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Abstract. As a dynamic representation of the running system, a run-
time model provides a model-based interface to monitor and control the
system. A key issue for runtime models is to maintain their causal connec-
tions with the running system. That means when the systems change, the
models should change accordingly, and vice versa. However, for the ab-
stract runtime models that are heterogeneous to their target systems, it
is challenging to maintain such causal connections. This paper presents a
model-transformation-based approach to maintaining causal connections
for abstract runtime models. We define a new instant and incremental
transformation semantics for the QVT-Relational language, according
to the requirements of runtime models, and develop the transformation
algorithm following this semantics. We implement this approach on the
mediniQVT transformation engine, and apply it to provide the runtime
model for an intelligent office system named SmartLab.

1 Introduction

Modern systems provide many kinds of data during runtime, such as their inter-
nal states and configurations, the status of their tasks, and even their physical
environment. Runtime model is a promising approach towards the manipulation
of such runtime system data [1], allowing developers to monitor and control the
system in a model-based way. In this paper, we focus on the structural runtime
models that can be regarded as dynamic object diagrams representing the snap-
shots of running systems. A key issue for such runtime models is to maintain
their causal connections with the systems. That means when the systems change,
the models should change accordingly and instantly, and vice versa.

Many research approaches provide structural runtime models for different
systems [2–5]. These approaches focus on wrapping the low-level management
capability of the target systems into model-based interfaces, and thus their run-
time models directly reflect the system data. However, for a target system, only
one such reflective runtime model is usually not enough. To meet the different
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requirements and concerns on system monitoring and control, we need to ab-
stract the reflective model again in different concepts and organizations. Such
abstract runtime models act as different views of the reflective runtime model.
Due to the heterogeneity between the abstract model and the running system,
maintaining their causal connection is difficult.

In this paper, we present a model-transformation-based approach to main-
taining the causal connection for abstract runtime model, by propagating changes
between this abstract model and the existing reflective model of the target sys-
tem. The change propagation is guided by the relation between the two models,
specified in the QVT-Relational language. The challenge here is twofold. First,
the changes on the systems and the runtime models are usually small but fre-
quent, and thus the traditional batching QVT transformation that transforms
the whole model each time is not efficient. We need an instant (the transforma-
tion is triggered instantly after each change) and incremental (the execution is
based on the change but not the whole model) transformation appraoch. Second,
the relations between models and systems are usually bidirectional rather than
bijective. That means for one system change, there may be multiple candidate
abstract changes that all obey the relation, and vice versa. Therefore a clear and
determinate semantics of the transformation need to be defined.

The contributions of this paper can be summarized as follows.

– We define an instant and incremental transformation semantics for QVT-
Relational language, and formulate three properties, namely consistency,
stability and restorability, reflecting the requirements of runtime models.

– We develop the transformation algorithm according to the semantics. we
analyze the impact of the input change and only re-evaluate the influenced
relations and model elements. The impact analysis is based on the QVT rule,
the change type, and the trace of previous transformations.

– We implement an instant QVT transformation engine, on the basis of the
mediniQVT. We apply this engine to provide the runtime models for an
intelligent office system named SmartLab.

The rest of this paper is structured as follows. Section 2 explains the problem
based on a running example. Section 3 and Section 4 present the semantics and
algorithm of our transformation for runtime models. Section 5 evaluates the
approach. Section 6 concludes the paper, with discussions and our future plans.

2 The Running Example

2.1 The SmartLab system

To improve the working condition, the Software Institute of Peking University
sets up a smart office system in its office building. We installed sensors in the
rooms to measure the physical environment such as temperature, brightness, etc.
We also installed an RFID (Radio Frequency Identification) reader in each office
or meeting room. Every member in the institute has a unique RFID tag, stuck
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Fig. 1. The reflective and abstract meta-models for SmartLab

on his/her badge card. Some public assets and personal effects also have unique
RFID tags bound with them. The tags termly transmit unique radio signals,
which can be detected by the reader located in the same room.

Using these devices, SmartLab monitors the status of the whole institute,
and interact with the institute members via Email, short message service (SMS),
etc. Here are two exemplar monitoring scenarios: 1) Missing personal effects.
After meetings, people may leave their personal effects in the meeting room,
such as mobile phones or keys. SmartLab warns the owners when this happens.
2) Leaving the air-conditioners on. People may exit a room without turning
off the air-conditioner, wasting electricity. For such situations, SmartLab warns
the persons in nearby rooms.

2.2 The Runtime Models for SmartLab

Based on our earlier work [5, 6], we provide a reflective runtime model for S-
martLab, and an excerpt of its meta-model is shown in the left of Figure 1. The
classes directly define the concepts specific to the devices, and the properties de-
fine the data that can be retrieved from them. However, this reflective runtime
model is still not proper for the above scenarios, because it represents the data in
the solution-space which has a gap between the problem-space concepts, such as
persons, things, rooms, etc., and cannot carry the problem-specific information
such as the ownership relation between persons and things. Therefore, we define
an abstract runtime model as shown in the right part of Figure 1. Using this
abstract runtime model, the first scenario can be implemented in a straightfor-
ward way: If the locate values of a Thing and its owner are not the same, then
create a new Warner, and add it to the owner’s warner list.

We need to maintain the causal connection between the abstract model and
the system, e.g., if a new tag is detected by a Reader, then the Person (or Thing)
should locate in the Room, and if a new Warner is created, a Messenger should
be created. The causal connection is guided by the relation between the two
models, specified as a QVT-Relational rule in Figure 2. The rule is constituted
by a set of relations: RR defines that the root elements are mapped if they have
the same name. SR defines that a Sensor maps to a Room with the same number

and temp values, if their roots are mapped. RTRP defines that if there is a pair of



Fig. 2. Sample QVT relational transformation

1 transformation RFIDLab(sys:RFID,app:Lab){
2 key RFIDRoot{name}; key Sensor{id}; key Room{number};...

3 top relation RR{ name:String;

4 sys rs : Devices{name=name}; abs ra : Lab{name=name}; }

5 top relation SR{

6 id:Integer; temp:Real; rs:Devices; ra:Lab;

7 sys sensor:Sensor{id=id,temp=temp,root=rs};

8 abs room:Room{number=id,temp=temp,root=ra};

9 when{RR(rs,ra);} }

10 top relation RTRP{

11 rid:Integer; tid:Integer; rs:RFIDRoot; ra:LabRoot;

12 sys reader:Reader{id=rid,root=rs}; sys tag:Tag{id=tid,reader=reader};

13 abs room:Room{number=rid,root=ra};

14 abs person:Person{id=tid,root=ra,locate=room};

15 when{RR(rs,ra) and ra.person->collect(id)->includes(tid);} }

16 top relation RTRT{ ... }

17 top relation SMSWarner{

18 phone:String; message:String;rs:Devices;ra:Lab;

19 sys sms:SMS{number=phone,message=message,root=rs};

20 abs person:Person{phone=phone,root=ra};

21 abs warner:Warner{message=message,warnee=person,type=’phone’};

22 when{RR(rs,ra);} }

23 top relation MailWarner{ ... } }

Reader and Tag, and the Tag id is one of the Persons ids, then this Person is
located in the Room. RTRT is similar. Finally, SMSWarner means that a Person

and its Warner in type of "phone" map to an SMS. The relations illustrate the
heterogeneity between the two models, e.g., both Sensors and Readers map
to Rooms, and the containment association between Readers and Tags map to
horizontal association from the Rooms to either Persons or Things. It is not
straightforward to infer an abstract change from the system one, and vice versa.

2.3 Model Transformation for Runtime Models

Figure 3 summarizes our approach to supporting abstract runtime models. From
the reflective runtime model from our previous work [5, 6], developers define the
abstract meta-model according to the problem concepts, and the relation be-
tween it and the reflective one, using MOF and QVT-R[7], respectively. Here
QVT-R is a natural choice, because it is originally designed for specifying the
relation between models, rather than the transformation imperatives. Following
the provided meta-models and the relation, our transformation engine propa-
gates changes at runtime between the abstract model and the reflective one.

The engine requires a specific semantics and execution of QVT-R, because of
the following features of runtime models. 1) The users of runtime models usually
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Fig. 3. Model transformation for runtime models

require to see the effects of changes and manipulations immediately, and thus
we need instant transformation that is triggered by each change. Moreover, as
the model scale is big and the changes are small but frequent, the transforma-
tion should be incremental, only considering the part of the model impacted
by the change. 2) The users require a clear and determinate expectation about
the causal connection between the model and the system. However, since the
relations between are bidirectional [8], for a change on one model, there may
be multiple candidate changes on the other model that all satisfy the relation.
For example, considering RTRP in Figure 2, if a Tag escapes from a Reader, we
can either delete a Person or just reset its locate value. Therefore, we need
to formulate the semantics for this change-to-change QVT transformation, and
this semantics should meet the common requirements of runtime system moni-
toring and manipulation. 3) The relation is between a model and its view, rather
than two totally different models, and thus it will not be extremely complicated.
Therefore, we can ignore some sophisticated syntax and usage of QVT-R.

3 The Semantics

This section defines the semantics of our instant and incremental QVT transfor-
mation for runtime models, and formulates the properties that must be satisfied.

We first abstract the three inputs: The reflective meta-model S defines the set
of all the states of the reflective model, and the abstract meta-model A defines
the set for the abstract model. The literal meaning of the transformation is a
relation T ⊆ A× S. If (a, s) ∈ T , we say the two models are consistent.

The causal connection between a model and a system has two aspects [2],
i.e., introspection that propagates the system changes in the abstract model, and
reconfiguration that propagates the abstract changes back. We use ∆S and ∆A

to denote all the possible changes on the two models, respectively. The causal
connection following a transformation T are two functions on the models and
their changes: IntroT : S × A×∆S → S × A; ReconT : S × A×∆A → S × A.
To support the above functions, the instant transformation maintains two live
models, and for each time of execution, it takes the change on one model as an
input and output the change on the other model.

−→
T S×A : ∆S → ∆A;

←−
T S×A : ∆A → ∆S



Using this incremental transformation, we implement IntroT by calculating the
abstract change δa from the system change δs and then merging δa into the
original abstract model a: IntroT (s, a, δs) = (s+ δs, a+

−→
T s,a(δs)). For ReconT ,

we first calculate the system change δs, and merge it to s. Since merging changes
to the running system does not always lead to the expected effect, we reflect the
side-effects back to the abstract model: ReconT (s, a, δa) = (s + δs + δ′s, a + δ′a),

here, δs =
←−
T s,a(δa), δ′s is the side-effects of δs, and δ′a =

−→
T s+δs,a+δa(δ′s).

Considering the requirements of runtime models, and also referring to the
properties of classical QVT transformations [9], we define the following three
properties for our incremental transformation, in forms of the post-conditions
on the result from any input (s, a) ∈ T, δs ∈ ∆S , δa ∈ ∆A.

Property 1. Consistency. First of all, after merging the input and resulted
changes, the two models must be consistent.

(s+ δs, a+
−→
T s,a(δs)) ∈ T ; (s+

←−
T s,a(δa), a+ δa) ∈ T

The first part of consistency ensures that after Intro or Recon the abstract
model correctly represents the system state, and the second part ensures that
the changes executed to the system conforms to the intention of abstract changes.

Property 2. Stability. If the input change on one model does not violate the
relation, it should not cause any change on the other model.

(s+ δs, a) ∈ T ⇒ a+
−→
T s,a(δs) = a; (s, a+ δa) ∈ T ⇒ s+

←−
T s,a(δa) = s

For Intro, stability ensures that the irrelevant system changes (such as the
change of brightness) and intermediate changes (such as detecting a new tag,
but having not got its id) do not disturb the monitoring agents. For Recon,
it not only ensures that the irrelevant abstract changes (such as changing the
ownership relation between persons and things) do not influence the system,
but also ensures the relevant abstract changes remain stable: The side-effect of
valid system writing is usually just a complement to the original change, e.g.,
adding a Mail to the Devices.messager will cause the Mail.root set to the
root element. Such complementary side-effects should not influence the original
abstract change, so that the users can manipulate the model in a coherent way.

Property 3. Restorability. After a change δs and its propagation result δa lead
the two models to s+δs and a+δa, the opposite change δ−1s and its propagation
result should restore both models back. The other direction is the same.

−→
T s,a(δs) = δa ⇒ a+ δa +

−→
T s+δs,a+δa(δ−1s ) = a

←−
T s,a(δa) = δs ⇒ s+ δs +

←−
T s+δs,a+δa(δ−1a ) = s

We require restorability based on the following reasons. First, it is a usual case
that the users undo their last change on the runtime model, and their intention
is to restore the system back. Second, the system changes usually happen in



Table 1. The modifications and their inverses

description µ µ−1

set the value of e.p from v to v′ set(e, p, v, v′) set(e, p, v′, v)
add v to the set e.p insert(e, p, v) remove(e, p, n)
remove v from the set e.p remove(e, p, v) insert(e, p, v)
create e of class c, with id = v e← new(c, id, v) delete(e, id, v)
delete the existing element e delete(e, id, v) e← new(c, id, v)

couples, e.g., a person enters a room and then exits, a light is turned on and off
again. Coupled changes restore the system state and this should be reflected on
the abstract model. Third, for invalid system changes (such as trying to reset
the temperature value of a sensor), the side-effect is their inverses, and when
propagating them back, the original abstract changes should be clearly rolled
back. Finally, Restorability and stability together allow the abstract model to
carry the information that is irrelevant to the system. Since such information
does not influence the relation, the transformation could change it any time
without violating the relation. These two properties prevent it from changing
this information arbitrarily.

4 The Instant and Incremental Transformation Algorithm

Our basic idea is to analyze the impact of the input changes to reduce the scope
of execution. The impact analysis is based on the syntactical feature of QVT
rules, the type of changes, and the trace recorded from previous executions.

A QVT-R transformation T is constituted by a set of relations. A relation
has several domains, each with a class from the meta-models. The goal of QVT
transformation is to enforce each of these primitive relations. For each relation,
the engine tries to bind model elements to its domains, by matching the do-
main patterns. If no elements can be bound to a domain, the engine creates
new elements or updates existing ones. The detailed (but informal) semantics
of these PatternMatching and CreateOrUpdate operations can be found in the
QVT standard [7]. For batching transformation, each time the engine checks
and enforces all relations, and does pattern matching in the scope of all model
elements. Our incremental transformation is also based on the enforcement of
primitive relations, but we screen out the irrelevant relations and shrink the
scope of model elements according to the input changes.

A change is a set of primitive modifications, following Alanen et al.’s defi-
nition [10]. Table 1 lists the five kinds of modifications we support. Each mod-
ification µ has an inverse µ−1. When propagating a change, we deal with its
modifications one by one, in the order of new, insert, set, remove, and delete[10].

A trace is a set of relation instances. An instance records a composition of
model elements bound to the domains of the relation, and these elements satisfy
the relation. We also record the change on the source model that causes this
instance to be established, and the change on the target model calculated by the



Algorithm 1: The Instant and Incremental Transformation

function InstantTrans : (s, a, µ, tr)→ (δa, tr
′)1

δa←{}, tr′←tr2

foreach r ∈ T : ∃d ∈ dom(r), µ.e.class = d.c do3

if µ = set[e, p, v, v′] ∨ µ = insert[e, p, v] ∨ µ = remove[e, p, v] then4

if p is mentioned by any patterns in r then5

(δ′′a , tr
′′)←ReEvaluate(r, tr′, s, a, µ)6

tr′←tr′′; δa←δa ∪ δ′′a7

else if µ = e← new[T, id, v] then8

if e satisfies the pattern of d then9

(δ′′a , tr
′′)←Construct(τ : {relation 7→ r, d 7→ e}, s, a, µ, tr′, φ)10

tr′←tr′′; δa←δa ∪ δ′′a11

else if µ ∈ delete then12

foreach τ ∈ tr : rule(τ) = r ∧ µ.e = elem(τ, d) do13

(δ′′a , tr
′′)←Destroy(τ, s, a, µ, tr′)14

tr′←tr′′; δa←δa ∪ δ′′a15

return (δa, tr
′)16

enforcement. For each transformation, the trace can be accumulated from the
previous executions on the changes that create the models from scratch, or can
be created at once by a batching transformation.

4.1 The Algorithm

In the rest of this section, we present our algorithm to propagate changes and
update the trace step by step. The following algorithm is in the direction from
the reflective to the abstract model, and the other direction is the same.

The main algorithm InstantTrans takes as input the original models s and
a, the modification µ on s, and the previous traces tr. It outputs the change
δa and the new trace tr′. We initiate δa as empty, and tr′ as the original tr
(Line 2). In the main body, we first screen the relations, and only consider the
ones whose domain classes include the class of µ. We handle the left relations
according to the type of µ: For a set, insert or remove (Line 4), only if the
modified property is mentioned in r, we ReEvaluate it. For a new, since there
may be new compositions of model elements containing e that satisfies r, we
Construct new relation instances, starting from a partial relation instant τ with
e bound to the proper domain. For a delete, we Destroy all the existing instances
of r that have been bound with the deleted element. After each iteration on a
relation, we update the trace, and unite the resulted changes.

To ReEvaluate a relation r, we first enumerate the instances of r that are
bound with the modified element µ.e. For each instance τ , we check the relation
again and Destroy it if it fails now. The modification may cause new compositions
of elements to satisfy the relation, and thus we seek and construct new binding



Algorithm 2: Re-Evaluate the QVT Rules

function ReEvaluate(r, tr, s, a, µ)→ (δa, tr
′)17

δa←{}; tr′←tr18

foreach τ ∈ tr : rule(τ) = r ∧ ∃de ∈ dom(r) : µ.e = elem(τ, de) do19

if ¬check(r, τ, s+ µ, a) then20

(δ′′a , tr
′′)←Destroy(τ, s+ µ, a, tr′)21

tr′←tr′′; δa←δa ∪ δ′′a22

τ ′←{relation 7→ r}23

foreach d ∈ dom(r) : d = de ∨ µ.p is not mentioned by d do24

τ ′←τ ′ ∪ {d 7→ elem(τ, d)}25

(δ′′a , tr
′′)←Construct(τ ′, s, a, µ, tr′, φ)26

tr′←tr′′; δa←δa ∪ δ′′a27

if no such τ is found then28

if e satisfies the pattern of d then29

(δ′′a , tr
′′)←Construct(τ : {relation 7→ r, d 7→ e}, s, a, µ, tr′, φ)30

tr′←tr′′; δa←δa ∪ δ′′a31

return (δa, tr
′)32

compositions. Here we do not exhaustively enumerate all the possible compo-
sitions, but utilize the existing bindings as a reference. Note that the property
µ.p is only mentioned by part of the domain patterns. Take SMSWarner in Fig-
ure 2 as an example, the property SMS.message is not mentioned by the person

domain, since the pattern does not contain any direct or transitive reference to
this property. If there is any new binding compositions emerging to satisfy r,
then it must be because the modification makes an element satisfy the pattern
that mentions this property. Therefore, we fix the elements bound to irrelevant
domains, leaving the other domains as free, and then use this partial binding as
a seed to construct new instances. If there is not any existing relation instance
as reference, we construct relations just as if this element is newly created.

Construct is similar to the classical enforcement semantics of QVT, but has
a partial relation instance as a seed, with some domains bound. The input also
includes a δa that records the accumulated changes to bind these domains. If
the seed τ is already complete, and satisfies the relation, this τ is a successful
instance. We return δa as the final change, add the new instance τ into the trace,
and record the source change {µ} and the target change δa under τ . If the input
τ is not complete yet, we take one free domain d, perform PatternMatching

on it to find all the elements that can satisfy the domain pattern, and store the
elements in the set cand (for “candidate”). If no binding is found, we try to create
new elements or update existing ones, and regard the result e as a candidate.
Finally, we try to bind each element e in cand, and invoke Construct recursively
to bind the rest of the free domains. Another thing to consider is the dependency
between relations. Due to the establishment of this relation, some other relations
that depends on it may be satisfied. Therefore, after constructing a new relation



Algorithm 3: Construct and Destroy Relation Instances

function Construct : (τ, s, a, µ, tr, δa)→ (δa, tr
′)33

if every d ∈ dom(r) is bound in τ ∧check(τ, s+ µ, a+ δa) then34

tr′←tr ∪ {τ}; τ.recs←{µ}; τ.reca←δa35

foreach r′ ∈ T : when(r′) = r do36

(δ′′a , tr
′′)←Construct(r′, tr′, para, s, a, µ, δa)37

τ.chd←τ.chd ∪ (tr′′ − tr′); δa←δa ∪ δ′′a ; tr′←tr′′38

return(tr′, δa)39

else if ∃d ∈ dom(r) : d /∈ dom(τ) then40

cand←PatternMatching(τ, d, s+ µ, a)41

if cand = φ∧ d is an enforce app domain then42

(δ′a, e)←CreateOrUpdate(τ, s, a+ δa); cand←cand ∪ {e}43

foreach e ∈ cand do Construct(r, tr, τ ∪ {d 7→ e}, s, a, δa ∪ δ′a)44

function Destroy : (τ, s, a, µ, tr)→ (δa, tr
′)45

tr′←tr − {τ}; δa←τ.rec−1
a46

foreach τ ′ ∈ τ.chd : ¬check(r, τ ′, s+ µ, a) do47

(δ′a, tr
′′)←Destroy(r, tr′, τ ′, s, a, µ)48

δ←δ ∪ δ′a; tr′←tr′′49

return (δa, tr
′)50

instance, we find the relations depending on it, bind the mentioned elements
in this relation to the new ones, and try to construct new instances from this
partial seed. The constructed instances (tr′′ − tr′) are recorded as the children
of τ , so that when τ is not satisfied we can destroy them.

Destroy deletes an existing relation instance whose bound elements no longer
satisfy r. We delete this relation instance from the trace, and roll back the
recorded change on the system side that has made this instance satisfy the
relation. Since this relation is no longer satisfied, the relations depending on it
cannot be satisfied any longer, and we delete them consequently.

4.2 Examples

We use a set of simplified examples to illustrate how the algorithm works.
The original reflective and abstract models (s0 and a0, respectively) are shown
in Figure 4, without the shaded part. Currently, these two models are con-
sistent, and the trace is: tr = {τ1 : 〈RR, sr, ar〉, τ2 : 〈SR, sn, rm〉, τ3 :
〈RTRP, rd, tg1, rm, ps〉}. For the sake of simplicity, we omit the names of
domains. On these two models, we execute the following sample modifications.

For the first example, the sensor detects a change on the brightness, i.e., µ1 :
set[sn : Sensor, bright, 620.0, 150.0]. Since only SR contains the class Sensor,
whereas bright is not mentioned by it, the algorithm stops at Line 5.

For the second example, µ2 : set[sn : Sensor, temp, 16, 15], the algorithm
should propagate the new temperature to the abstract side. Following the al-
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Fig. 4. Sample models for transformation

gorithm, we also find r = SR, and ReEvaluate this r. At Line 20, we find the
relation instance τ2, and since it does not satisfy the relation, we destroy it. After
that, we instantiate a new τ4 for r (Line 24), bind sn to its sensor domain, and
invoke Construct. In this method, since there is one free domain room, we try
to bind an element to it (Line 45). The CreateOrUpdate operation find rm and
update its temp attribute, and thus finally δa = set[rm : Room, temp, 16, 15].

For a complicated example, we consider the reader detects a new tag, i.e., δs =
{µ3 : tg2 ← new[Tag, id, 104], µ4 : set[tg3, reader,⊥, rd], µ5 : insert[rd, tag, tg3]}.
This time, we expect the thing 104 locate in room 1621. We propagate these mod-
ifications one by one. For µ3, we find two relations, RTRP and RTRT, but for the
former, tg2 does not satisfy its precondition, so we go on with the latter, and
invoke Construct with τ5 : {relation 7→ RTPT, tag 7→ tg2} as a seed. In Con-
struct, we cannot find any element to be bound to room (because tag2.reader
is not set yet), and stop the propagation on µ3. When propagating µ4, we Con-
struct τ5 again, and this time we bind rd to reader, rm to room, th to thing, and
update th.locate to rm. So the final result is δa = {set[th, locate,⊥, rm]} and a
new τ5 : 〈RTRT,rd,tg2,rm,th〉, marked as “1” in Figure 4. If his new tag escapes
from rd, the abstract model should be rolled back to a0. This change also con-
tains three modifications, and for the effective one µ7 : set[tg2, reader, rd,⊥],
we destroy the relation instance τ5 (Line 6 -> Line 22). And in Destroy, we
return the inverse of the recorded change under τ5, i.e., {set[th, locate, rm,⊥}.

Finally, we show a bidirectional example, marked as “2” in Figure 4. Smart-
Lab warns a person by creating a new Warner and adding it to the person’s
warner list. The last manipulation µ8 : set[wn, warnee,⊥, ps] leads to system
changes in the following way. We find the relation MailWarner (Line 3), and
invoke ReEvaluate (Line 6). Since this relation has no instances yet, we direct-
ly invoke Construct (Line 27), and it finally creates a new Mail in the system
side and set its attributes. After successfully sending the message, the system
destroys this new Mail. We finally invoke Destroy, and the returned abstract
change is the inverse of the recorded modification µ8, resetting wn.warnee.

5 Evaluation

Implementation. We implemented a prototype engine based on the mediniQVT.
The relation instances are extended from the QvtSemanticTasks, which are orig-
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inally used by mediniQVT to store intermediate results during batching trans-
formation. The checking, pattern matching, create-or-update operations in our
algorithm are also reused and altered from mediniQVT. The syntactical analy-
sis on QVT rules, such as determining the mentioned properties of each domain
pattern, is implemented as queries and analysis on the QVT syntax tree.

Feasibility and Effectiveness. We applied this instant transformation engine
to provide the runtime model for a medium-scale smart office system, the S-
martLab. The reflective meta-model contains 27 classes and 69 properties, and
the QVT rule contains 36 relations (471 lines in total). We encouraged all the
members in our institute to propose and experiment monitoring scenarios based
on the abstract model. Until now, there are totally 41 scenarios proposed with-
in the capability of current SmartLab devices, e.g., turning off the lights when
the room is empty, turning on the water boiler in advance before a scheduled
meeting, warning nearby persons when a valuable public facility is moving, and
so on. Our instant transformation supported all these scenarios: A dedicated
group of students implemented all the scenarios as QVT operational scripts,
and the execution of these scripts satisfies the expectation of both the scenario
proposers and the script developers. To evaluate the approach on a wider scope
of runtime models, we also applied it on some small-scaled systems to support
different runtime models, such as C2 and Client/Server styled architecture for
a JEE middleware named JOnAS and a mobile computing middleware named
PLASTIC. We have tried these cases [11] using batching transformation. The
reproduction of them still satisfies the requirements stated in the original papers.

Performance. The execution performance of our transformation engine is e-
nough for SmartLab. In peak period there are more than 300 model elements,
and for each change, the runtime model environment finishes the execution of
monitoring rules between 0.1 to 1 second, including the time spent on device
invocation, change collection, instant transformation and script execution. This
performance is acceptable for our monitoring scenarios on SmartLab. For the
other small-scaled cases, the execution time never exceed 0.1 second.

To evaluate the performance of transformation without the influence of other
runtime costs, we made up five pairs of models conforming to the meta-models



in SmartLab, and executed the transformation on them. Figure 5 illustrates the
experiment results. The horizontal axis lists the total number of model elements,
and the vertical axis shows the time spent in millisecond (logarithmic scale). We
performed four experiments on each subject. The first three were incremental
transformations after the irrelevant changes, changing the properties, and creat-
ing new elements. As a contrast, we also executed the batching transformation
directly using mediniQVT. All the experiments were executed on a PC with
Intel Core 2 Duo 3GHz CPU and 2GB memory. From the curves, we have the
following conclusions. 1) the improvement from batching transformation to in-
cremental transformation is significant, and the time increases more gently as
the model scale increases. 2) The execution time on irrelevant changes is stable
around 10 milliseconds. That means the screening on the relations is indepen-
dent to the model scales, and adds very little to the total cost. 3) The curve for
changing properties is lower and gentler than creating elements. Since the only
difference between them is that the former have more fixed domains, this shows
that our effort to fix a part of the domain bindings is valuable.

We also performed stress tests to see the extreme change scale and frequency
we support, upon the subject models with 1000 elements. For scale, we generate
new models and calculate the changes from the original ones to them. When
the change contains more than 220 modifications (in average), the time spent
to transform these modifications becomes worse than transforming the whole
model. For frequency, we continuously generate changes with single modifica-
tions, and use them to launch the transformation. The extreme interval between
changes is 0.21s. For a smaller interval, there will be a queue of changes blocked.

6 Related Work

Runtime models are widely used on different systems to support self-repair [2],
dynamic adaption [4], data manipulation [3], etc. As a direct reflection of the tar-
get system, these runtime models are maintained by imperatively mapping the
model operations to the system management capabilities. In a previous work [11]
we propose the initial idea of using model transformation to maintain the ab-
stract runtime models that are not isomorphic to the low-level systems, but we
use batching transformation in that work. Vogel et al. [12] use incremental trans-
formation for runtime models. The difference is that they focus on integrating
a general-purpose transformation engine into their runtime model environment,
without revising the engine, whereas in this paper, we focus on the semantics
and implementation of a new transformation specific to runtime models.

A declarative transformation rule may allow multiple execution effects. The
solution is to give unambiguous semantics for transformation languages accord-
ing to specific usage. Foster et al. formulate three basic properties for the “view-
update” transformation between tree-based data [13]. Xiong et al. design and
implement their ATL-based model synchronization according to four pre-defined
properties [14]. Stevens [9] discusses the semantics of the batching bidirectional
QVT transformation. Our properties of instant transformation root in Steven-



s’s work, but are defined on model changes. Diskin et al. [15] formally discuss
the semantics and requirements of generic delta-based bidirectional transforma-
tion, but in this paper, we employ a more lightweight and easy-to-implement
semantics, specific to the requirement of runtime models.

Johann and Egyed [16] implement instant and incremental model transfor-
mation approach based on the impact analysis of model changes, but the model
relation they support is only the simple mapping between elements. On the
basis of incremental pattern evaluation [17], researchers also implement incre-
mental transformation following the trigger-action rules [18] and ATL rules [19].
However, such imperative rules are not natural for specifying the relation be-
tween runtime models and systems. Giese and Wagner systematically discuss
the definition and requirement of instant and bidirectional transformation, and
implement it based on their TGG transformation engine [20]. However, TGG is
still heavy-weight for specifying model relations. To the best of our knowledge,
there is no work of instant and incremental transformation on QVT-R.

7 Conclusion

This paper presents a model-transformation-based approach to maintaining causal
connections between the running systems and their abstract runtime models. We
define a new incremental transformation semantics for the QVT-Relational lan-
guage according to the usage in runtime models, and develop the instant trans-
formation algorithm based on the impact analysis of changes. We implement the
approach based on the mediniQVT, and apply it in a pragmatic smart office
system named SmartLab.

As an initial attempt, the current target of this approach is not a general-
purpose incremental QVT transformation, but the one customized for runtime
models. The performance of this approach is not good for too big and too fre-
quent changes. However, these two cases are not common in runtime models. We
also have some restrictions on the usage of MOF and QVT. For MOF, we require
every class to have a key attribute, and require all the multiple properties to be
unordered. For QVT, we require 1) every element mentioned by a relation is
explicitly declared as a domain, 2) all the relations are defined as top ones, and
3) only when clauses are used to compose relations. According to our experience,
with these restricts, it is still enough to specify the relations in runtime models.

Our main future plan is to evaluate the feasibility and effectiveness of this
approach on other transformation contexts rather than merely runtime models,
improve the semantics and algorithms, and evaluate the possibility towards wide-
scope or even general-purpose instant and increment transformation on QVT-R.
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