Semantically Configurable Consistency Analysis
for Class and Object Diagrams

Shahar Maoz*, Jan Oliver Ringert**, and Bernhard Rumpe

Software Engineering
RWTH Aachen University, Germany
http://www.se-rwth.de/

Abstract. Checking consistency between an object diagram (OD) and
a class diagram (CD) is an important analysis problem. However, several
variations in the semantics of CDs and ODs, as used in different contexts
and for different purposes, create a challenge for analysis tools. To ad-
dress this challenge in this paper we investigate semantically configurable
model analysis. We formalize the variability in the languages semantics
using a feature model: each configuration that the model permits induces
a different semantics. Moreover, we develop a parametrized analysis that
can be instantiated to comply with every legal configuration of the fea-
ture model. Thus, the analysis is semantically configured and its results
change according to the semantics induced by the selected feature config-
uration. The ideas are implemented using a parametrized transformation
to Alloy. The work can be viewed as a case study example for a formal
and automated approach to handling semantic variability in modeling
languages.

“One man’s constant is another man’s variable.”
Alan Perlis [21]

1 Introduction

A class diagram (CD) specifies a model of an object-oriented system structure.
The semantics of a CD, that is, its meaning, consists of the (possibly infinite) set
of object models it permits. The related kind of diagram, object diagram (OD), is
used to document concrete object models. Thus, when both kinds of diagrams are
used in a model-driven design process, e.g., when domain experts and engineers
use ODs as a means of communication and the latter are responsible for designing
the CDs, checking the consistency between a CD and an OD is an important
analysis problem. However, several variations and ambiguities in the semantics
of CDs and ODs, as they are used in different contexts and for different purposes,
create a challenge for analysis tools.

* S. Maoz acknowledges support from a postdoctoral Minerva Fellowship, funded by
the German Federal Ministry for Education and Research.
** J.0. Ringert is supported by the DFG GK/1298 AlgoSyn.

[MRR11f] S. Maoz, J. O. Ringert, B. Rumpe

Semantically Configurable Consistency Analysis for Class and Object Diagrams

In: Model Driven Engineering Languages and Systems (MODELS 2011),

Wellington, New Zealand. pp. 153-167, LNCS 6981, 2011.

Received Best Paper Award and ACM Distinguished Paper Award at the MODELS 2011 Conference
www.se-rwth.de/publications/

To address this challenge in this paper we investigate semantically config-
urable model analysis. First, we formalize the variability in the semantics of the
modeling languages at hand using a feature model: each configuration that the
feature model permits, induces a different semantics mapping (over the same
domain). Second, we develop a parametrized analysis technique that can be in-
stantiated to comply with every legal configuration of the feature model. Thus,
the analysis is semantically configured and its results change according to the
semantics induced by the selected feature configuration.

Using a feature model to describe semantic variability has several advantages.
First, it provides a means to formally structure the various semantic choices; this
supports human comprehension of the semantics, allows comparison of different
variants, and, significantly, enables the parsing required in order to support an
automatically configurable analysis. Second, the use of a feature model provides
a formal means to define logical dependencies between the semantic choices,
e.g., mutual exclusion, implication etc. This is indeed necessary, because not all
theoretically possible combinations induce sound and useful semantics.

As concrete languages we use the CD and OD sublanguages of UML/P [23].
The semantics of CDs and ODs is based on [5,7,10] and is given in terms of sets
of objects and relationships between these objects.

Our feature model for the semantics of CD/OD consistency consists of 32
features. One feature, for example, relates to whether empty object models are
considered as possible target values in the semantic domain of CDs. Another fea-
ture relates to the question of whether incomplete ODs, which describe object
models that are missing some attributes or links but can be extended to a com-
plete object model in the semantics of the CD, would be considered consistent
with the CD or not. Another feature relates to the semantics of untyped objects
in the OD. Each feature is formally defined as part of the CD/OD semantics
definition. The feature model organizes the different features so that each of its
configurations induces a specific overall semantics.

The consistency analysis itself is realized using a parametrized transformation
to an Alloy [13] module. The input for the parametrized transformation consists
of a valid configuration of the feature model, a CD, and an OD. The Alloy
module is analyzed using a SAT solver and the result shows whether the CD
and the OD are consistent given the semantics defined by the configuration. An
overview of the architecture of our solution is shown in Fig. 1.

Our work is fully automated and implemented in a prototype Eclipse plug-in,
where one can edit CDs and ODs, select a semantic configuration, and check the
consistency of a CD and an OD. Feature model definitions and implementation
of feature selection use components from FeatureIDE [14]. After the transforma-
tion, the Alloy module is analyzed using the APIs of Alloy Analyzer [1].

Sect. 2 discusses related work. Sect. 3 provides a motivating example. Sect. 4
describes the CD and OD languages, their definition of consistency, and the
feature models of their semantics. Sect. 5 presents our technique for semanti-
cally configurable analysis. Sect. 6 presents the implementation and a discussion.
Sect. 7 concludes.

Appropriate
feature

selected by the engineer,
in compliance with the

configuration CD/OD feature model
cd !
Y
— | | Parametrized Alloy Analyzer | | & consistent /
> transformer and SAT solver inconsistent
od M generated | | ()
Alloy
— module

Fig. 1. The architecture of our solution

2 Related Work

The challenge of semantically configurable analysis has been investigated before
in a series of works by Atlee et al. [16,20,22, 28], which used template seman-
tics to configure the semantics of state machines, and demonstrated configured
translations of state machines into SMV and into Java code. Different from
these works, we use a feature model to model semantic variability. Moreover,
these works relate to state-based behavioral models while our present work fo-
cuses on structural models. In this sense, our present work may be viewed as
complementary to these previous works.

Previous work in our group [8] has presented a taxonomy of variability mech-
anisms in language definitions syntax and semantics, and demonstrated the use
of feature diagrams to model possible variants. The present work builds on these
previous ideas while focusing on semantic variability, specifically, semantic map-
ping variability (rather than syntactic variability) and on its application to se-
mantically configurable analysis, specifically demonstrated and implemented in
the context of CDs and ODs.

Some previous works provide various analyses for CDs (often extended with
fragments of OCL), using a translation to a constraint satisfaction problem [6],
using ad-hoc algorithms or a direct translation to SAT [12,26], using a transla-
tion to Description Logic [25,27], or using a translation to Alloy (see, e.g., [2]).
We use a transformation to Alloy, but our transformation is very different and
much more expressive than the one suggested in [2]. Our transformation ex-
tends a basic transformation that we have described in another, more general,
paper [17] in two ways: first, it accepts as input not only a CD but also an OD,
and second, significantly, it is parametrized based on another input, a feature
configuration, so as to support semantically configurable analysis. Finally, to the
best of our knowledge, none of the CD analysis works mentioned above support
variability-based semantically configurable analysis.

1
Emp > Tsk
t1:Tsk
0..2| sDate: Date
sDate = “03.02.2011"
dana :Emp
E
sDate = *01.02.2011" mp Tsk
name: String 1 sDate: Date
bob :Emp
gender: Gender 0..2 priority: Int
Fig. 2. od1, cd1, and cd}
dana :Emp
Emp Tsk
t1:Tsk
mngB: — .
g8y name: String <1 > sDate: Date
sDate = “03.02.2011” 0..2 L
gender: Gender priority: Int
t2:Tsk
mng Mgr
sDate = “01.02.2011” *
mng exp: Int
0..1
bob :Emp mngBy

Fig. 3. od2 and cds

3 DMotivating Example

We describe a simple example to motivate the need for semantically configurable
analysis of CD/OD counsistency, when CDs and ODs are used for different activ-
ities during the development life cycle and in different contexts. The description
is semi-formal. Required definitions are given in the following sections.

Consider ody, cdy, and cd}, shown in Fig. 2. In early stages of system design,
a domain expert suggested several ODs as examples of valid system instances,
among them od;. od; consists of employees and tasks: dana and bob are em-
ployees, dana has two tasks while bob has no tasks. Dana’s tasks have a date
attribute. The engineers have designed cd; as a CD for the system and wanted
to check the pair edy/ ody for consistency before they continue.

Later in the design process, after more requirements elicitation, additional
information became available and the CD cd; evolved into a more detailed one,
cd), where the same classes include additional attributes. The engineers wanted
to check the consistency of ed} not only against some new ODs, where all the
new attributes are defined, but also against the older OD od;, which includes
only a partial list of attributes. Although the objects in od; did not include all

the attributes shown in the new CD, the engineers expected that od; would be
considered consistent with cd], because it could be extended into a complete
valid instance of cd| where more attributes are present.

After a design review, another version of the CD was prepared, cds, as shown
in Fig. 3. In cds a new class Manager was added as a specialization of Emp, and a
related association with roles mngBy and mngs. In turn, the domain expert used
od; to create ods, by adding a link between bob and dana, so as to specify that
dana manages bob. While in ody; dana’s shown type is Emp, it is understood
that dana is also a Manager, because she manages bob. The engineers wanted
to check the consistency of cds and ods and expected the result to be positive.

A test engineer, responsible for creating test cases that will be executed after
a running prototype of the system is created, wanted to specify each test’s pre-
and post-conditions using ODs. As a sanity check, it was necessary to verify the
consistency between each of these ODs and the system’s CD. In this case, a much
more strict and complete semantics was assumed, i.e., that the instances in the
OD include complete lists of attributes and specify their exact type, otherwise
the tests may not be accurate or fail (e.g., if dana is constructed as an employee
rather than as a manager). Thus, to be useful, CD/OD analysis in the context of
testing required a slightly different semantics. Note that based on this semantics,
cds and ods, which have been considered consistent in the context of requirement
elicitation, are not considered consistent anymore.

Moreover, the design team noted that the objects in the system may be
dynamically constructed and destructed: the system starts with no object in-
stances, and during execution may return to this “no instance” state. Thus, an
empty OD, representing the empty OM, should be considered a valid system
instance, because, for example, it needs to be used as a pre- or post-condition of
some tests. Therefore, despite common standard definitions elsewhere and per-
haps against many modelers’ intuition, when checking this empty OD against
the system’s CD for consistency, the team expected a positive result.

Finally, the most complete and detailed version of the system’s CD (not
shown here) is intended for skeleton code generation of the actual implementa-
tion. While in this CD no classes or attributes may be omitted, the team wanted
to check it against all ODs used in the design and see that they are consistent.

This example demonstrates that the consistency of a given CD and OD de-
pends on the specific usage of the diagrams and the context in which the ques-
tion arises; it thus shows the need for more than one definition of semantics for
CD/OD consistency. Characterizing and formalizing the required variability, and
showing how it can be implemented in a single, configurable analysis solution,
are the challenges we address in this paper.

4 CDs and ODs, Consistency, and Semantic Variability

4.1 Class and object diagrams languages

The concrete CD and OD languages we use are sublanguages of UML/P [23], a
conceptually refined and simplified variant of UML designed for low-level design

and implementation. Our semantics of CDs is based on [5,7,10] and is given in
terms of sets of objects and relationships between these objects. More formally,
the semantics is defined using three parts: a precise definition of the syntactic
domain, i.e., the syntax of the modeling language CD and its context conditions
(we use MontiCore [15,19] for this); a semantic domain, for us, a subset of
the System Model (see [5,7]) OM, consisting of all finite object models; and
a mapping sem : CD — P(OM), which relates each syntactically well-formed
CD to a set of constructs in the semantic domain OM. The semantics of ODs
is defined over the same semantic domain OM, using a mapping sem : OD —
P(OM), which relates each syntactically well-formed OD to a set of constructs
in the semantic domain OM, that is, to a set of object models. Note that the
semantic domain of CDs is made of OMs, not ODs. For a thorough and formal
account of the semantics see [7].

For example, the semantics of cd; shown in Fig. 2 includes all object models
consisting of tasks and employees where each employee is responsible for up to
two tasks, and each task is done by exactly one employee and has an attribute
sDate of type date. Note that the empty object model, which is an object
model with no objects at all, may or may not be considered in the semantics
of this CD. In addition, note that we did not say whether object models whose
tasks have additional attributes may be considered in the semantics of this CD
or not. As another example, the semantics of od; shown in Fig. 2 includes all
object models consisting of two employees where one of the employees is linked
to two tasks that have certain sDate values. Note that we did not say whether
object models that have additional employees, with or without tasks, should
be considered in the semantics of this OD or not. These ambiguities and possi-
ble variations are examples of the kinds of semantic variability that affect the
CD/OD consistency check, as we discuss below.

Finally, we support the following CD language constructs: class attributes,
enumerations, uni- and bi-directional associations with multiplicities, aggrega-
tion, composition, generalization (inheritance), interface implementation, and
abstract and singleton classes. The OD language constructs we support include
objects, their attributes, and the links between them.

4.2 Consistency

A set of diagrams is considered consistent if the intersection of the semantics of
all diagrams in the set is not empty [4]. Formally:

Definition 1 (consistency). Given a set of diagrams D, we say that D is
consistent iff (yep sem(d) # 0.

By applying the above definition to the special case of a CD and an OD we get:
Definition 2 (CD/OD consistency). Given a CD cd and an OD od, we say
that the cd and od are consistent iff sem(cd) N sem(od) # 0.

While the definition of consistency is generally accepted, definitions of the
semantic mapping function sem, for CDs and ODs, may vary. To formally handle
variability in the semantics mapping we use the feature models described next.

completeness

empty OM empty OM
valid instance invalid

/

attributes

all objects | [allow objects all links allow links all attributes H allow attributes ‘ all types ’ allow types ‘
shown omitted shown omitted shown omitted shown omitted

Fig. 4. The OD semantics feature diagram

4.3 The semantic variability feature models

A feature model describes a structured set of features and their logical depen-
dencies [3,9]. Feature models are commonly used in the area of software product
lines. They may be visually represented using feature diagrams, which are basi-
cally and-or trees, extended with textual cross-tree logical constraints. Here we
use a feature model to formalize variability in the semantics of CDs and ODs.
The model is composed of two sub-models, for CD semantics and for OD se-
mantics, and of several cross-tree logical constraints. In the diagrams we use the
standard notation: for mandatory features, a line ending with a filled circle; for
alternative features of which exactly one must be selected (xor), an empty slice
covering the lines leading to the different alternatives.

Our feature model for OD semantics consists of 19 features, as shown in the
feature diagram in Fig. 4. Roughly, a valid feature configuration of this model
specifies whether the empty object model may be considered a valid OM, whether
the objects shown, links shown, attributes shown, and types shown are complete
or not, and whether all objects shown in the diagram must be typed with their
most specific type, or can use one of their super types.

Our feature model for CD semantics for CD/OD consistency contains 11
features, as shown in the feature diagram in Fig. 5. A valid feature configuration
of this model specifies whether the empty object model may be considered a valid
instance of a CD, whether the lists of attributes shown are considered complete
or not, and whether the set of classes shown is considered complete or not.

The complete feature diagram for CD/OD consistency feature model is built
from a CD/OD consistency feature at the root, using the two feature diagrams
described above to represent required features, as its sub trees, as shown in
Fig. 6. To this composed diagram we add cross-tree logical constraints that de-
fine dependencies between the different features, for us, the semantic choices, e.g.,
mutual exclusion, implication etc. This is indeed necessary, because, as we have
found also during evaluation (see Sect. 6), not all theoretically possible combi-
nations (feature configurations) induce sound and useful semantics. Specifically,
we add the following 3 constraints:

not (cd.allowClassesOmitted and od.allowTypesOmitted) (1)

empty OM

empty OM empty OM
valid instance invalid

Ccb
completeness

’ all attributes ‘ ’allowattributes ’ all classes ‘ ’ allow classes ‘

shown omitted shown omitted

Fig.5. The CD semantics feature diagram

FD cdo
’ CD OD consistency ‘

Fig. 6. The composed CD/OD semantics feature diagram

od.allowObjectsOmitted implies od.allow LinksOmitted (2)
cd.emptyOM Invalid iff od.emptyOM Invalid (3)

We add constraint 1 because the combination of allowing classes to be omitted
from the CD (which means allowing instances to include objects of classes not
shown in the CD) and of allowing the OD to include untyped objects, results in
a semantics which is much too permissive and is not useful. We add constraint 2
because if objects are allowed to be omitted, the links they could have been
connected with must also be allowed to be omitted. We add constraint 3 because
having the empty OM in the semantics of CDs while excluding it from the
semantics of ODs (or vice versa) does not make sense.

Overall, our feature model contains 32 features, 14 of which are core features,
which are included in all configurations. The model has 144 valid configurations.
The complete feature model used in our work is available in [24], also in a format
compliant with [18], to allow others to inspect it and use it.

5 Semantically Configurable Consistency Analysis

The key to the semantically configurable consistency analysis is a parametrized
transformation to an Alloy [13] module. In addition to a CD and an OD, the
input for the parametrized transformation includes one valid configuration of
the CD/OD consistency feature model described in the previous section.

We now describe the parametrized transformation to Alloy. A variant of
our transformation, which takes only a CD as input and is not semantically
configurable, is presented in [17]. Here we give an overview of the generated
Alloy module and then focus on the parts related to handling variability. We use
the CDs and ODs presented earlier in Sect. 3 as running examples.

5.1 Overview of the transformation to Alloy

The basic transformation relies on several foundational signatures and facts.
These include an abstract signature FName, used to represent association role
names and attribute names for all classes; an abstract signature Obj, which
serves as the parent of all classes, and whose get Alloy field relates it and an
FName to instances of Obj (this allows more flexibility than the built-in Alloy
fields); an abstract signature Val as a specialization of Obj, used to represent
all predefined types (i.e., primitive types and other types that are not defined as
classes in the CD); a signature EnumvVal, which extends Obj too, and is used to
represent values of enumeration types; and several facts, among them ones that
state that enumeration values as well as primitive values can have no further
fields and should only appear in an instance if referenced by an object.

A number of parametric predicates are used to specify constraints such as
association’s multiplicities and directions. These are instantiated with concrete
values from within the CD predicate described next. Rather than using Alloy’s
extends keyword to specify generalization relations, we use generated functions
that return the set of sub classes of each class, e.g., if Mgr is a specialization of
Emp then the function EmpSubs returns the atoms in {Emp, Mgr}.

The CD and the OD themselves are represented using two predicates, pred
cd and pred od. In pred cd the attributes and associations of each class are
defined and then restricted using the multiplicity and directionality predicates
mentioned above. In pred od the existence of the objects is stated and their
attributes and links are defined.

Finally, a predicate pred consistentCDOD is defined, consisting of the
single statement cd and od. Checking consistency is done by executing Alloy
Analyzer run command for consistentCDOD.

5.2 Handling semantic variability

Handling variability is technically realized using generated parametrized Alloy
predicates and their instantiation from within pred cd and pred od. Below
we show how some of the features are handled.

OD features. List. 1.1 shows several parametrized Alloy predicates correspond-
ing to the different features available for OD semantics. As a concrete example,
List. 1.2 shows the predicate that represents an OD, specifically ods, presented
earlier in Sect. 3, Fig. 3, in the context of a specific semantic configuration where
the empty OM is not a valid instance, all objects and links are shown but at-
tributes may be omitted, all types are shown but are not strict. We now explain
the two listings in detail.

First, the predicate emptyOMNotValidoD (List. 1.1 line 2) specifies that
there exists at least one object. It is mentioned in pred od iff the semantic
configuration includes the feature od.emptyOM Invalid (see List. 1.2 line 18).

Second, the predicates in lines 5-16 are used to specify the three completeness
features, for objects, links, and attributes. The predicate al10bjectsShownOD

1| // Semantic variation feature: empty OM
2| pred emptyOMNotValidOD { some Obj }

4| // Semantic variation feature: OD completeness
5| pred allObjectsShownOD[objs: set univ] {

6 univ = (objs + FName + auxilary + Val + EnumVal + Int) }

gl pred alllLinksShownOD[obj: Obj, roleNames: set FName] {

9 no {obj.get[FName - roleNames] - Val - EnumVal } }
10| pred alllLinksShownODCmplt [obj: Obj, roleName: one FName,
11 partners: set Obj] { obj.get[roleName] = partners }

12| pred alllinksShownODIncmplt [obj: Obj, roleName: one FName,
13 partners: set Obj] { partners in obj.get[roleName] }

14
15| pred allAttribShownOD[obj: Obj, definedAttrs: set FName] {
16 obj.get. (Val + EnumVal) = definedAttrs }

17
18| // Semantic variation feature: object typing

19| pred strictTypingOD[obj: univ, type: set univ] {
20 obj in type }

21
22| pred nonStrictTypingOD[obj: univ, subtypes: set univ] {
23 obj in subtypes }

Listing 1.1. Parametrized Alloy predicates for OD semantics features

specifies that the set of objects it receives in its parameter (plus some other atoms
from utility sets used in our translation) is equal to the module’s universe, i.e.,
that there are no more objects except the ones specified in its parameter. An
example instantiation of this predicate appears in line 16 of List. 1.2, specifying
that dana, bob, and the two tasks, as shown in the diagram, are all the objects
in the object model. The other completeness predicates use the get relation de-
fined in our translation; this special representation of object’s attributes and field
names allows us to specify their presence or absence. In our example, the seman-
tic configuration requires that all links are shown, and so lines 8-15 of List. 1.2
instantiate the al1LinksShownOD and the allLinksShownODCmplt predi-
cates for all the links in ods.

Third, the last two predicates in List. 1.1 handle strict and non-strict typing:
both specify that the set of objects in the first parameter is included in the
set of objects assigned to the second parameter. We keep the two predicates
separate for better readability when they are used: strict typing is used with a
specific signature while non-strict typing is used with our translation’s sub classes
functions (see above). In our example we chose non-strict typing so we use the
sub classes functions EmpSubs, which returns the atoms in {Emp, Mgr}, and
TskSubs, which returns the atoms in {Tsk} (lines 5-6 of List. 1.2).

1| pred od2 {

2 some dana: Obj| some bob: Obj| some tl: Obj| some t2: Obj|
3 # {dana + bob + tl + t2} = 4

4 // Semantic variation feature: object typing

5 and nonStrictTypingOD[dana + bob, EmpSubs]

6 and nonStrictTypingOD[tl + t2, TskSubs]

7 // Semantic variation feature: OD completeness

8 and allLinksShownOD[dana, worksOn]

9 and alllLinksShownOD [bob, mngBy]

10 and allLinksShownOD[tl, doneBy]

11 and alllLinksShownOD[t2, doneBy]

12 and alllLinksShownODCmplt [bob, mngBy, dana]

13 and allLinksShownODCmplt [dana, worksOn, {tl + t2}]
14 and alllLinksShownODCmplt[tl, doneBy, danal

15 and alllLinksShownODCmplt [t2, doneBy, dana]

16 and allObjectsShownOD[dana + bob + tl1 + t2]

17 // Semantic variation feature: empty OM

18 and emptyOMNotValidOD }

Listing 1.2. Example Alloy predicate for odz (shown in Fig. 3)

CD features. List. 1.3 shows the parametrized Alloy predicates related to the
different features available for CD semantics. As a concrete example, List. 1.4
shows the predicate that represents a CD, specifically cds, presented earlier in
Sect. 3, Fig. 3, in the context of a specific semantic configuration where the
empty OM is not part of the semantics, all classes are shown and their list of
attributes is complete. We now explain the two listings in detail.

The predicate emptyOMNotValidCD (List. 1.3 line 2) specifies that there
exists at least one object. It is mentioned in pred cd iff the semantic configu-
ration includes the feature cd.emptyOMinvalid (just like in pred od).

The remaining predicates in List. 1.3 handle completeness. The predicate
allAttribShownCD specifies that the get relation of the object does not in-
clude any field name outside the set of field names specified in the fNames
parameter (see List. 1.4 lines 17-19 for instantiations with all classes and their
field names). The predicate allowMoreAttribCD specifies that for the signa-
ture given as the ob7js parameter either there are no more fields than specified
in the fNames parameter or there are additional attributes and enumeration
values. The predicate all1ClassesShownCD specifies that the model’s universe
will only contain object instances of the classes given as a parameter. It is in-
stantiated in List. 1.4 line 20 with all classes shown in cds.

6 Implementation and Discussion

Implementation. We have created a prototype implementation of our work,
packaged as an Eclipse plug-in. For the representation of the CD/OD semantics
feature model and the selection of valid configurations we use components from

1| // Semantic variation feature: empty OM

2| pred emptyOMNotValidCD { some Obj }

3

4| // Semantic variation feature: CD completeness

s|pred allAttribShownCD[objs: set Obj, fNames:set FName] {
6 no objs.get [FName - fNames] }

7

gl pred allowMoreAttribCD[objs: set Obj, fNames:set FName] ({
9 all £ : (FName - fNames) | (

10 (no objs.get[f])

11 or (one v : Val | all o : obijs | o.get[f] = v)

12 or attribOfEnumValue[objs, f])}

13

14| pred allClassesShownCD[objs: set Obj] {

15 univ = (objs + FName + auxilary + Val + EnumVal + Int) }

Listing 1.3. Parametrized Alloy predicates for CD semantics features

FeatureIDE [14]. For editing CDs and ODs we use parsers and editors (with
syntax highlighting etc.) generated by MontiCore [15,19]. The transformation
to Alloy uses FreeMarker templates [11]. Analysis is done using Alloy’s APIs [1].
The prototype plug-in together with several examples is available from [24].

On semantic variability. One may consider semantic variability in a model-
ing language definition to be a weakness, as it may create confusion and lead to
ambiguities in its comprehension and use. We believe, however, that for general
purpose languages such as the sub-languages of the UML, state machines, class
diagrams, etc., a certain degree of variability in general, and of semantic variabil-
ity in particular, is a necessity. The very ‘general purpose’ nature of the language
dictates that it will be used for a variety of tasks and in different contexts, which,
in practice, entails a requirement for variability. This is evident also from the
works of Atlee et al. [20, 22, 28]. Still, we do not try to promote the existence of
too many semantics; instead, we aim to formally and precisely define the specific
points where the semantics should vary and automate the application and use
of the possible resulting definitions.

As an alternative to language level semantic variability, one may suggest to
enrich the language syntax with keywords that allow the modeler to explicitly
choose between variants, e.g., by adding optional keywords such as ‘complete’ /
‘incomplete’, ‘strict’ / ‘permissive’ etc. as modifiers, at the diagram level or the
diagram-element level. The advantage of this is that there is a single semantics
to handle. The disadvantages however are (1) that the language syntax becomes
more complicated, (2) that questions may arise regarding the default semantics,
e.g., if the ‘complete’ /‘incomplete’ keywords are omitted, and, significantly,
(3) that this solution does not support cases where the same diagram should
change its meaning in different phases of the development process (e.g., when
the same CD should be considered complete during design but incomplete during

1| pred cd2 {

2 // Definition of class attributes

3 ObjAttrib[Tsk, priority, type_Int]

4 ObjAttrib[Tsk, sDate, type_Date]

5 ObjAttrib[Emp, gender, GenderEnum]

6 ObjAttrib[Emp, name, type_String]

7 ObjAttrib[Mgr, gender, GenderEnum]

8 ObjAttrib[Mgr, exp, type_Int]

9 ObjAttrib[Mgr, name, type_String]

10 // Associations

11 ObjLUAttrib [EmpSubs, mngBy, MgrSubs, 0, 1]

12 ObjL[MgrSubs, mngBy, EmpSubs, 0]

13 BidiAssoc[EmpSubs, worksOn, TskSubs, doneBy]

14 ObjLUAttrib[TskSubs, doneBy, EmpSubs, 1, 1]

15 ObjLUAttrib[EmpSubs, worksOn, TskSubs, 0, 2]

16 // Semantic variation feature: cd completeness
17 allAttribShownCD[Tsk, priority+sDate+doneBy]

18 allAttribShownCD [Emp, gender+name+mngBy+worksOn]
19 allAttribShownCD [Mgr, gender+exp+name+mngBy+worksOn]
20 allClassesShownCD [Tsk+Emp+Mgr]

21 // Semantic variation feature: empty OM

22 emptyOMNotValidCD }

Listing 1.4. Example Alloy predicate for cdz (shown in Fig. 3)

analysis). It is important to note, though, that our work can easily be adapted
to support this solution: the only change is that the ‘configuration’ would not
come from the feature model but from the keywords on the diagrams themselves.

Evaluation of our solution. Our choice of Alloy as the target formalism
for analysis was motivated by Alloy’s expressive power, its readability, and its
readily available automated analysis. Still, it is important to note that Alloy’s
analysis is generally bounded by a user-defined scope. Interestingly, however,
in the context of CD/OD consistency, the scope limitation is relevant to some
semantic configurations but is irrelevant to others: specifically, when the CD and
OD semantics assume that the diagrams show all classes and all objects, the
scope to be used can be calculated from the input and the analysis is sound and
complete. That said, our experience with Alloy shows that it does not scale well
for large scopes. Alloy was not designed to scale, see the small scope hypothesis
discussed in [13].

We have validated our work as follows. First, we created an automated test
that generates all 144 legal configurations of our feature model, checks their ap-
plication to the consistency check of three different CD OD pairs, and verifies
that the result is correct. Second, we used FeatureIDE’s user interface to man-
ually define 7 different configurations, we used MontiCore’s generated CD and
OD editors to edit 12 CDs and ODs (including the ones shown in this paper
in Sect. 3), we ran the configurable consistency check using our plug-in and ob-

served that the results are correct. Moreover, we have pre-prepared a number
of configurations that we believe are most useful for specific task contexts, e.g.,
for requirements elicitation and for testing. All configurations, CDs, and ODs
used in our validation are available with the implemented plug-in from [24]. We
encourage the interested reader to check them.

One lesson learned during evaluation was the importance of constraints be-
tween features (the second constraint presented in Sect. 4.3, relating object
omission with links omission, was discovered in the course of our experiments).
Another lesson learned relates to scalability. While our implementation works
very fast for small CDs and ODs, it does not scale to handle CDs associations
with high multiplicities and ODs with many objects. As mentioned above in
the discussion of the use of Alloy, scalability will require the use of abstractions
or the development of a different analysis approach. Finally, one may suggest
additional CD features we do not yet support (e.g., constrained generalization
sets, a fragment of OCL constraints etc.) and additional semantic variation fea-
tures (e.g., allow role names omitted in the OD). Our work can be extended
to support these additions. Each additional feature will require corresponding
support in the configurable transformation and possibly logical constraints on
its combination with other features. We leave these for future work.

7 Conclusion

In this paper we have investigated the idea of semantically configurable analysis
in the context of CD and OD consistency. We formalized semantic variability in
these languages using a feature model and presented a semantically configurable
fully automated analysis solution based on a parametrized transformation to an
Alloy module and its analysis with a SAT solver. The work was implemented in
an Eclipse plug-in and demonstrated with examples.

We consider the following possible future work. First, extending our work to
support additional CD language features, e.g., constrained generalization sets.
Second, defining feature models for semantic variability in other modeling lan-
guages and developing related parametric analysis problems, e.g., the model-
checking of a statechart against a sequence diagram.

References

1. Alloy Analyzer website. http://alloy.mit.edu/. Accessed 7/2011.

2. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges of model trans-
formation from UML to Alloy. Software and Systems Modeling, 9(1):69-86, 2010.

3. D. S. Batory. Feature models, grammars, and propositional formulas. In SPLC]
volume 3714 of LNCS, pages 7-20. Springer, 2005.

4. M. Broy, M. V. Cengarle, H. Gronniger, and B. Rumpe. Considerations and Ra-
tionale for a UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications. Wiley, 2009.

5. M. Broy, M. V. Cengarle, H. Gronniger, and B. Rumpe. Definition of the System
Model. In K. Lano, editor, UML 2 Semantics and Applications. Wiley, 2009.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.
25.

26.

27.

28.

J. Cabot, R. Clarisé, and D. Riera. UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In ASE, pages 547-548. ACM,
2007.

M. V. Cengarle, H. Gronniger, and B. Rumpe. System Model Semantics of Class
Diagrams. Informatik-Bericht 2008-05, Technische Universitat Braunschweig, 2008.
M. V. Cengarle, H. Gronniger, and B. Rumpe. Variability within modeling lan-
guage definitions. In MoDELS, volume 5795 of LNCS, pages 670-684. Springer,
2009.

K. Czarnecki and U. Eisenecker. Generative Programming Methods, Tools, and
Applications. Addison-Wesley, 2000.

A. Evans, R. B. France, K. Lano, and B. Rumpe. The UML as a Formal Modeling
Notation. In Proc. UML, volume 1618 of LNCS, pages 336—348. Springer, 1998.
FreeMarker. http://freemarker.org/. Accessed 7/2011.

M. Gogolla, F. Biittner, and M. Richters. USE: A UML-based specification en-
vironment for validating UML and OCL. Sci. Comput. Program., 69(1-3):27-34,
2007.

D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

C. Késtner, T. Thiim, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel.
FeatureIDE: A tool framework for feature-oriented software development. In ICSE,
pages 611-614, 2009.

H. Krahn, B. Rumpe, and S. Vdélkel. MontiCore: a framework for compositional
development of domain specific languages. Int. J. on Software Tools for Technology
Transfer (STTT), 12(5):353-372, 2010.

Y. Lu, J. M. Atlee, N. A. Day, and J. Niu. Mapping template semantics to SMV.
In ASE, pages 320-325. IEEE Computer Society, 2004.

S. Maoz, J. O. Ringert, and B. Rumpe. CD2Alloy: Class diagrams analysis using
Alloy revisited. In MoDELS, LNCS. Springer, 2011.

M. Mendonga, M. Branco, and D. D. Cowan. S.P.L.O.T.: software product lines
online tools. In OOPSLA Companion, pages 761-762, 2009. http://www.splot-
research.org/.

MontiCore project. http://www.monticore.org/.

J. Niu, J. M. Atlee, and N. A. Day. Template semantics for model-based notations.
IEEE Trans. Software Eng., 29(10):866-882, 2003.

A. J. Perlis. Epigrams on programming. SIGPLAN Notices, 17(9):7-13, 1982.

A. Prout, J. M. Atlee, N. A. Day, and P. Shaker. Semantically configurable code
generation. In MoDELS, volume 5301 of LNCS, pages 705-720. Springer, 2008.
B. Rumpe. Modellierung mit UML. Springer, 2004.

Semantic variability project website. http://www.se-rwth.de/materials/semvar/.
J. Simmonds and M. C. Bastarrica. A tool for automatic UML model consistency
checking. In ASE, pages 431-432. ACM, 2005.

M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Verifying
UML/OCL models using Boolean satisfiability. In DATE, pages 1341-1344. IEEE,
2010.

R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using Description
Logic to Maintain Consistency between UML Models. In UML, volume 2863 of
LNCS, pages 326-340. Springer, 2003.

A. Taleghani and J. M. Atlee. Semantic variations among UML statemachines. In
MoDELS, volume 4199 of LNCS, pages 245-259. Springer, 2006.

