Skip to main content

Graph Characterization via Backtrackless Paths

  • Conference paper
Similarity-Based Pattern Recognition (SIMBAD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7005))

Included in the following conference series:

Abstract

Random walks on graphs have been extensively used for graph characterization. Positive kernels between labeled graphs have been proposed recently. In this paper we use backtrackless paths for gauging the similarity between graphs. We introduce efficient algorithms for characterizing both labeled and unlabeled graphs. First we show how to define efficient kernels based on backtrackless paths for labeled graphs. Second we show how the pattern vectors composed of backtrackless paths of different lengths can be use to characterize unlabeled graphs. The proposed methods are then applied to both labeled and unlabeled graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Qiangrong, J., Hualan, L., Yuan, G.: Cycle kernel based on spanning tree. In: Proc. of International Conference on Electrical and Control Engineering 2010, pp. 656–659 (2010)

    Google Scholar 

  3. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery, pp. 158–167 (2004)

    Google Scholar 

  4. Borgwardt, K.M., Kriegel, H.: Shortest-path kernels on graphs. In: Proceedings of 5th IEEE Internationl Conference on Data Mining (ICDM 2005), pp. 74–81 (2005)

    Google Scholar 

  5. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph Kernels. Journal of Machine Learning Research, 1201–1242 (2010)

    Google Scholar 

  6. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of the Twentieth International Conference on Machine Learning, pp. 321–328. AAAI Press, Menlo Park (2003)

    Google Scholar 

  7. Kashima, H., Inokuchi, A.: Kernels for Graph Classification. In: ICDM Workshop on Active Mining (2002)

    Google Scholar 

  8. Mahé, P., Ueda, N., Akutsu, T., Perret, J., Vert, J.: Extensions of Marginalized Graph Kernels. In: Proceedings of the 21st International Conference on Machine Learning (2004)

    Google Scholar 

  9. Srinivasan, A., Muggleton, S.H., Sternberg, M.J.E., King, R.D.: Theories for mutagenicity: a study in first-order and feature-based induction. Artificial Intelligence 85, 277–299 (1996)

    Article  Google Scholar 

  10. Schölkopf, B., Smola, A.J.: Learning with kernels. MIT Press, Cambridge

    Google Scholar 

  11. Ren, P., Wilson, R.C., Hancock, E.R.: Pattern vectors from the Ihara zeta function. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  12. Ren, P., Wilson, R.C., Hancock, E.R.: Graph Characteristics from the Ihara Zeta Function. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 257–266. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Ren, P., Wilson, R.C., Hancock, E.R.: Hypergraphs, Characteristic Polynomials and the Ihara Zeta Function. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 369–376. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Ren, P., Aleksic, T., Emms, D., Wilson, R.C., Hancock, E.R.: Quantum walks, Ihara zeta functions and cospectrality in regular graphs. Quantum Information Processing (in press)

    Google Scholar 

  15. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Lett. 18(8), 689–694 (1997)

    Article  Google Scholar 

  16. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Comput., 950–959 (2009)

    Google Scholar 

  17. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  18. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Computer Networks 33, 309–320 (2000)

    Article  Google Scholar 

  19. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  20. Kramer, S., Raedt, L.D.: Feature construction with version spaces for Biochemical Applications. In: Proceedings of th 18th ICML (2001)

    Google Scholar 

  21. Stark, H.M., Terras, A.A.: Zeta Functions of Finite Graphs and Coverings. Adv. in Math. 121, 124–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kotani, M., Sunada, T.: Zeta function of finite graphs. Journal of Mathematics 7(1), 7–25 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Bass. H.: The IharaSelberg zeta function of a tree lattice. Internat. J. Math., 717–797 (1992)

    Google Scholar 

  24. Scott, G., Storm, C.K.: The coefficients of the Ihara Zeta Function. Involve - a Journal of Mathematics 1(2), 217–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harris, C., Stephens, M.: A combined corner and edge detector. In: Fourth Alvey Vision Conference, Manchester, UK, pp. 147–151 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aziz, F., Wilson, R.C., Hancock, E.R. (2011). Graph Characterization via Backtrackless Paths. In: Pelillo, M., Hancock, E.R. (eds) Similarity-Based Pattern Recognition. SIMBAD 2011. Lecture Notes in Computer Science, vol 7005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24471-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24471-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24470-4

  • Online ISBN: 978-3-642-24471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics