Skip to main content

On a Non-monotonicity Effect of Similarity Measures

  • Conference paper
Similarity-Based Pattern Recognition (SIMBAD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7005))

Included in the following conference series:

Abstract

The effect of non-monotonicity of similarity measures is addressed which can be observed when measuring the similarity between patterns with increasing displacement. This effect becomes the more apparent the less smooth the pattern is. It is proven that commonly used similarity measures like f-divergence measures or kernel functions show this non-monotonicity effect which results from neglecting any ordering in the underlying construction principles. As an alternative approach Weyl’s discrepancy measure is examined by which this non-monotonicity effect can be avoided even for patterns with high-frequency or chaotic characteristics. The impact of the non-monotonicity effect to applications is discussed by means of examples from the field of stereo matching, texture analysis and tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.R., Beck, J., Chen, W.W.L.: Geometric discrepancy theory and uniform distribution, pp. 185–207. CRC Press, Inc., Boca Raton (1997)

    MATH  Google Scholar 

  2. Ali, S.M., Silvey, S.D.: A General Class of Coefficients of Divergence of One Distribution from Another. J. Roy. Statist. Soc. Ser. B 28, 131–142 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by probability distributions. Bull. Calcutta Math. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  5. Bouchot, J.-L., Stübl, G., Moser, B.: A template matching approach based on the discrepancy norm for defect detection on regularly textured surfaces. Accepted to Quality Control by Artificial Vision Conference, QCAV 2011 (June 2011)

    Google Scholar 

  6. Chen, C.M., Cheng, C.T.: From discrepancy to declustering: Near-optimal multidimensional declustering strategies for range queries. J. ACM 51(1), 46–73 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  8. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift, vol. 2, pp. 142–149 (2000)

    Google Scholar 

  9. Csiszár, I.: Eine informationstheoretische Ungleichung und ihre anwendung auf den Beweis der ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. 8, 95–108 (1963)

    MATH  Google Scholar 

  10. Deza, M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  11. Doerr, B., Hebbinghaus, N., Werth, S.: Improved bounds and schemes for the declustering problem. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 760–771. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Doerr, B.: Integral approximations. Habilitation thesis, University of Kiel (2005)

    Google Scholar 

  13. Gao, Z., Gu, B., Lin, J.: Monomodal image registration using mutual information based methods. Image and Vision Computing 26(2), 164–173 (2008)

    Article  Google Scholar 

  14. Kuipers, L., Niederreiter, H.: Geometric Discrepancy: An Illustrated Guide. Algorithms and combinatorics, vol. 18. Springer, Berlin (1999)

    Google Scholar 

  15. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. Dover Publications, New York (2005)

    MATH  Google Scholar 

  16. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

    MATH  Google Scholar 

  17. Liese, F., Vajda, I.: On Divergences and Informations in Statistics and Information Theory. IEEE Transactions on Information Theory 52(10), 4394–4412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, X., Zhang, S., Su, H., Chen, Y.: Mutual information-based multimodal image registration using a novel joint histogram estimation. Computerized Medical Imaging and Graphics 32(3), 202–209 (2008)

    Article  Google Scholar 

  19. Morimoto, T.: Markov processes and the h-theorem. Journal of the Physical Society of Japan 18(3), 328–331 (1963)

    Article  MATH  Google Scholar 

  20. Moser, B.: Similarity measure for image and volumetric data based on Hermann Weyl’s discrepancy measure. IEEE Transactions on Pattern Analysis and Machine Intelligence (2009), doi:10.1109/TPAMI.2009.50

    Google Scholar 

  21. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  22. Sadakane, K., Chebihi, N.T., Tokuyama, T.: Discrepancy-based digital halftoning: Automatic evaluation and optimization. In: WTRCV 2002, pp. 173–198 (2002)

    Google Scholar 

  23. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, 1st edn. Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2001)

    Google Scholar 

  24. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Hingham, MA, USA, vol. 47, pp. 7–42. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  25. Scharstein, D., Szeliski, R.: High-Accuracy Stereo Depth Maps Using Structured Light. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 195–202 (June 2003)

    Google Scholar 

  26. Thomas, C.M., Joy, T.A.: Elements of Information Theory, 1st edn., p. 18. John Wiley & Sons, Inc., Chichester (1991)

    MATH  Google Scholar 

  27. Takhtamysheva, G., Vandewoestyneb, B., Coolsb, R.: Quasi-random integration in high dimensions. Image Vision Comput. 73(5), 309–319 (2007)

    MathSciNet  Google Scholar 

  28. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zaremba, S.K.: The mathematical basis of Monte Carlo and Quasi-Monte Carlo methods. SIAM Review 10(3), 303–314 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moser, B., Stübl, G., Bouchot, JL. (2011). On a Non-monotonicity Effect of Similarity Measures. In: Pelillo, M., Hancock, E.R. (eds) Similarity-Based Pattern Recognition. SIMBAD 2011. Lecture Notes in Computer Science, vol 7005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24471-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24471-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24470-4

  • Online ISBN: 978-3-642-24471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics