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Abstract. Cognitive modelling in intelligent tutoring systems aims at 
identifying a learner's skills and knowledge from his answers to tutor 
questions and other observed behaviour. In this paper, we propose an 
innovative variant of Shapiro's algorithmic debugging technique whose 
application can be used to pin-point learners' erroneous behaviour in 
terms of an irreducible disagreement to the execution trace of an expert 
model. Our variant has two major benefits: in contrast to traditional 
approaches, it does not rely on an explicit encoding on mal-rules, and 
second, it induces a natural teacher-learner dialogue with no need for the 
prior scripting of individial turns or higher-level dialogue planning. 

1 Introduction 

The interpretation and diagnosis of student answers is one of the central issues 
to be addressed when building intelligent tutoring systems (ITSs). Depending 
on the approach followed, it relies on a variety of knowledge sources such as do­
main models (modelling the expertise for the machine tutor in a given domain), 
task models (supporting students' problem solving process), error models (anti­
cipating the many kinds of typical learner errors), and individual student models 
(capturing given learners' knowledge, strengths and weaknesses). 

The first tutoring systems modelled learners solely in terms of expert skills 
or the lack thereof. The overlay approach only requires an adequate represen­
tation and operationalisation of expertise in terms of factual knowledge units 
and procedural skills. It assumes that all differences between learner and expert 
behaviour can be reduced to the learner's lack of skill. The studies of Brown & 
Burton and others suggest however that student errors cannot be described in 
terms of absent expert knowledge only [2]. They argue that the representation of 
expert knowledge must be complemented by a bug library to account for typical 
or high-frequent student errors in a given domain, usually in terms of buggy 
variants of expert skills. An erroneous student answer can then be reproduced 
by finding a combination of expert and buggy skills that yields the same answer. 
The resulting deep-structure model pin-points a student's misconception and 
supports the generation of appropriate corrective or remedial feedback. 

The quality of cognitive diagnosis depends on the right granularity of (expert 
and buggy) skill decomposition, which in turn profits from an in-depth analysis 
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of a large and representative number of student protocols. Clearly, cognitive 
diagnosis that uses bug libraries can only recognise the errors it knows about, 
and usually the amount of buggy knowledge easily surpasses the amount of 
expert knowledge. The (De)Buggy programs [2,3], e. g. , relied on a bug library of 
120 primitive and compound bugs to model errors in multi-column subtraction. 
Given the computational complexity of the approach, the systems performed 
diagnosis off-line, following a complex process of eliminating error hypotheses. 

Model tmcing tutors tackle the complexity issue by inviting learners to provide 
their answers in a piecemeal fi1shion . It is thus no longer necessary to reproduce 
a student's line of reasoning from question to (final) answer; only the student's 
next step towards a solution is analysed, and immediate feedback is given. While 
tutoring systems such as the Lisp Tutor [7,4] and the Algebra Tutor [6] have been 
highly successful, they are also expensive to build . A time-consuming cognitive 
task analysis now goes hand in hand with user interface design that encourages 
or enforces students to deliver their solution step by step . 

In this paper, we report a method for the automated identification of errors 
that only requires the student's full answer to a given problem and a logic pro­
gram encoding the expert's problem solving. The method relies on an innovative 
use of algorithmic debugging to identify learner errors by the analysis of cor­
rect (sic) Prolog-based procedures, given the answers of an oracle - a role being 
played by the student. Compared to previous approaches to cognitive diagnosis, 
the method does not rely on bug libraries and has low computational complex­
ity. It supports the analysis of learners committing multiple bugs by attacking 
bugs one after another, and it is immune to learners giving inconsistent replies. 
Moreover, the execution of the method supports the generation of tutorial in­
teractions without requiring dialogue planning or scripting. In addition, we can 
give a mechanisation of the oracle, which relieves the student from answering any 
tutor question at all. Errors can thus be identified without dialogue intervention. 

2 Background 

In this section, we give a brief account on multi-column subtraction, typical 
errors in this domain, and Shapiro 's original algorithmic debugging method. 

2.1 Multi-column Subtraction 

Fig. 1 gives an implementation of multi-column subtraction in Prolog. Sums 
are processed column by column, from right to left. The predicate subtract / 2 
implements the recursion, and process_column/ 2 gets a partial sum, processes 
its right-most column and t akes care of borrowing (increment / 2) and payback 
(increment / 2) actions. A column is represented as 3-element term (M, S, R) 

representing minuend, subtrahend and result cell . The program code implements 
the equal additions method, also known as Austrian m ethod. When the subtra­
hend S is greater than the minuend M, then M is increased by 10 (borrowing) 
before the difference between M and S is taken. To compensate, the S in the 
column left to the current one is then increased by one (payback). 



subtract (Sum, Sum) :- finished(Sum). 
subtract (Sum, NewSum) 

process_column(Sum, Suml) , 
shift_left (Suml , Sum2, ProcessedColumn), 
subtract (Sum2 , SumFinal), 
append (SumFinal, [ProcessedColumn], NewSum). 

process_column(Sum, NewSum) : -
butlast(Sum, LastColumn), allbutlast(Sum,RestSum), 
subtrahend(LastColumn, Sub), minuend (LastColumn , Min), 
Sub > Min, 
add_ten_to_minuend(LastColumn, LastColumnl), 
take_difference (LastColumnl , LastColumn2), 
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butlast(RestSum, LastColumnRestSum), allbutlast(RestSum, RestSuml) , 
increment (LastColumnRestSum, LastColumnRestSuml), 
append(RestSuml,[LastColumnRestSuml,LastColumn2] ,NewSum) . 

process_column(Sum, NewSum) :-
butlast(Sum, LastColumn), allbutlast(Sum,RestSum), 
subtrahend (Last Column , Sub), minuend (LastColumn , Min), 
Sub =< Min, 
take_difference (Last Column , LastColumnl), 
append (RestSum,[LastColumnl], NewSum) . 

shift_left( SumList, RestSumList, Item) :­
allbutlast(SumList, RestSumList), butlast(SumList, Item). 

add_ten_to_minuend( (M,S,R), (Ml0,S, R) ) 
increment ( (M,S,R), (M, Sl,R)) 
take_difference ( (M,S,_R), (M, S, Rl)) 

irreducible, Ml0 is M+l0. 
irreducible, Sl is S+l . 
irreducible, Rl is M-S. 

finished ( [] ) . 

Fig. 1. Multi-column subtraction 

2.2 Error Analysis in Multi-column Subtraction 

Some student errors may be caused by a simple oversight (usually, students are 
able to correct such errors as soon as they see them) , but others are systematic 
errors (those keep re-occurring again and again) . It is the systematic errors 
that we aim at diagnosing as they indicate a student 's wrong understanding 
about some subject matter . The small sample of errors given in Fig. 2 can be 
classified as eTrors of omission (forget to do something), see (b,c); eTrors of 
commission (doing the task incorrectly), see (a,e); and sequence error·s (doing 
the task not in the right order) , see (d) . Rather than having pre-compiled explicit 
representations of buggy program fragments (following the bug library approach) 
to detect such errors, we would like to use the method of algorit hmic debugging 
on the expert program to help identifying them. 
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5 2 4 3 8 2 3 2 
2 9 8 3 5 1 7 
3 7 4 4 7 2 5 

(a) Always sub- (b) Not finishing ( c) Forgot to 
tracting the the task payback 
smaller from the 
larger number 

1 1 2 3 5 2 3 4 
4 9 0 5 6 7 

1 7 2 2 2 7 7 7 
(d) Perform algorithm from (e) Accumulating all pay-
left to right backs to highest place value 

Fig. 2. A small selection of errors in subtraction 

2.3 Shapiro's Algorithmic Debugging 

Shapiro's algorithmic debugging technique for logic programming prescribes a 
systematic manner to identify bugs in programs. In the top-down variant, the 
program is traversed from the goal clause downwards. At each step during the 
traversal of the program's AND/OR tree, the programmer is taking the role of 
the oracle, and answers whether the currently processed goal holds or not. If 
the oracle and the buggy program agree on a goal, then algorithmic debugging 
passes to the next goal on the goal stack. If the oracle and the buggy program 
disagree on the result of a goal, then this goal is inspected further. Eventually an 
irreducible agreement will be encountered, hence locating the program's clause 
where the buggy behaviour is originating from. 

Shapiro's algorithmic debugging method extends, thus, a simple meta-inter­
preter for logic programs. During the meta-interpretation of the program, it 
generates oracle questions. Given the programmer's answer to a Prolog clause, 
it is either silently executed to quickly recur algorithmic debugging on the re­
maining clauses, or investigated further to identify the source of the bug. 

In his thesis, Shapiro gives several variants or extensions to account for var­
ious types of erroneous program code, including procedures terminating with 
incorrect output and non-terminating procedures. He also gives algorithms for 
debugging a program top-down or bottom-up, and also for minimising the num­
ber of queries the oracle (i. e., the programmer) needs to answer. 

3 Algorithmic Debugging in Tutoring 

Shapiro devised algorithmic debugging to systematically identify bugs in incor­
rect programs. Our Prolog code for multi-column subtraction in Fig. 1, however, 
presents the expert model, that is, a presumably correct program. Given that 
cognitive modelling seeks to reconstruct students' erroneous procedures by an 
analysis of their problem-solving behaviour, it is hard to see - at least at first 
sight - how algorithmic debugging might be applicable in this context. There is a 
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simple but almost magical trick, however. We can turn Shapiro's algorithm on its 
head: instead of having the oracle (the programmer) specifying how the assumed 
incorrect program should behave, we take the expert program to take the role of 
the buggy program, and the role of the oracle is filled by a student's potentially 
erroneous answers. An irreducible disagreement between program behaviour and 
given answer then helps indicating a student's potential misconception. 

Our algorithm, especially adapted for tutoring, is given in Fig. 3. Our algo­
rithm traverses a given program in a top-down manner. There are four cases. 
If a goal is a conjunction of goals, then the algorithm is called for each con­
junct. If a goal is a simple goal, then we distinguish goals that can be discussed 
(on_discussion_table / 1) from those that cannot and should not be discussed. 
In the latter case, we check whether the current goal is a built-in predicate (in 
which case it is called), or whether it is a user-defined goal (in which case, its 
body is subjected to algorithmic debugging). It is the second clause where the 
main part of algorithmic debugging takes place. Given a goal that can be dis­
cussed, we use a fail-safe approach to evaluate whether it succeeds or not; we 
then ask the oracle whether it agrees or disagrees with the fact that the goal 
succeeded (with some of its arguments potentially instantiated) or failed. When 
there is agreement on a goal, we regard the goal (and its subgoals) as processed, 
and continue with other goals on the stack resulting from recursion. If there 
is disagreement on a goal, we check whether we have identified an irreducible 
agreement (in which case we terminate the algorithm with the goal in question), 
or not (in which case we inspect the goal's body). 

N ate. Programs that model expert problem solving will often have some rather 
technical steps that should not be subjected to questioning. In our subtraction 
routine, these are, e.g., the clauses butlast/2 and allbutlast/2; while they 
are necessary to implement the recursion to process partial sums from right to 
left, they might be hard to grasp for students and perceived as too low-level. 
The clause on_discussion_table_p ( Goal ) will fail on these technical clauses. 

4 Example 

We reconsider two of the five examples of typical subtraction errors. The GUI­
based exercise sheet that students will interact with is presented further below. 

4.1 Single Error Tracking 

The result in Fig. 2(c) constitutes a simple error and can be described as a single 
omission in the program code; the learner forgets to honor the payback operation, 
following the borrowing that happened in the first (right-most) column. 

3 2 
1 7 
2 5 
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algorithmic_debugging ( (Goall, Goa12» ! , 

algorithmic_debugging( Goall ), 
algorithmic_debugging ( Goa12 ). 

algorithmic_debugging( Goal) :­
on_discussion_table_p( Goal ), !, 

copy_term( Goal, CopyGoal ), eval_goal( Goal, SucceededP ) , 
ask_oracle( Goal, SucceededP, oracleAnswer ), 
( 

) . 

oracleAnswer = no 
-> 

) 

clause( CopyGoal, Clause ), 
( 

( Clause == true ; Clause = ( irreducible, _Subgoals) ) 
-> 

throw( Goal 

algorithmic_debugging( Clause ) 
) 

true 

algorithmic_debugging( Goal) :­
predicate_property( Goal, built_in), !, 

call(Goal). 

algorithmic_debugging( Goal) :-
clause( Goal, Clause), 
algorithmic_debugging ( Clause ). 

get_diagnosis( Goal, Diagnosis) :-
catch( algorithmic_debugging( Goal ), 

Diagnosis, 
( Diagnosis = true 

-> format (' -w-n' , ['correct solution']) 
format(' - w - w-n', ['irreducible disagreement : ', 

Diagnosis]) ) ) . 

Fig. 3. Algorithmic debugging for tutoring (top-down) 
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Given our implementation of algorithmic debugging, the following dialogue 
(see clause aSk_oracle /3) between system and learner will identify the error: 

get_diagnosis(subtract([(3 , 1,Sl),(2,7,S2)], [(3,1,2),(12,7 ,5)],Diagnosis) . 

do you agree that the following goal holds: 
subtract ( [ (3,1, _G226) , (2,7 , _G235)), [ (3,2,1), (12,7,5)]) 

I : no. 

do you agree that the following goal holds: 
process_column( [(3,1, _G475), (2,7 , _G484)], [(3,2, _G475), (12,7,5)]) 

I: no. 

do you agree that the following goal holds : 
add_ten_to_minuend( (2,7, _G652), (12,7, _G652)) 

I: yes . 

do you agree that the following goal holds: 
take_difference ((12,7, _G652), (12,7,5)) 

I : yes . 

do you agree that the following goal holds : 
increment((3,1,_G643), (3,2, _G643)) 

I : no . 
irreducible disagreement: increment((3,1,_G643), (3,2,_G643)) 

When the student corrects the subtrahend in the left-most column, and sub­
sequently updates the corresponding difference, we obtain the correct solution. 
Re-running algorithmic debugging will have both sides agree on the top clause. 

4.2 Tracking Multiple Errors 

The method also works well with student answers containing multiple errors. In 
this case, errors are attacked and repaired one by one. After each correction, the 
algorithm is re-run. Having the method memoizing the student answers to prior 
questions will avoid re-asking some - but not all - for them in subsequent runs. 

Reconsider the example given in Fig. 2(a). 

524 
2 9 8 
374 

First Run. 

do you agree that the following goal holds: 

I: no . 

subtract ([ (5,2, _G226), (2,9, _G235), (4,8, _G244)] , 
[ (5,3,2), (12,10,2), (14,8,6)]) 
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do you agree that the following goal holds: 

I: no. 

process_column( [ (5,2,_G523), (2,9,_G532), (4,8,_G541)], 
[(5,2,_G523), (2,10,_G532), (14,8,6)]) 

do you agree that the following goal holds: 
add_ten_to_minuend«4,8,_G808), (14,8,_G808)) 

I : no. 
irreducible disagreement: add_ten_to_minuend«4,8,_G808), (14,8,_G808)) 

Let us assume that the student corrects himself by only adding ten to the min­
uend in the right-most column. We re-run algorithmic debugging. 

Second Run. The second run will produce the following interaction: 

do you agree that the following goal holds: 

I: no. 

subtract ( [ (5,2,_G226), (2,9,_G235), (4,8,_G244)], 
[ (5,3,2), (12,10,2), (14,8,6)]) 

do you agree that the following goal holds: 

I: no. 

process_column( [ (5,2,_G523), (2,9,_G532), (4,8,_G541)], 
[ (5,2,_G523), (2,10,_G532), (14,8,6))) 

do you agree that the following goal holds: 
add_ten_to_minuend«4,8,_G808), (14,8,_G808)) 

I: yes. 

do you agree that the following goal holds: 
take_difference«14,8,_G808), (14,8,6)) 

I: no. 
irreducible disagreement: take_difference«14,8,_G808), (14,8,6)) 

With the student having corrected the difference sum in this column, we start 
the third run. 

Third Run. When we omit Oracle questions already asked (except the one that 
indicated the irreducible disagreement from the last run), we get the following 
questions: 

do you agree that the following goal holds: 
take_difference «14,8,_G808) , (14,8,6)) 

I: yes. 

do you agree that the following goal holds: 
increment «2,9,_G799), (2,10,_G799)) 

I : no. 
irreducible disagreement: increment«2,9,_G799), (2,10,_G799)) 

Once the student realizes the increment error, we start anew. Either the student 
learned from the past three runs so that he corrects the other remaining errors 
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in the exercise sheet, or algorithmic debugging will yield similar results for the 
processing of the middle column. 

The practicality of our approach has to address two issues: (i) how to map 
Prolog queries into questions that learners can easily understand; and (ii) how 
to optimise the question-answering process induced by algorithmic debugging. 

5 Practical Use in Tutoring 

5.1 Graphical User Interface - Exercise Sheet 

We have implemented the following browser-based graphical user interface for 
students to tackle multi-column subtraction tasks (see Fig. 4). In addition to 
rows for minuend, subtrahend and result cells, it also consists of explicit repre­
sentations for borrow and payback cells. When students click on a "B" ("P" ) 
cell , it automatically swaps it values to "10" ("I"). Clicking on a result cell "8" 
brings up a number pane with digits from 0-9. The GUI's representation of the 
subtraction task extends the one used in the Prolog program subtract/2, but 
the Bi can be easily combined with the cells for minuends (and the Pi with the 
subtrahends) . Moreover, to indicate to learners which GUI cells requires their 
attention, an adaptation to the program given in Fig. 1 was necessary, namely, 
the introduction of a column counter that is being increased at each recursive 
call to subtract/3. During algorithmic debugging, we can thus enhance tuto­
rial interaction by highlighting the corresponding cells or columns in the GUI; 
erroneous cells that correspond to irreducible disagreements are marked in red. 

Ptt>bIM. StlIt-llrtlcnt 

Borrow Row 

Minuends 

Subtrahends 

Payback Row 

Result Row 

[!J~~ ~ 
~.P of 

usa 7 
,. .... <",. .. . .~~ .. "'.. ",no'n, 

[iJ OJ OJ Ii] 

Fig. 4 . GUI interaction (fully-functional prototype) 

5.2 Implementing the Oracle 

It may not · be necessary nor pedagogically effective to forward all questions in­
duced by algorithmic debugging to students. Moreover, some learners will hardly 
be patient enough to go through many iterations of system-learner interactions 
once they have already given an answer to a given problem. To address this 
issue, we have build an oracle that can answer questions about the subtraction 
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task: it takes a learner 's full answer from the exercise sheet , and extracts from it 
those parts required to answer a given question. Fig. 5 depicts a code fragment 
to handle cases for the top clause subtract/2 and the clause increment/2. 

oracle( Step, YesNo ) :­
get_student_answer_from_gui( Answer ), !, 
oracle_helper( Step, Answer, YesNo ) . 

oracle_helper( subtract (Col, _Input, Output), Answer, YesNo ) 
length(Answer, NumberColumns), 
Col = NumberColumns, !, 
( 

subsumes_term (Output , Answer) -> YesNo yes YesNo no 
) . 

oracle_helper( subtract( Col, Input, Output ), Answer, YesNo ) : ­
allbutlast (Answer , AnswerRed), 
oracle_helper( subtract(Col, Input, Output), AnswerRed, YesNo ). 

oracle_helper (increment (Col , _Input , (_M2, S2, R2»,Answer,YesNo ) :­
length (Answer , NumberColumns), 
Col = NumberColumns, !, 
butlast( Answer, ( _MS, SS, _RS) ), 
( S2 == SS -> YesNo = yes; YesNo = no ). 

oracle_helper( increment(Col,InputCol,OutputCol),Answer,YesNo ) :­
allbutlast(Answer, AnswerRed), 
oracle_helper (increment (Col,InputCol ,OutputCol) ,Answer Red,YesNo) . 

?- get_diagnosis ([ (3 ,1, Sl) , (2,7, S2)], [(3,1,2), (12,7,5)]' Diagnosis). 
==> irreducible disagreement : increment(2, (3,l,_G3659), (3,2, _G3659» 

Fig. 5. Implement ing the Oracle (fragment for subtraction task) 

The clause oracle/2 is called with the current step executed by the exper t 
model and outputs yes or no , depending on whether the learner agrees or dis­
agrees with t he expert step. The new argument Col marks the column currently 
processed. It is compared to the length of Answer, initially capturing the full 
sum given by the learner. When they are equal, we extract from Answer the 
relevant parts and check them for correctness with respect to the expert answer ; 
otherwise, we recurse with the learner 's answer reduced by the one column no 
longer of interest . 

6 Discussion and Related Work 

In Fig. 2, we have given a small selection of typical errors in subtraction. Our 
use of algorithmic debugging alone will surely fail to identify the full nature of 
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learners' erroneous behaviour, but algorithmic debugging in combination with 
other techniques will get closer to this (see Future Work). 

Out adaptation and use of algorithmic debugging in tutoring is similar in spirit 
to model tracing. While our discussion assumed the lear'ner to give a full answer 
to a given subtraction task, we can instrument our algorithm to provide next­
step help in case where learners only submitted a partial sum. Note also that 
our approach does not require any representation of buggy skills. The interaction 
induced by algorithmic debugging compares learner actions to those of the expert 
model only - admittingly at the cost of providing less effective remedial feedback 
once a disagreement has been identified. On the positive side, our expert model 
is just an executable Prolog program. While it encodes skills that we want the 
learner to acquire, it contains no (other) tutoring-specific information. The power 
and simplicity of our approach is due to the meta-programming perspective. 

There is only little research in the ITS community that builds upon logic 
programming techniques. Thirty years ago, Self described student modelling in 
terms of an induction problem, where student observations can be seen as the I/O 
behaviour of an unknown program that needs to be induced from such behaviour 
[8]. An induction logic programming approach to cognitive diagnosis has been 
taken by [5]. Here, expert knowledge is represented as a set of Prolog clauses, 
and Shapiro's Model Inference System (MIS) [9] is used to synthesise the student 
model from expert knowledge and student answers. Once the student model, a 
set of Prolog clauses, is constructed, Shapiro's Program Diagnosis System (PDS), 
based upon algorithmic debugging, is used to identify students' misconceptions, 
that is, the bugs in the MIS-constructed Prolog program. 

In [1], Beller & Hoppe use a fail-safe meta-interpreter to identify student 
error. A Prolog program, modelling the expert knowledge for doing subtraction, 
is executed by instantiating its output parameter with the student answer. While 
standard Prolog interpretation would fail, a fail-safe meta-interpreter can recover 
from execution failure, and can also return an execution trace. Beller & Hoppe 
formulate error patterns which are then matched against the execution trace, 
and where each successful match is indicating a plausible student bug. 

7 Conclusion and Future Work 

There is good evidence that a sound methodology of cognitive diagnosis in intel­
ligent tutoring can be realised in the framework of logic programming. Its declar­
ative aspect, its view that program equals data, the substantial work in areas 
such as meta-level interpreters, partial evaluation, reasoning about programs, 
algorithmic debugging and inductive logic programming shows that there is am­
ple potential to harness such techniques to support cognitive diagnosis in the 
context of intelligent tutoring systems. In this paper, we reported on our work 
to use algorithmic debugging to advance cognitive diagnosis in this direction. 

In the future, we aim at systematically studying, adapting and combining 
various logic programming methods to effectively perform cognitive diagnosis in 
educational settings. We are currently working on a combination of algorithmic 
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debugging and program transformation. Once algorithmic debugging identifies 
an irreducible disagreement between expert behaviour and the learner, we induce 
code perturbations (i. e. bugs) into the expert program to make the disagreement 
disappear . After a series of applications of algorithmic debugging and code per­
turbations, we obtain a buggy procedure which models the learner's erroneous 
behaviour. In a related strand, we would like to adapt and use inductive pro­
gram synthesis techniques; those, for instance, will be necessary to cover program 
transformations where novel elements need to be constructed. Once an arsenal of 
such techniques is developed, we seek to characterise the types of errors that can 
be diagnosed with each method or combination of methods, and to determine 
the effectiveness of remedial feedback based on such diagnosis. 

Acknowledgements. The idea of turning Shapiro'S method for algorithmic 
debugging on its head to support the diagnosis of student errors originated from 
Alan Smaill and Alan Bundy (both University of Edinburgh); personal commu­
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