
Algorithmic Debugging to Support Cognitive
Diagnosis in Thtoring Systems

Claus Zinn

University of Konstanz, Department of Computer and Information Science,
Box D188, 78457 Konstanz, Germany

claus.zinn@uni-konstanz.de

Abstract. Cognitive modelling in intelligent tutoring systems aims at
identifying a learner's skills and knowledge from his answers to tutor
questions and other observed behaviour. In this paper, we propose an
innovative variant of Shapiro's algorithmic debugging technique whose
application can be used to pin-point learners' erroneous behaviour in
terms of an irreducible disagreement to the execution trace of an expert
model. Our variant has two major benefits: in contrast to traditional
approaches, it does not rely on an explicit encoding on mal-rules, and
second, it induces a natural teacher-learner dialogue with no need for the
prior scripting of individial turns or higher-level dialogue planning.

1 Introduction

The interpretation and diagnosis of student answers is one of the central issues
to be addressed when building intelligent tutoring systems (ITSs). Depending
on the approach followed, it relies on a variety of knowledge sources such as do­
main models (modelling the expertise for the machine tutor in a given domain),
task models (supporting students' problem solving process), error models (anti­
cipating the many kinds of typical learner errors), and individual student models
(capturing given learners' knowledge, strengths and weaknesses).

The first tutoring systems modelled learners solely in terms of expert skills
or the lack thereof. The overlay approach only requires an adequate represen­
tation and operationalisation of expertise in terms of factual knowledge units
and procedural skills. It assumes that all differences between learner and expert
behaviour can be reduced to the learner's lack of skill. The studies of Brown &
Burton and others suggest however that student errors cannot be described in
terms of absent expert knowledge only [2]. They argue that the representation of
expert knowledge must be complemented by a bug library to account for typical
or high-frequent student errors in a given domain, usually in terms of buggy
variants of expert skills. An erroneous student answer can then be reproduced
by finding a combination of expert and buggy skills that yields the same answer.
The resulting deep-structure model pin-points a student's misconception and
supports the generation of appropriate corrective or remedial feedback.

The quality of cognitive diagnosis depends on the right granularity of (expert
and buggy) skill decomposition, which in turn profits from an in-depth analysis

http://nbn-resolving.de/urn:nbn:de:bsz:352-210507

358

of a large and representative number of student protocols. Clearly, cognitive
diagnosis that uses bug libraries can only recognise the errors it knows about,
and usually the amount of buggy knowledge easily surpasses the amount of
expert knowledge. The (De)Buggy programs [2,3], e. g. , relied on a bug library of
120 primitive and compound bugs to model errors in multi-column subtraction.
Given the computational complexity of the approach, the systems performed
diagnosis off-line, following a complex process of eliminating error hypotheses.

Model tmcing tutors tackle the complexity issue by inviting learners to provide
their answers in a piecemeal fi1shion . It is thus no longer necessary to reproduce
a student's line of reasoning from question to (final) answer; only the student's
next step towards a solution is analysed, and immediate feedback is given. While
tutoring systems such as the Lisp Tutor [7,4] and the Algebra Tutor [6] have been
highly successful, they are also expensive to build . A time-consuming cognitive
task analysis now goes hand in hand with user interface design that encourages
or enforces students to deliver their solution step by step .

In this paper, we report a method for the automated identification of errors
that only requires the student's full answer to a given problem and a logic pro­
gram encoding the expert's problem solving. The method relies on an innovative
use of algorithmic debugging to identify learner errors by the analysis of cor­
rect (sic) Prolog-based procedures, given the answers of an oracle - a role being
played by the student. Compared to previous approaches to cognitive diagnosis,
the method does not rely on bug libraries and has low computational complex­
ity. It supports the analysis of learners committing multiple bugs by attacking
bugs one after another, and it is immune to learners giving inconsistent replies.
Moreover, the execution of the method supports the generation of tutorial in­
teractions without requiring dialogue planning or scripting. In addition, we can
give a mechanisation of the oracle, which relieves the student from answering any
tutor question at all. Errors can thus be identified without dialogue intervention.

2 Background

In this section, we give a brief account on multi-column subtraction, typical
errors in this domain, and Shapiro 's original algorithmic debugging method.

2.1 Multi-column Subtraction

Fig. 1 gives an implementation of multi-column subtraction in Prolog. Sums
are processed column by column, from right to left. The predicate subtract / 2
implements the recursion, and process_column/ 2 gets a partial sum, processes
its right-most column and t akes care of borrowing (increment / 2) and payback
(increment / 2) actions. A column is represented as 3-element term (M, S, R)

representing minuend, subtrahend and result cell . The program code implements
the equal additions method, also known as Austrian m ethod. When the subtra­
hend S is greater than the minuend M, then M is increased by 10 (borrowing)
before the difference between M and S is taken. To compensate, the S in the
column left to the current one is then increased by one (payback).

subtract (Sum, Sum) :- finished(Sum).
subtract (Sum, NewSum)

process_column(Sum, Suml) ,
shift_left (Suml , Sum2, ProcessedColumn),
subtract (Sum2 , SumFinal),
append (SumFinal, [ProcessedColumn], NewSum).

process_column(Sum, NewSum) : -
butlast(Sum, LastColumn), allbutlast(Sum,RestSum),
subtrahend(LastColumn, Sub), minuend (LastColumn , Min),
Sub > Min,
add_ten_to_minuend(LastColumn, LastColumnl),
take_difference (LastColumnl , LastColumn2),

359

butlast(RestSum, LastColumnRestSum), allbutlast(RestSum, RestSuml) ,
increment (LastColumnRestSum, LastColumnRestSuml),
append(RestSuml,[LastColumnRestSuml,LastColumn2] ,NewSum) .

process_column(Sum, NewSum) :-
butlast(Sum, LastColumn), allbutlast(Sum,RestSum),
subtrahend (Last Column , Sub), minuend (LastColumn , Min),
Sub =< Min,
take_difference (Last Column , LastColumnl),
append (RestSum,[LastColumnl], NewSum) .

shift_left(SumList, RestSumList, Item) :­
allbutlast(SumList, RestSumList), butlast(SumList, Item).

add_ten_to_minuend((M,S,R), (Ml0,S, R))
increment ((M,S,R), (M, Sl,R))
take_difference ((M,S,_R), (M, S, Rl))

irreducible, Ml0 is M+l0.
irreducible, Sl is S+l .
irreducible, Rl is M-S.

finished ([]) .

Fig. 1. Multi-column subtraction

2.2 Error Analysis in Multi-column Subtraction

Some student errors may be caused by a simple oversight (usually, students are
able to correct such errors as soon as they see them) , but others are systematic
errors (those keep re-occurring again and again) . It is the systematic errors
that we aim at diagnosing as they indicate a student 's wrong understanding
about some subject matter . The small sample of errors given in Fig. 2 can be
classified as eTrors of omission (forget to do something), see (b,c); eTrors of
commission (doing the task incorrectly), see (a,e); and sequence error·s (doing
the task not in the right order) , see (d) . Rather than having pre-compiled explicit
representations of buggy program fragments (following the bug library approach)
to detect such errors, we would like to use the method of algorit hmic debugging
on the expert program to help identifying them.

360

5 2 4 3 8 2 3 2
2 9 8 3 5 1 7
3 7 4 4 7 2 5

(a) Always sub- (b) Not finishing (c) Forgot to
tracting the the task payback
smaller from the
larger number

1 1 2 3 5 2 3 4
4 9 0 5 6 7

1 7 2 2 2 7 7 7
(d) Perform algorithm from (e) Accumulating all pay-
left to right backs to highest place value

Fig. 2. A small selection of errors in subtraction

2.3 Shapiro's Algorithmic Debugging

Shapiro's algorithmic debugging technique for logic programming prescribes a
systematic manner to identify bugs in programs. In the top-down variant, the
program is traversed from the goal clause downwards. At each step during the
traversal of the program's AND/OR tree, the programmer is taking the role of
the oracle, and answers whether the currently processed goal holds or not. If
the oracle and the buggy program agree on a goal, then algorithmic debugging
passes to the next goal on the goal stack. If the oracle and the buggy program
disagree on the result of a goal, then this goal is inspected further. Eventually an
irreducible agreement will be encountered, hence locating the program's clause
where the buggy behaviour is originating from.

Shapiro's algorithmic debugging method extends, thus, a simple meta-inter­
preter for logic programs. During the meta-interpretation of the program, it
generates oracle questions. Given the programmer's answer to a Prolog clause,
it is either silently executed to quickly recur algorithmic debugging on the re­
maining clauses, or investigated further to identify the source of the bug.

In his thesis, Shapiro gives several variants or extensions to account for var­
ious types of erroneous program code, including procedures terminating with
incorrect output and non-terminating procedures. He also gives algorithms for
debugging a program top-down or bottom-up, and also for minimising the num­
ber of queries the oracle (i. e., the programmer) needs to answer.

3 Algorithmic Debugging in Tutoring

Shapiro devised algorithmic debugging to systematically identify bugs in incor­
rect programs. Our Prolog code for multi-column subtraction in Fig. 1, however,
presents the expert model, that is, a presumably correct program. Given that
cognitive modelling seeks to reconstruct students' erroneous procedures by an
analysis of their problem-solving behaviour, it is hard to see - at least at first
sight - how algorithmic debugging might be applicable in this context. There is a

361

simple but almost magical trick, however. We can turn Shapiro's algorithm on its
head: instead of having the oracle (the programmer) specifying how the assumed
incorrect program should behave, we take the expert program to take the role of
the buggy program, and the role of the oracle is filled by a student's potentially
erroneous answers. An irreducible disagreement between program behaviour and
given answer then helps indicating a student's potential misconception.

Our algorithm, especially adapted for tutoring, is given in Fig. 3. Our algo­
rithm traverses a given program in a top-down manner. There are four cases.
If a goal is a conjunction of goals, then the algorithm is called for each con­
junct. If a goal is a simple goal, then we distinguish goals that can be discussed
(on_discussion_table / 1) from those that cannot and should not be discussed.
In the latter case, we check whether the current goal is a built-in predicate (in
which case it is called), or whether it is a user-defined goal (in which case, its
body is subjected to algorithmic debugging). It is the second clause where the
main part of algorithmic debugging takes place. Given a goal that can be dis­
cussed, we use a fail-safe approach to evaluate whether it succeeds or not; we
then ask the oracle whether it agrees or disagrees with the fact that the goal
succeeded (with some of its arguments potentially instantiated) or failed. When
there is agreement on a goal, we regard the goal (and its subgoals) as processed,
and continue with other goals on the stack resulting from recursion. If there
is disagreement on a goal, we check whether we have identified an irreducible
agreement (in which case we terminate the algorithm with the goal in question),
or not (in which case we inspect the goal's body).

N ate. Programs that model expert problem solving will often have some rather
technical steps that should not be subjected to questioning. In our subtraction
routine, these are, e.g., the clauses butlast/2 and allbutlast/2; while they
are necessary to implement the recursion to process partial sums from right to
left, they might be hard to grasp for students and perceived as too low-level.
The clause on_discussion_table_p (Goal) will fail on these technical clauses.

4 Example

We reconsider two of the five examples of typical subtraction errors. The GUI­
based exercise sheet that students will interact with is presented further below.

4.1 Single Error Tracking

The result in Fig. 2(c) constitutes a simple error and can be described as a single
omission in the program code; the learner forgets to honor the payback operation,
following the borrowing that happened in the first (right-most) column.

3 2
1 7
2 5

362

algorithmic_debugging ((Goall, Goa12» ! ,

algorithmic_debugging(Goall),
algorithmic_debugging (Goa12).

algorithmic_debugging(Goal) :­
on_discussion_table_p(Goal), !,

copy_term(Goal, CopyGoal), eval_goal(Goal, SucceededP) ,
ask_oracle(Goal, SucceededP, oracleAnswer),
(

) .

oracleAnswer = no
->

)

clause(CopyGoal, Clause),
(

(Clause == true ; Clause = (irreducible, _Subgoals))
->

throw(Goal

algorithmic_debugging(Clause)
)

true

algorithmic_debugging(Goal) :­
predicate_property(Goal, built_in), !,

call(Goal).

algorithmic_debugging(Goal) :-
clause(Goal, Clause),
algorithmic_debugging (Clause).

get_diagnosis(Goal, Diagnosis) :-
catch(algorithmic_debugging(Goal),

Diagnosis,
(Diagnosis = true

-> format (' -w-n' , ['correct solution'])
format(' - w - w-n', ['irreducible disagreement : ',

Diagnosis]))) .

Fig. 3. Algorithmic debugging for tutoring (top-down)

363

Given our implementation of algorithmic debugging, the following dialogue
(see clause aSk_oracle /3) between system and learner will identify the error:

get_diagnosis(subtract([(3 , 1,Sl),(2,7,S2)], [(3,1,2),(12,7 ,5)],Diagnosis) .

do you agree that the following goal holds:
subtract ([(3,1, _G226) , (2,7 , _G235)), [(3,2,1), (12,7,5)])

I : no.

do you agree that the following goal holds:
process_column([(3,1, _G475), (2,7 , _G484)], [(3,2, _G475), (12,7,5)])

I: no.

do you agree that the following goal holds :
add_ten_to_minuend((2,7, _G652), (12,7, _G652))

I: yes .

do you agree that the following goal holds:
take_difference ((12,7, _G652), (12,7,5))

I : yes .

do you agree that the following goal holds :
increment((3,1,_G643), (3,2, _G643))

I : no .
irreducible disagreement: increment((3,1,_G643), (3,2,_G643))

When the student corrects the subtrahend in the left-most column, and sub­
sequently updates the corresponding difference, we obtain the correct solution.
Re-running algorithmic debugging will have both sides agree on the top clause.

4.2 Tracking Multiple Errors

The method also works well with student answers containing multiple errors. In
this case, errors are attacked and repaired one by one. After each correction, the
algorithm is re-run. Having the method memoizing the student answers to prior
questions will avoid re-asking some - but not all - for them in subsequent runs.

Reconsider the example given in Fig. 2(a).

524
2 9 8
374

First Run.

do you agree that the following goal holds:

I: no .

subtract ([(5,2, _G226), (2,9, _G235), (4,8, _G244)] ,
[(5,3,2), (12,10,2), (14,8,6)])

364

do you agree that the following goal holds:

I: no.

process_column([(5,2,_G523), (2,9,_G532), (4,8,_G541)],
[(5,2,_G523), (2,10,_G532), (14,8,6)])

do you agree that the following goal holds:
add_ten_to_minuend«4,8,_G808), (14,8,_G808))

I : no.
irreducible disagreement: add_ten_to_minuend«4,8,_G808), (14,8,_G808))

Let us assume that the student corrects himself by only adding ten to the min­
uend in the right-most column. We re-run algorithmic debugging.

Second Run. The second run will produce the following interaction:

do you agree that the following goal holds:

I: no.

subtract ([(5,2,_G226), (2,9,_G235), (4,8,_G244)],
[(5,3,2), (12,10,2), (14,8,6)])

do you agree that the following goal holds:

I: no.

process_column([(5,2,_G523), (2,9,_G532), (4,8,_G541)],
[(5,2,_G523), (2,10,_G532), (14,8,6)))

do you agree that the following goal holds:
add_ten_to_minuend«4,8,_G808), (14,8,_G808))

I: yes.

do you agree that the following goal holds:
take_difference«14,8,_G808), (14,8,6))

I: no.
irreducible disagreement: take_difference«14,8,_G808), (14,8,6))

With the student having corrected the difference sum in this column, we start
the third run.

Third Run. When we omit Oracle questions already asked (except the one that
indicated the irreducible disagreement from the last run), we get the following
questions:

do you agree that the following goal holds:
take_difference «14,8,_G808) , (14,8,6))

I: yes.

do you agree that the following goal holds:
increment «2,9,_G799), (2,10,_G799))

I : no.
irreducible disagreement: increment«2,9,_G799), (2,10,_G799))

Once the student realizes the increment error, we start anew. Either the student
learned from the past three runs so that he corrects the other remaining errors

365

in the exercise sheet, or algorithmic debugging will yield similar results for the
processing of the middle column.

The practicality of our approach has to address two issues: (i) how to map
Prolog queries into questions that learners can easily understand; and (ii) how
to optimise the question-answering process induced by algorithmic debugging.

5 Practical Use in Tutoring

5.1 Graphical User Interface - Exercise Sheet

We have implemented the following browser-based graphical user interface for
students to tackle multi-column subtraction tasks (see Fig. 4). In addition to
rows for minuend, subtrahend and result cells, it also consists of explicit repre­
sentations for borrow and payback cells. When students click on a "B" ("P")
cell , it automatically swaps it values to "10" ("I"). Clicking on a result cell "8"
brings up a number pane with digits from 0-9. The GUI's representation of the
subtraction task extends the one used in the Prolog program subtract/2, but
the Bi can be easily combined with the cells for minuends (and the Pi with the
subtrahends) . Moreover, to indicate to learners which GUI cells requires their
attention, an adaptation to the program given in Fig. 1 was necessary, namely,
the introduction of a column counter that is being increased at each recursive
call to subtract/3. During algorithmic debugging, we can thus enhance tuto­
rial interaction by highlighting the corresponding cells or columns in the GUI;
erroneous cells that correspond to irreducible disagreements are marked in red.

Ptt>bIM. StlIt-llrtlcnt

Borrow Row

Minuends

Subtrahends

Payback Row

Result Row

[!J~~ ~
~.P of

usa 7
,. <",.~~ .. "'.. ",no'n,

[iJ OJ OJ Ii]

Fig. 4 . GUI interaction (fully-functional prototype)

5.2 Implementing the Oracle

It may not · be necessary nor pedagogically effective to forward all questions in­
duced by algorithmic debugging to students. Moreover, some learners will hardly
be patient enough to go through many iterations of system-learner interactions
once they have already given an answer to a given problem. To address this
issue, we have build an oracle that can answer questions about the subtraction

366

task: it takes a learner 's full answer from the exercise sheet , and extracts from it
those parts required to answer a given question. Fig. 5 depicts a code fragment
to handle cases for the top clause subtract/2 and the clause increment/2.

oracle(Step, YesNo) :­
get_student_answer_from_gui(Answer), !,
oracle_helper(Step, Answer, YesNo) .

oracle_helper(subtract (Col, _Input, Output), Answer, YesNo)
length(Answer, NumberColumns),
Col = NumberColumns, !,
(

subsumes_term (Output , Answer) -> YesNo yes YesNo no
) .

oracle_helper(subtract(Col, Input, Output), Answer, YesNo) : ­
allbutlast (Answer , AnswerRed),
oracle_helper(subtract(Col, Input, Output), AnswerRed, YesNo).

oracle_helper (increment (Col , _Input , (_M2, S2, R2»,Answer,YesNo) :­
length (Answer , NumberColumns),
Col = NumberColumns, !,
butlast(Answer, (_MS, SS, _RS)),
(S2 == SS -> YesNo = yes; YesNo = no).

oracle_helper(increment(Col,InputCol,OutputCol),Answer,YesNo) :­
allbutlast(Answer, AnswerRed),
oracle_helper (increment (Col,InputCol ,OutputCol) ,Answer Red,YesNo) .

?- get_diagnosis ([(3 ,1, Sl) , (2,7, S2)], [(3,1,2), (12,7,5)]' Diagnosis).
==> irreducible disagreement : increment(2, (3,l,_G3659), (3,2, _G3659»

Fig. 5. Implement ing the Oracle (fragment for subtraction task)

The clause oracle/2 is called with the current step executed by the exper t
model and outputs yes or no , depending on whether the learner agrees or dis­
agrees with t he expert step. The new argument Col marks the column currently
processed. It is compared to the length of Answer, initially capturing the full
sum given by the learner. When they are equal, we extract from Answer the
relevant parts and check them for correctness with respect to the expert answer ;
otherwise, we recurse with the learner 's answer reduced by the one column no
longer of interest .

6 Discussion and Related Work

In Fig. 2, we have given a small selection of typical errors in subtraction. Our
use of algorithmic debugging alone will surely fail to identify the full nature of

367

learners' erroneous behaviour, but algorithmic debugging in combination with
other techniques will get closer to this (see Future Work).

Out adaptation and use of algorithmic debugging in tutoring is similar in spirit
to model tracing. While our discussion assumed the lear'ner to give a full answer
to a given subtraction task, we can instrument our algorithm to provide next­
step help in case where learners only submitted a partial sum. Note also that
our approach does not require any representation of buggy skills. The interaction
induced by algorithmic debugging compares learner actions to those of the expert
model only - admittingly at the cost of providing less effective remedial feedback
once a disagreement has been identified. On the positive side, our expert model
is just an executable Prolog program. While it encodes skills that we want the
learner to acquire, it contains no (other) tutoring-specific information. The power
and simplicity of our approach is due to the meta-programming perspective.

There is only little research in the ITS community that builds upon logic
programming techniques. Thirty years ago, Self described student modelling in
terms of an induction problem, where student observations can be seen as the I/O
behaviour of an unknown program that needs to be induced from such behaviour
[8]. An induction logic programming approach to cognitive diagnosis has been
taken by [5]. Here, expert knowledge is represented as a set of Prolog clauses,
and Shapiro's Model Inference System (MIS) [9] is used to synthesise the student
model from expert knowledge and student answers. Once the student model, a
set of Prolog clauses, is constructed, Shapiro's Program Diagnosis System (PDS),
based upon algorithmic debugging, is used to identify students' misconceptions,
that is, the bugs in the MIS-constructed Prolog program.

In [1], Beller & Hoppe use a fail-safe meta-interpreter to identify student
error. A Prolog program, modelling the expert knowledge for doing subtraction,
is executed by instantiating its output parameter with the student answer. While
standard Prolog interpretation would fail, a fail-safe meta-interpreter can recover
from execution failure, and can also return an execution trace. Beller & Hoppe
formulate error patterns which are then matched against the execution trace,
and where each successful match is indicating a plausible student bug.

7 Conclusion and Future Work

There is good evidence that a sound methodology of cognitive diagnosis in intel­
ligent tutoring can be realised in the framework of logic programming. Its declar­
ative aspect, its view that program equals data, the substantial work in areas
such as meta-level interpreters, partial evaluation, reasoning about programs,
algorithmic debugging and inductive logic programming shows that there is am­
ple potential to harness such techniques to support cognitive diagnosis in the
context of intelligent tutoring systems. In this paper, we reported on our work
to use algorithmic debugging to advance cognitive diagnosis in this direction.

In the future, we aim at systematically studying, adapting and combining
various logic programming methods to effectively perform cognitive diagnosis in
educational settings. We are currently working on a combination of algorithmic

368

debugging and program transformation. Once algorithmic debugging identifies
an irreducible disagreement between expert behaviour and the learner, we induce
code perturbations (i. e. bugs) into the expert program to make the disagreement
disappear . After a series of applications of algorithmic debugging and code per­
turbations, we obtain a buggy procedure which models the learner's erroneous
behaviour. In a related strand, we would like to adapt and use inductive pro­
gram synthesis techniques; those, for instance, will be necessary to cover program
transformations where novel elements need to be constructed. Once an arsenal of
such techniques is developed, we seek to characterise the types of errors that can
be diagnosed with each method or combination of methods, and to determine
the effectiveness of remedial feedback based on such diagnosis.

Acknowledgements. The idea of turning Shapiro'S method for algorithmic
debugging on its head to support the diagnosis of student errors originated from
Alan Smaill and Alan Bundy (both University of Edinburgh); personal commu­
nication (Note 1396).

Many thanks to the reviewers whose comments helped improve the paper.

References

1. Beller, S., Hoppe, U.: Deductive error reconstruction and classification in a logic
programming framework. In: Brna, P., Ohlsson, S., Pain, H. (eds.) Proc. of the
World Conference on Artificial Intelligence in Education, pp. 433- 440 (1993)

2. Brown, J .S., Burton, RR: Diagnostic models for procedural bugs in basic mathe­
matical skills. Cognitive Science 2, 155- 192 (1978)

3. Burton, R .R: Debuggy: Diagnosis of errors in basic mathematical skills. In: ~her­
man, D., Brown, J .S. (eds.) Intelligent TUtoring Systems. Academic Press, London
(1982)

4. Corbett, A.T., Anderson, J.R, Patterson, E. J .: Problem compilation and tutor­
ing flexibility in the lisp tutor. In: International Conference of Intelligent 'I\ltoring
Systems, Montreal (1988)

5. Kawai, K., Mizoguchi , R., Kakusho, 0., Toyoda, J.: A framework for ICAI systems
based on inductive inference and logic programming. New Generation Computing 5,
115- 129 (1987)

6. Koedinger, K.R, Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring
goes to school in the big city. Journal of Artificial Intelligence in Education 8(1),
30- 43 (1997)

7. Reiser, B.J., Anderson, J.R., Farrell, R.G.: Dynamic student modelling in an in­
telligent t utor for lisp programming. In: IJCAI 1985: Proceedings of the 9th Inter­
national Joint Conference on Artificial Intelligence, pp. 8- 14. Morgan Kaufmann
Publishers Inc., San Francisco (1985)

8. Self, J.: Student models and art ificial intelligence. Computers & Education 3, 309-
312 (1979)

9. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertations.
MIT Press (1983); T hesis (Ph.D.) - Yale Un iversity (1982)

	Text1: Ersch. in: Advances in artificial intelligence : proceedings / KI 2011, 34th Annual German Conference on AI, Berlin, Germany, October 4 - 7, 2011. Joscha Bach ; Stefan Edelkamp (ed.). - Berlin [u.a.] : Springer, 2011. - S. 357-368. - (Lecture notes in computer science ; 7006). - ISBN 978-3-642-24454-4

http://dx.doi.org/10.1007/978-3-642-24455-1_35
	Text2: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-210507

