Skip to main content

Hierarchically Structured Energy Markets as Novel Smart Grid Control Approach

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7006))

Abstract

The paper investigates the self-stabilization of hierarchically structured markets. We propose a new approach that is motivated by the physical structure of the energy grid and generalizes classical market structures in a natural way. Hierarchical markets have several advantages compared to monolithic markets, i.e., improved reliability and scalability, locality of information, and proximity of energy production and consumption. By simulating scenarios based on real world consumption and production data including households, different renewable energy sources, and other plant types, we present a proof-of-concept of stability of the hierarchical markets in various simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barroso, L.A., Rosenblatt, J., Guimaraes, A., Bezerra, B., Pereira, M.V.: Auctions of contracts and energy call options to ensure supply adequacy in the second stage of the Brazilian power sector reform. In: Power Engineering Society General Meeting, pp. 1–8. IEEE, Los Alamitos (2006)

    Google Scholar 

  2. Borenstein, S., Jaske, M., Rosenfeld, A.: Dynamic pricing, advanced metering, and demand response in electricity markets. Center for the Study of Energy Markets, UC Berkeley (2002), http://www.escholarship.org/uc/item/11w8d6m4 (Retrieved from 2002)

    Google Scholar 

  3. Chen, X., Xie, J.: Optimal bidding strategies for load server entities in double-sided auction electricity markets with risk management. In: PMAPS 2006, pp. 1–6. IEEE, Los Alamitos (2006)

    Google Scholar 

  4. Fulp, E., Reeves, D.: Optimal provisioning and pricing of internet differentiated services in hierarchical markets. In: Lorenz, P. (ed.) ICN 2001. LNCS, vol. 2093, pp. 409–418. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Hines, P., Apt, J., Talukdar, S.: Large blackouts in north america: Historical trends and policy implications. Energy Policy 37(12), 5249–5259 (2009)

    Article  Google Scholar 

  6. Hobbs, B.F., Rothkopf, M.H., Hyde, L.C., O’Neill, R.P.: Evaluation of a truthful revelation auction in the context of energy markets with nonconcave benefits. Journal of Regulatory Economics 18(1), 5–32 (2000)

    Article  Google Scholar 

  7. Li, J., Poulton, G., James, G.: Agent-Based Distributed Energy Management. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 569–578. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Kian Jr., A.R., Cruz, J.B., Thomas, R.J.: Bidding strategies in oligopolistic dynamic electricity double-sided auctions. IEEE Transactions on Power Systems 20(1), 50–58 (2005)

    Article  Google Scholar 

  9. Kramer, O., Satzger, B., Lässig, J.: Power Prediction in Smart Grids with Evolutionary Local Kernel Regression. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 262–269. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Mantegna, R.N.: Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems 11(1), 193–197 (1999)

    Article  Google Scholar 

  11. NAHB Research Center. Review of residential electrical energy use data, http://www.toolbase.org/PDF/CaseStudies/ResElectricalEnergyUseData.pdf (Retrieved from 2001)

  12. Nanduri, V., Das, T.K.: A reinforcement learning model to assess market power under auction-based energy pricing. IEEE Transactions on Power Systems 22(1), 85–95 (2007)

    Article  Google Scholar 

  13. National Renewable Energy Laboratory. Homepage, http://www.nrel.gov/gis/solar.html (Retrieved from 2010)

  14. National Wind Technology Center. Homepage, http://www.nrel.gov/wind/integrationdatasets/western/methodology.html (Retrieved from 2010)

  15. Overbye, T.J., Cheng, X., Sun, Y.: A comparison of the ac and dc power flow models for lmp calculations. In: HICSS 2004: Track 2, p. 20047.1. IEEE, Washington, DC, USA (2004)

    Google Scholar 

  16. Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a distributed smart grid: Design and implementation. In: PSCE 2009, pp. 1–8. IEEE, Los Alamitos (2009)

    Google Scholar 

  17. Praca, I., Ramos, C., Vale, Z., Cordeiro, M.: Mascem: A Multiagent System That Simulates Competitive Electricity Markets. IEEE Intelligent Systems 18, 54–60 (2003)

    Article  Google Scholar 

  18. Tsoukalas, L.H., Gao, R.: From smart grids to an energy internet: Assumptions, architectures and requirements. In: DRPT 2008, pp. 94–98. IEEE, Los Alamitos (2008)

    Google Scholar 

  19. Varga, L.Z., Jennings, N.R., Cockburn, D.: Integrating intelligent systems into a cooperating community for electricity distribution management. Expert Systems with Applications 7(4), 563–579 (1994)

    Article  Google Scholar 

  20. Vytelingum, P., Cliff, D., Jennings, N.R.: Strategic bidding in continuous double auctions. Artificial Intelligence 172(14), 1700–1729 (2008)

    Article  MATH  Google Scholar 

  21. Vytelingum, P., Ramchurn, S.D., Voice, T.D., Rogers, A., Jennings, N.R.: Trading agents for the smart electricity grid. In: International Foundation for Autonomous Agents and Multiagent Systems, AAMAS 2010, pp. 897–904 (2010)

    Google Scholar 

  22. Vytelingum, P., Voice, T.D., Ramchurn, S.D., Rogers, A., Jennings, N.R.: Agent-based micro-storage management for the smart grid. In: International Foundation for Autonomous Agents and Multiagent Systems, AAMAS 2010, pp. 39–46 (2010)

    Google Scholar 

  23. Weron, R.: Energy price risk management. Physica A: Statistical Mechanics and its Applications 285(1-2), 127–134 (2000)

    Article  MATH  Google Scholar 

  24. Xiong, G., Okuma, S., Fujita, H.: Multi-agent based experiments on uniform price and pay-as-bid electricity auction markets. In: DRPT 2004, pp. 72–76. IEEE, Los Alamitos (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lässig, J., Satzger, B., Kramer, O. (2011). Hierarchically Structured Energy Markets as Novel Smart Grid Control Approach. In: Bach, J., Edelkamp, S. (eds) KI 2011: Advances in Artificial Intelligence. KI 2011. Lecture Notes in Computer Science(), vol 7006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24455-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24455-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24454-4

  • Online ISBN: 978-3-642-24455-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics