Skip to main content

Segmentation of Action Streams Human Observers vs. Bayesian Binning

  • Conference paper
Book cover KI 2011: Advances in Artificial Intelligence (KI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7006))

Included in the following conference series:

Abstract

Natural body movements are temporal sequences of individual actions. In order to realise a visual analysis of these actions, the human visual system must accomplish a temporal segmentation of action sequences. We attempt to reproduce human temporal segmentations with Bayesian binning (BB) [8]. Such a reproduction would not only help our understanding of human visual processing, but would also have numerous potential applications in computer vision and animation. BB has the advantage that the observation model can be easily exchanged. Moreover, being an exact Bayesian method, BB allows for the automatic determination of the number and positions of segmentation points. We report our experiments with polynomial (in time) observation models on joint angle data obtained by motion capture. To obtain human segmentation points, we generated videos by animating sequences from the motion capture data. Human segmentation was then assessed by an interactive adjustment paradigm, where participants had to indicate segmentation points by selection of the relevant frames. We find that observation models with polynomial order ≥ 3 can match human segmentations closely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agam, Y., Sekuler, R.: Geometric structure and chunking in reproduction of motion sequences. Journal of Vision 8(1) (2008)

    Google Scholar 

  2. Albu, A.B., Bergevin, R., Quirion, S.: Generic temporal segmentation of cyclic human motion. Pattern Recognition 41(1), 6–21 (2008)

    Article  MATH  Google Scholar 

  3. Barbič, J., Safonova, A., Pan, J.Y., Faloutsos, C., Hodgins, J.K., Pollard, N.S.: Segmenting motion capture data into distinct behaviors. In: Proceedings of Graphics Interface GI 2004. Canadian Human-Computer Communications Society, School of Computer Science, pp. 185–194. University of Waterloo, Waterloo (2004), http://portal.acm.org/citation.cfm?id=1006058.1006081

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  5. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH, pp. 97–104 (1995)

    Google Scholar 

  6. Chen, W., Zhang, J.J.: Parametric model for video content analysis. Pattern Recognition Letters 29(3), 181–191 (2008)

    Article  Google Scholar 

  7. Dickman, H.R.: The perception of behavioral units. In: Barker, R.G. (ed.) The stream of behavior, pp. 23–41. Appleton-Century-Crofts, New York (1963)

    Google Scholar 

  8. Endres, D., Földiák, P.: Bayesian bin distribution inference and mutual information. IEEE Transactions on Information Theory 51(11), 3766–3779 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Endres, D., Oram, M.: Feature extraction from spike trains with bayesian binning: latency is where the signal starts. Journal of Computational Neuroscience 29, 149–169 (2009), doi:10.1007/s10827-009-0157-3

    Article  MathSciNet  Google Scholar 

  10. Endres, D., Oram, M., Schindelin, J., Földiák, P.: Bayesian binning beats approximate alternatives: estimating peri-stimulus time histograms. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 401–408. MIT Press, Cambridge (2008)

    Google Scholar 

  11. Fearnhead, P.: Exact and efficient bayesian inference for multiple changepoint problems. Statistics and Computing 16(2), 203–213 (2006)

    Article  MathSciNet  Google Scholar 

  12. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. (5), 1688–1703 (1985)

    Google Scholar 

  13. Green, R.D.: Spatial and temporal segmentation of continuous human motion from monocular video images. In: Proceedings of Image and Vision Computing, New Zealand, pp. 163–169 (2003)

    Google Scholar 

  14. Hutter, M.: Exact bayesian regression of piecewise constant functions. Journal of Bayesian Analysis 2(4), 635–664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ilg, W., Bakir, G., Mezger, J., Giese, M.: On the representation, learning and transfer of spatio-temporal movement characteristics. International Journal of Humanoid Robotics 1(4), 613–636 (2004)

    Article  Google Scholar 

  16. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marida, K.V., Jupp, P.E.: Directional Statistics. Wiley, Chichester (2000)

    Google Scholar 

  18. Newtson, D., Engquist, G.: The perceptual organization of ongoing behavior. Journal of Experimental Social Psychology 12(5), 436–450 (1976)

    Article  Google Scholar 

  19. Omlor, L.: New methods for anechoic demixing with application to shift invariant feature extraction. PhD in informatics, Universität Ulm. Fakultät für Ingenieurwissenschaften und Informatik (2010) urn:nbn:de:bsz:289-vts-72431

    Google Scholar 

  20. Polyakov, F., Stark, E., Drori, R., Abeles, M., Flash, T.: Parabolic movement primitives and cortical states: merging optimality with geometric invariance. Biol. Cybern. 100(2), 159–184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quirion, S., Branzan-Albu, A., Bergevin, R.: Skeleton-based temporal segmentation of human activities from video sequences. In: Proceedings WSCG 2005 - 13-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2005 (2005)

    Google Scholar 

  22. Roether, C.L., Omlor, L., Christensen, A., Giese, M.A.: Critical features for the perception of emotion from gait. Journal of Vision 9(6) (2009)

    Google Scholar 

  23. Shipley, T.F., Maguire, M.J., Brumberg, J.: Segmentation of event paths. Journal of Vision 4(8) (2004)

    Google Scholar 

  24. Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognition 36(3), 585–601 (2003)

    Article  Google Scholar 

  25. Zacks, J.M., Kumar, S., Abrams, R.A., Mehta, R.: Using movement and intentions to understand human activity. Cognition 112(2), 201–216 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Endres, D., Christensen, A., Omlor, L., Giese, M.A. (2011). Segmentation of Action Streams Human Observers vs. Bayesian Binning. In: Bach, J., Edelkamp, S. (eds) KI 2011: Advances in Artificial Intelligence. KI 2011. Lecture Notes in Computer Science(), vol 7006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24455-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24455-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24454-4

  • Online ISBN: 978-3-642-24455-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics