network for
the running example is shown in Fig. 6(a). Instances of C' and the surrounding
splitter are not built by the deployment process until required. Instead, only
an initial connection between the star dispatcher and its collector ensures that
the network is fully connected. While processing records, instances of the star
operand and the split operand are spawned demand-driven. The component
network as it has developed after one instance of the star operand and three
instances of the split operand have been built is shown in Fig. 6(b).

(a)

S
()
[V =
ol
[<]

£33
0w
a

o
0

Collector
Star
Dispatcher

(b)

Collector

-
o
-
3
g
°
O

Split
Dispatcher

Choice
Dispatcher

Star
Dispatcher

o
]

Fig. 6: Deployed component network of example network which initially only contains
A, B, D (a) Remaining operands are deployed demand-driven (b)

5 Operational behaviour of components

We continue denoting streams by identifiers set in teletype. Concatenation of
records and streams are denoted by < (append as prefix) and > (append as
suffix). Each definition of a component starts with the keyword Thread to
emphasise the fact, that the component is executed as a thread. Case differen-
tiations are introduced by a | in the source code, guard expressions of cases by
the keyword when.

The synchrocell component implements two main tasks. Firstly, it stores
records if they match the specified synchronisation pattern. The procedure here
again relies on match functions: The compiler generates one match function
for each synchrocell pattern. Secondly, the component merges records, once all
pattern have been matched. We model record storage as parameters to the com-
ponent function, which serves a dual purpose. It stores the records if they match
a pattern and also encodes the state of the synchrocell. The state determines
the synchrocell’s operations, depending on which pattern was matched by an
inbound record. A synchrocell of two patterns (see Fig. 7; if a storage parameter
does not hold a record yet, this is indicated by -) and two match functions p,
and up, has the following possible states and transitions:

’State\ la \ b \ Description (current) \ Action \Next state‘
-- | e initial state store record q-
- - ° initial state store record -q
-~ | e | @ initial state output id
q-| e first pattern was matched output q-
q- e | first pattern was matched |merge and output id
q- | e | e | first pattern was matched |merge and output id
-q | e second pattern was matched|merge and output id
-q e (second pattern was matched output -q
-q | ® | e |second pattern was matched| merge andoutput id
id |n/aln/a| sync replaced by identity output id

When a record is stored in the synchrocell, all constituents of the record which
are not part of the pattern, are stripped out. This is implemented by the strip
function which uses the decision functions to determine which record constituents
are to be removed. Only the remainder is stored for the merging process. If
a record matches a pattern for which a record has already been stored, the
output action forwards the record to the outbound stream out. A record that
matches the last remaining previously unmatched pattern, is merged if a record
is available in storage, and simply output otherwise. Record merging is defined
by the flow inheritance operator, which is presented in Fig. 7. For clarity, we
presented an implementation where the sync component is replaced by an Id
component after the last pattern has been matched. The Id component forwards
all inbound records directly to the outbound stream. In practice, however, dead
synchrocells are completely removed in a garbage collection step, where the cell’s
inbound stream is directly connected to its successor component.

The box component is a connector from the S-NET domain to the box lan-
guage domain. The box component calls the box function and provides it with
an inbound record and the inbound type 7 of the S-NET box. The box function
may produce an arbitrary amount of records during its execution, each of which
needs to flow inherit fields from the original inbound record. To make this pro-
cess convenient for a box programmer, an SNetOut function is provided. This
function expects one result record at a time, carries out flow inheritance and
writes the record to the outbound stream. For each output the box produces,
it calls SNetOut. After the execution of the box functions finishes, control is
returned to the box component.

Thread Box(r<in, f, 7, out) =
let t> = f(r, 7, out)
in Box(in, f, 7, t’)

fun SNetOut(r, 7, res, out) =
let f =1\~
rf = f > res

in outprf
Thread Sync(r<in, pe, Mo, -, -, out) when p,(r) A pp(r) =
Id(in, outDr)
| Sync(r<in, pe, Hp, -, -, out) when p,(r) =
let q = strip(r, pq)
in Sync(in, pa, py, q, -, out)
| Sync(r<in, pa, gy, -, -, out) =
let q = strip(r, wp)
in Sync(in, fia, pp, -, d, out)
| Sync(r<in, pa, pb, 4, -, out) when -y (r) =
Sync(in, pa, pp, d, -, out>r)
| Sync(r<in, fpta, gy, q, -, out) =

let m = rixgq
in Id(in, outD>m)

Thread Id(r<in, out) = Id(in, outpr)

fun infix < fr =rU(f\r)

Fig. 7: Implementation of sync, box and flow-inheritance operator

The collector (Fig. 8) is a multi-inbound stream component. This component
is used where multiple operand streams are merged into one single outbound
stream. The collector keeps all streams that it monitors in a stream set .S. When
records become available on any of the streams in the set, the record is read from
the stream and forwarded to the outbound stream out. The collector is always
deployed as part of a dispatcher-collector pair, with a control stream connecting
these two. The registration of new channels is implemented using this control
stream: Dispatchers send streams of dynamically created operand instances via
ctrl to the collector, where the streams are added to the stream set.

The choice dispatcher is a multi-outbound stream component. It reads records
from its single inbound stream, and forwards the records over one of the out-
bound streams to the operand networks. The compiler-generated § function is an

integral part of this process. The compiler generates this function from the input
types of the choice operands. Applied to a record r, d returns an integer value
n, depending on which operand input type the record matched. The dispatcher
shown in Fig. 8 reads a record r from the inbound channel in. If § applied to r
evaluates to 1, the record is forwarded to the inbound channel opin, of the first
operand, and to the second operand via opin, otherwise. We chose to design
0 as a function to integers and not to a binary set, which would be sufficient
for this purpose. The integer domain enables us to implement an optimisation
to reduce the overhead that multiple dispatcher would cause. The optimisation
maps an n-fold choice combination to a single, n-channel choice dispatcher, as
opposed to n — 1 binary dispatchers.

The main purpose of the star dispatcher (Fig. 8) is to decide, whether an
inbound record matches the exit pattern of the star combinator or not. If the
record matches, the dispatcher sends the record to the outbound stream. If the
record does not match the pattern, the dispatcher sends the record to the operand
network. To make this decision, the dispatcher employs a decision function m.
This function is generated by the compiler from the exit pattern of the star
combinator. When applied to a record, the decision function evaluates to true,
if the record matches the exit pattern, and to false otherwise. The instantiation
of operands is demand-driven, and hence the star dispatcher is initially not
connected to any operand. After deployment, the only connections the dispatcher
maintains are an outbound channel (bypass, bps) and a control channel (ctrl) to
the collector. The operand has not been deployed, and the continuation stream
cont not yet been built. This setup does not change, as long as all inbound
records match the exit pattern. The dispatcher immediately sends matching
records via b to the collector. In case a record does not match the pattern,
the operand is deployed.To do this, the cont stream is created and connected
as inbound stream to the operand. The dispatcher now sends all records that
do not match the exit pattern to this continuation stream for processing by
the operand. As star is a feed-forward combinator, all output of the operand
is sent to a new instance of the combinator. This is achieved by instantiating
a new dispatcher, in the same way the current dispatcher was set up by the
deployment function. No new collector needs to be instantiated: The already
existing collector is notified via the control stream. The new dispatcher instance
sends all records that match the exit pattern via stream bps’ to the collector.
If the pattern is not matched, the described process repeats itself.

The split dispatcher (Fig. 8) sends records to the proper instance of its
operand. This instance is determined by the value of the given tag at runtime.
To read the tag value from a record, the compiler generates a function v. This
function returns the integer value of the appropriate tag from a record. The split
dispatcher deploys instances demand-driven, an thus, no instance is present ini-
tially. When a new instance is deployed, the inbound stream instance is added to
the set of served channels. The dispatcher associates the tag value with the in-
stance (more specifically, with the inbound stream) and sends the new outbound

stream to the collector. All future records, which carry the same tag value, will
be forwarded to this instance.

Thread Collect (in<ctrl, S, out) =
Collect (ctrl, {in}US, out)

| Collect (ctrl, {r<in}US, out) =
Collect (ctrl, {in}US, outDr)

Thread ChoiceDispatch(r<iin, é, outy, outz) when 6(r)=1 =

ChoiceDispatch(in, 4§, outy >r, outsy)

| ChoiceDispatch(r<in, §, out;, outy) =
ChoiceDispatch(in, §, out;, outalr)

Thread
StarDispatch(r<iin, N, m, ctrl, cont, bps) when m(r) =
StarDispatch(in, N, m, ctrl, cont, bpsi>r)
| StarDispatch(r<in, N, m, ctrl, nil, bps) =

let cont = new Stream ()
out = Z(N, contlr)
bps’ = new Stream ()

disp = spawn StarDispatch(out, N, m, ctrl, nil, bps’)
in StarDispatch(in, N, m, ctrl>bps’, cont, bps)
| StarDispatch(r<tin, N, m, ctrl, cont, bps) =
StarDispatch(in, N, m, ctrl, cont>r, bps)

Thread SplitDispatch(r<in, A, v, ctrl, {opiny(r)}US) =
SplitDispatch (in, A, v, ctrl, {opin, (. >r}US)

| SplitDispatch (r<in, A, v, ctrl, S) =

let opin, ., = new Stream ()

opout = Z(A, opin,(, >r)
in SplitDispatch (in, A, v, ctrli>opout, {opin,j(r)l>r}US)

Fig. 8: Implementation of combinator components

6 Guaranteeing causal record order

As explained in Section 2, parallel composition as well as serial and parallel
replication involve merging output streams in a non-deterministic way, i.e., any
record produced by some subnetwork proceeds as soon as possible. As a conse-
quence, records travelling on different branches through the network may over-
take each other, as Fig. 9 illustrates on the simple example of parallel composi-
tion. While merging streams in a non-deterministic way enables S-NET programs
to adapt to load distribution in concurrent systems and leads to efficient run-
time behaviour in general, there are situations where non-deterministic system
behaviour is undesirable. Therefore, S-NET provides deterministic variants of the
aforementioned combinators: | |,*#,!!.4 Unlike their non-deterministic counter-
parts described so far, they are guaranteed to maintain the causal order along

4 The choice of doubling the character of the non-deterministic combinator is moti-
vated by the observation that the serial combinator (. .) is the only original network
combinator that does maintain causal order on streams.

branches of the streaming network: any record created in one branch of the net-
work as a (potentially indirect) response to a record on the compound network’s
input stream precedes any other such record on the compound network’s output
stream that stems from a subsequent record on the input stream.

250" 150" 191721

Choice
Dispatcher

Collector

Fig. 9: Causal record order (r,75,r1,71,) is lost if records overtake each other

Both compilation and deployment are largely unaffected by the introduction
of deterministic combinators. They merely produce deterministic variants of the
dispatcher and collector components with identical argument sets as the non-
deterministic counterparts. However, the operational behaviour of deterministic
components deserves our attention. Fig. 10 shows our solution. We leave out
deterministic star and split dispatchers; their definition follows the same pattern
as illustrated by means of the choice dispatcher.

Conceptually, each record that enters a deterministic subnetwork is mapped
to a separate substream. Within the network, all records that are produced from
the inbound record, remain in the same substream. The dispatcher-collector
pair ensures, that any substream is completely output before any elements of
another substream are forwarded to the merged output stream. We implement
substreams by help of control records that act as stream delimiters. A control
record [l,c] has two attributes: a level [and a counter c. Only deterministic
dispatch components create control records. The counter value is increased for
each new control record to distinguish consecutive substreams. The purpose of
the level value is to identify correct dispatcher-collector pairs in the presence
of recursively nested deterministic and non-deterministic network combinators.
When a new record arrives at a deterministic dispatcher, a fresh control record
is sent ahead of the record itself to the appropriate output stream following
consultation of the oracle function §. Inbound control records are broadcast to
all branches with the level value incremented by one.

The deterministic collector, as shown in Fig. 10, complements the determinis-
tic (choice) dispatch, but in fact this collector is used to implement deterministic
replication combinators as well. This collector ensures that different substreams
appearing on its inout streams are forwarded to its output stream without in-
terleaving and in the right order. To achieve this, the collector maintains two
stream sets: The ready set R contains all streams on which the collector actively
snoops for input while the waiting set W contains those input streams that are
currently blocked.

(A |ls B, in) =

let opin; = new Stream ()
opin, = new Stream ()
disp = spawn DetChoiceDispatch(in, 6, 1, opin,, opin,)

opout; = 2 (A, opin,)

opout, = Z2(B, opin,)

out = new Stream ()

coll =

spawn DetCollect (nil,{opout,,opout, },0,1,-,out)
in out

Thread
DetChoiceDispatch([l,c]<in, &, cnt, opin;, opin,) when [>0 =
DetChoiceDispatch(in, §, ent, opin;>[l+1,c], opin,>>[l+1,¢c])
| DetChoiceDispatch(r<in, ¢, cnt, opin;, opin,) =
if 6(r)=1
then DetChoiceDispatch(in, &, cnt+ 1, opin,>[0,cnt]>r, opin,)
else DetChoiceDispatch(in, &, cnt+ 1, opin,, opin,>[0,cnt]>r)

Thread
DetCollect (ctrl, {[0,c]<in}UR, W, cnt, tosend, out) =
if c=cnt
then DetCollect(ctrl, {infUR, W, cnt, tosend, out)
else DetCollect(ctrl, R, {[0,c]<in} UW , cnt, tosend, out)
| DetCollect(ctrl, {[l,c]<in}UR, W, cnt, tosend, out) =
DetCollect (ctrl, R, {in}UW, ecnt, [l,c], out)
| DetCollect(ctrl, {r<in}UR, W, cnt, tosend, out) =
DetCollect (ctrl, {in}UR, W, cnt, tosend, outDr)
| DetCollect(ctrl, @, W, cnt, -, out) =
DetCollect (ctrl, W, W, cnt+1, out)
| DetCollect(ctrl, 0§, W, cnt, [l,c], out) =
DetCollect (ctrl, W, W, cnt, -, outd[l—1,c])
| DetCollect(in<ectrl, R, W, cnt, tosend, out) =
DetCollect (ctrl, {in} UR, W, cnt, tosend, out)

Fig. 10: Deployment and implementation of deterministic choice combinator

When a control record appears on one of the ready input streams that was
emitted by the dispatch component corresponding to this collector (level 0),
we check its counter: if the counter coincides with the internal counter of the
collector (ent), it marks the beginning of the next substream to be sent to the
collector’s output. If so, the corresponding input stream remains in the ready
set and the control record is discarded. Otherwise, the input stream is moved
from the ready set to the waiting set without consuming the control record.

Any control record that belongs to an outer dispatcher-collector pair (level
> 0) appearing on a ready input stream causes that stream to be moved to the
waiting set while the control record is stored in the collector. Keep in mind that
the corresponding dispatcher had broadcast this control record to all its output
streams. So, the collector must retrieve them sooner or later from all of its input
streams. Only after the last such instance of the control record has been received
by the collector, it may issue a single instance on the output stream.

Any regular record appearing on a ready input stream is immediately for-
warded to the output stream. Note that any normal record is preceded by the
control record identifying the substream the subsequent regular records belong
to. If an input stream is still in the ready set when a regular record arrives, this

means that this is the active substream to be issued on the output stream. Only
one such active input stream exists at a time. If there are still further input
streams in the ready set, then only because the corresponding control record has
not yet arrived.

If the ready set becomes empty, i.e. a followup control record appeared on the
previously active input stream indicating the end of that substream, we restore
a fresh ready set from the waiting set and increment the internal counter of the
collector. This step will make the collector identify the next active substream. In
case we have a pending control record belonging to an outer dispatcher-collector
pair, we forward it to the output stream with a decremented level counter.

Last not least, we may at any time receive a new input stream via the control
stream. In this case we add the new input stream to the ready set. This feature
of the collector is only used for implementing the deterministic replication com-
binators, that lead to dynamically evolving networks.

To make this scheme work, some minor extensions are required for non-
deterministic dispatchers and collectors: Dispatchers must broadcast control
records to all output streams without touching them. Collectors must gather
control records on the various input streams and discard all by one, which is
issued on the output stream.

7 Performance Evaluation

For a very preliminary performance evaluation we present runtimes obtained for
an application from the radar signal processing domain. In essence, the appli-
cation is a serial composition of signal processing functions, which are applied
to an incoming radar echo. The purpose of the application is to identify slowly
moving objects on the ground from the signal of an aircraft mounted radar an-
tenna. As classical Doppler radar approaches fail to produce good results in
this area, this application employs an adaptive technique, where signal filters
are computed at runtime, depending on incoming data. More detail about the
concrete implementation of the application is available in [8].

For the presented runtime measurements we have used three different plat-
forms: a conventional unicore processor (Machine A, Intel Celeron M with 1GB
of memory running Linux), a modern dual-core processor (Machine B, Intel Core
Duo with 2GB of memory running Linux) and a twofold dual-core multiproces-
sor (Machine C, 2x AMD Opteron 275 with 8GB of memory running Linux).
Fig. 11 shows the outcome of our experiments.

At first, we measure the processing time for one single record by feeding
one record at a time into the network. Any subsequent record is only sent once
the result of the previous record has been received. This results in sequential
processing and serves as a baseline for performance. In a second experiment,
we continuously feed records into the network and, thus, take advantage from
multiple processing resources. As Fig. 11 shows, we indeed achieve considerable
speedups on multi-core hardware by simply organising sequential legacy compo-
nents into an S-NET streaming network.

T T T T T

— ® runtime in seconds per record
Machine B (single)

T runtime in seconds per record

(pipelined)
Machine C _

Machine A

=)
«
N
o
-
&
N
o
N
o
w
S
w
@

Fig. 11: Preliminary performance measurements

8 Related work

The concept of stream processing has a long history (see [10] for a survey). The
view of a program as a set of processing blocks connected by a static network
of channels goes back at least as far as Kahn’s seminal work [11] and the lan-
guage Lucid [12]. Kahn introduced the model of infinite-capacity, deterministic
process networks and proved that it had properties useful for parallel processing.
Lucid was apparently the first language to introduce the basic idea of a block
that transforms input sequences into output sequences. For a more theoretical
treatment of stream processing we refer to [13] and [14].

Multi-threaded execution of streaming networks with PTHREADS is offered
by Streamlt [15]. In Streamlt, streaming networks are implemented in a high-
level, Java like language. A network is defined by implementing boxes (called
filters in Streamlt) and connecting these by extending the stream structure
classes SplitJoin, Pipeline and FeedbackLoop. Filters are directly encoded in
Streamlt itself. Neither coordination of legacy code nor a clear separation be-
tween computing and coordination layers can be achieved. Access to box im-
plementations and consumer and producer rates enables the Streamlt compiler
to optimise scheduling. Hence, Streamlt falls into the category of synchronous
dataflow approaches like Lustre [16] and Esterel [17], whereas S-NET advocates
asynchronous dataflow.

The separation between coordination and computation in S-NET is closely
related to data-driven coordination approaches, of which [18] gives an overview.
The earliest related proposal, to our knowledge, for a complete separation as
advocated by S-NET, is the coordination language HOPLa [19].

Relating to our modular design of the runtime system, we cite the work on
Borealis [20]. The Borealis stream processing engine is based on typed streams
of attribute-value pairs (based on [21]), not unlike S-NET records. The values,
however, are accessible by Borealis operators and are consequently limited to a
pre-defined set of data types. The architecture of the system is composed of sev-
eral modules which provide a wealth of features as for example load balancing,
runtime optimisations and failure recovery. Networks are described in an XML
based query language. Compared to S-NET, the description language is rather
low-level, but it does not require a compiler as such, as networks can be directly

deployed to a Borealis node. Another recent advancement in stream-based co-
ordination technology is the language Reo [22]. It concerns itself primarily with
issues of channel and component mobility and does not exploit static connectiv-
ity or type-theoretical tools for network analysis.

In the specific area of functional programming we mention Eden [23], that
extends Haskell with process abstraction and process instantiation facilities. Pro-
cesses communicate via FIFO channels, just as in S-NET, but process topologies
are completely dynamic including mobile channels. On the other end of the spec-
trum we see Hume [24], which combines Haskell-like boxes with synchronous data
flow processing. The emphasis with Hume lies in the inference of exact bounds
on resource consumption for applications in embedded systems.

9 Conclusion and future work

We have presented the architecture of our implementation of the coordination
language S-NET that allows legacy code to be assembled into a streaming net-
work of asynchronous components in a minimally intrusive way. The concept of a
common runtime interface proves essential in separating our target-independent
compiler from target platform specific runtime system implementations. In the
sequel we have put the emphasis on describing a single implementation in-depth:
a runtime systems that targets contemporary multi-core processors. We have
recognised the distinction between deployment of networks and the operational
behaviour of components within the network and explicated their mutual depen-
dence and interplay.

We have developed both a high-level coordination language and a complete,
portable tool chain that enables users to harness the computational power of
modern multi-core architectures while at the same time they can stick to their
familiar (sequential) programming environment for the bulk of an application.
Some runtime figures based on an application from the radar signal processing
domain demonstrate the effectiveness of our approach.

While the design of S-NET as a language is an area of active research, we
can identify three main directions of current and future work with respect to the
implementation of S-NET: implementations of the common runtime interface
for on-chip microgrids on the one hand and distributed memory workstation
clusters on the other hand as well as a refinement of the multithreaded runtime
system described here that exercises tighter control on the usage of threads by
managing thread scheduling, etc, in the S-NET runtime system ourselves rather
than delegating this vital task to the operating system.

Acknowledgements

The development of S-NET is funded by the European Union through the FP-VI
Integrated Project AATHER, Self-adaptive Embedded Technologies for Pervasive
Computing Architectures, (www.aether-ist.org).

References

1.

2.

10.
11.

12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Sutter, H.: The free lunch is over: A fundamental turn towards concurrency in
software. Dr. Dobb’s Journal 30 (2005)

Held, J., Bautista, J., Koehl, S.: From a few cores to many: a Tera-scale computing
research overview. Technical report, Intel Corporation (2006)

Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU Com-
puting. Proceedings of the IEEE 96 (2008) 879-899

Grelck, C., Scholz, S.B., Shafarenko, A.: A gentle introduction to S-Net. Parallel
Processing Letters 18 (2008) 221-237

Jesshope, C.: pTc: an intermediate language for programming chip multiprocessors.
In: ACSAC’06, Shanghai, China. (2006)

Bousias, K., Jesshope, C., Thiyagalingam, J., et al.: Graph walker: implementing
S-Net on the self-adaptive virtual processor. In: Ather-Morpheus Workshop: From
Reconfigurable to Self-Adaptive Computing, Lugano, Switzerland. (2008)

Cai, H., Eisenbach, S., Grelck, C., Penczek, F., Scholz, S.B., Shafarenko, A.: S-Net
Type System and Operational Semantics. In: Ather-Morpheus Workshop: From
Reconfigurable to Self-Adaptive Computing, Lugano, Switzerland. (2008)

Grelck, C., Shafarenko, A.: S-Net Language Report. University of Hertfordshire,
School of Computer Science, Hatfield, United Kingdom (2006)

Grelck, C., Scholz, S.B., Shafarenko, A.: Coordinating Data Parallel SAC Pro-
grams with S-Net. In: 21st IEEE International Parallel and Distributed Processing
Symposium (IPDPS’07), Long Beach, USA, IEEE Press (2007)

Stephens, R.: A survey of stream processing. Acta Informatica 34 (1997) 491-541
Kahn, G.: The semantics of a simple language for parallel programming. In:
Information Processing 74, Stockholm, Sweden, North-Holland (1974) 471-475
Ashcroft, E.A., Wadge, W.W.: Lucid. CACM 20 (1977) 519-526

Broy, M., Stefanescu, G.: The algebra of stream processing functions. Theoretical
Computer Science (2001) 99-129

Stefanescu, G.: Network Algebra. Springer (2000)

Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A language for streaming
applications. In: Computational Complexity. (2002) 179-196

Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language LUSTRE. Proceedings of the IEEE 79 (1991) 1305-1320
Berry, G., Gonthier., G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19 (1992) 87-152
Papadopoulos, G.A., Arbab., F.: Coordination models and languages. In: Advances
in Computers. Volume 46. Academic Press (1998)

Florijn, G., Bessamusca, T., et al.: Ariadne and HOPLa: flexible coordination of
collaborative processes. In: Coordination’96, Cesena, Italy. LNCS 1061. (1996)
Abadi, D., Ahmad, Y., Balazinska, M., et al.: The design of the Borealis stream
processing engine. In: CIDR. (2005) 277-289

Abadi, D.J., Carney, D., Cetintemel, U., et al.: Aurora: a new model and archi-
tecture for data stream management. VLDB Journal 12 (2003) 120-139

Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci. 14 (2004) 329-366

Loogen, R., Ortega-Mallén, Y., Penia-Mari, R.: Parallel functional programming
in Eden. Journal of Functional Programming 15 (2005) 431-475

Hammond, K., Michaelson, G.: The design of Hume: a high-level language for the
real-time embedded systems domain. In: Domain-Specific Program Generation.
LNCS 3016, Springer (2004) 127-147

