Beyond Traces and Independence*

Fred B. Schneider

Department of Computer Science,
Cornell University,
Ithaca, New York 14853 USA
fbs@cs.cornell.edu

Abstract. The formal methods, fault-tolerance, and cyber-security re-
search communities explore models that differ from each other. The dif-
ferences frustrate efforts at cross-community collaboration. Moreover,
ignorance about these differences means the status quo is likely to per-
sist. This paper discusses two of the key differences: (i) the trace-based
semantic foundation for formal methods and (ii) the implicit notions of
independence.

1 Introduction

Computing systems we depend on should do what we expect and nothing more.
That challenge is being tackled today by researchers in three communities.

— The formal methods community studies means for gaining assurance in the
properties that a given system satisfies when executed in some prescribed
(often idealized) execution environment.

— The fault-tolerance community focuses on algorithms and system architec-
tures for tolerating various kinds of natural events that disrupt the execution
environment.

— The cyber-security community worries about designing defenses to resist
attacks intended to circumvent system controls and compromise system op-
eration.

This paper explores important differences in the models each community stud-
ies. Because of these differences, results developed by one community are not
necessarily applicable to the questions studied by the others. Moreover, differ-
ing implicit assumptions in the models make it difficult even to recognize when
results from one community can be applied to matters of concern by another.
Needless to say, incompatibilities in the different models studied by the three
research communities only frustrate efforts to understand how we might go about

* Supported in part by National Science Foundation grants 0430161, 0964409, and
CCF-0424422 (TRUST), ONR grants N00014-01-1-0968 and N00014-09-1-0652, and
a grant from Microsoft. The views and conclusions contained herein are those of the
author and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of these organizations or the U.S.
Government.

C.B. Jones and J.L. Lloyd (Eds.): Festschrift Randell, LNCS 6875, pp. 479-F85] 2011.
© Springer-Verlag Berlin Heidelberg 2011



480 F.B. Schneider

building systems on which we can depend. Additional research can reconcile
those differences, ultimately bridging the gaps between the three closely related
areas. This paper is intended to inform and inspire that endeavor.

2 Formal Methods

Research in formal methods concerns the development and use of programming
logics and model checkers to gain confidence about what behaviors a system can
and cannot exhibit. By choosing trace properties (defined below) as a founda-
tion, formal methods researchers obtain elegant characterizations for whether
a program satisfies a specification and they can support compositional devel-
opment as well as step-wise refinement of programs. So a considerable body
of formal methods research adopts trace properties or some other foundation
having roughly equivalent expressive power.

Trace properties, however, (as is shown in §2.2)) are inadequately expressive
for specifying security, where requirements are typically described in terms of
the following elements.

Confidentiality. Which principals are allowed to learn what information.

Integrity. What changes to the system (stored information and resource
usage) and to its environment (outputs) are allowed.

Availability. When must inputs be read or outputs produced.

The choice of trace properties as the foundation for a formal method thus creates
a gap between the kinds of system behavior we can reason about and the defining
elements of security.

A generalization of trace properties—hyperproperties [3]—is sufficiently ex-
pressive, but programming logics and model checkers have not (yet) been devel-
oped for this foundation. And although hyperproperties might not turn out to
be the right foundation, it is clear is that something significantly more expressive
than trace models is needed to to support what the security community needs.

2.1 Trace Properties

A trace is a (possibly infinite) sequence; a trace property is a set of traces, where
each trace in isolation satisfies the characteristic predicate associated with that
trace propertyEI Examples of trace properties include partial correctness (the
first state satisfies the input specification and any terminal state satisfies the
output specification), mutual exclusion (in each state, the program for at most
one process designates an instruction in a critical section), and termination (at
some point in the trace, there is a terminal state and thereafter it is repeated).

! For concreteness, we consider traces that are sequences of states. Similar arguments
can be made if traces are sequences of actions.



Beyond Traces and Independence 481

Lamport [6] provides an intuitive classification of trace properties into safety
and liveness. Safety asserts that no “bad thing” happens during execution, and
liveness asserts that some “good thing” happens. For example, mutual exclusion
is safety (the “bad thing” is a state where both processes are executing in critical
sections) and termination is liveness (the “good thing” is an infinite suffix of
terminal states).

Lamport’s classification can be formalized to prove that every trace property
is either safety, liveness, or the conjunction of two trace properties—one that is
safety and one that is liveness [I]. In addition, an invariance argument suffices
for proving that a program satisfies a trace property that is safety; a variant
function is needed for proving a trace property that is liveness [2]. Thus, the
safety-liveness classification for trace properties comes with proof methods be-
yond offering formal definitions. This suggests that the classification adds value
beyond providing a taxonomy, because the classification provides insights into
what methods must be used for reasoning about a given property.

A program S can be modeled as a trace property Xg containing all traces
that could arise from executing S, and a specific execution of S satisfies a trace
property P, if and only if the trace o modeling that execution satisfies o € P.
Thus, a program S satisfies a trace property P denoted S = P if and only if
Y's C P holds. In addition, we say that a program S’ refines S, denoted S” < S,
when S’ resolves choices left unspecified by S. For example, a program that
increments x by 1 refines a program that merely specifies that z be increased. A
refinement S’ of S thus exhibits a subset of the executions for S: S’ < S holds
if and only if Xg» C Xg holds.

Notice that = is closed under refinement. That is, if S’ < S holds and S |= P
holds, then S” = P necessarily holds. This is because S” < S implies Xgs C Yg,
so from Yg C P (due to S | P) we conclude by transitivity of C that Xgs C P
holds. Also, if we construct S’ by performing a series of refinements S’ < S,
S1 X8, ..., S, X S and S satisfies P then we are guaranteed that S” will satisfy
P too. So programs that satisfy trace properties can be constructed by step-wise
refinement.

2.2 Beyond Trace Properties

Now consider information flow between a variable x and a variable y, which
is a security requirement (often prohibited for confidentiality) stipulating that
the values of these two variables are correlated in all traces. We cannot tell
whether a single trace in isolation satisfies information flow between x and y,
because the values of these variables might be correlated by happenstanceg Only
by considering all traces in X's can we ascertain whether a program .S satisfies
the information flow requirement. And no characteristic predicate (on individ-
ual traces) can define exactly the set of execution traces where, for example,
information flow does not occur. Thus, information flow and, consequently, its
absence (confidentiality), cannot be formalized as trace properties. Some richer
foundation is needed.

2 We can tell that a single trace does not satisfy the information flow, however.



482 F.B. Schneider

Unfortunately, once a more expressive foundation than trace properties has
been adopted, “satisfies” is not necessarily closed under refinement. As an exam-
ple, consider two programs. Program S;—, is modeled by trace property X,—,
containing all traces in which & = y holds in all states; program S* is modeled
by Yg- containing all sequences of states. We have that Y,—, C Xs- holds,
so by definition S,—, < S*. However, program S* “satisfies” the confidential-
ity requirement of no information flow between z and y, whereas (refinement)
Sg—y does not. “Satisfies” is thus not closed under refinement, and step-wise
refinement is not sound for deriving programs whose requirements need a more-
expressive formulation than trace properties provide.

We conclude that generalizing from trace properties to something more ex-
pressive will require revisiting and redeveloping the basic theory that today the
formal methods community has good reason to hold dear. Otherwise, that foun-
dation will keep the formal methods and cyber-security communities apart.

3 From Fault-Tolerance to Attack Tolerance

A system is considered fault-tolerant if it continues to operate correctly even
when some of its components exhibit faulty behavior. Fault-tolerance is defined
relative to a fault model, which specifies assumptions about what components
can become faulty and specifies the behavior faulty components might exhibit.
In the Byzantine fault model [7], faulty components may perform arbitrary state
transitions and are even permitted to collude. A real system is unlikely to expe-
rience such hostile behavior from its faulty components, but any faulty behavior
that might actually be experienced is, by definition, allowed with the Byzantine
fault model. So by building a system that works assuming the Byzantine fault
model, we ensure that the system can tolerate all behaviors that are actually
exhibited by its faulty components.

The basic recipe for implementing such Byzantine fault-tolerance is well un-
derstood. It invariably employs redundancy in one form or another [8, §2.3]. For
example, the state machine approach [10] applies to any system whose output is
a function of the sequence of inputs it has received. With this approach, we (i)
replicate the system 2¢ 4 1 times and (ii) employ a protocol that ensures each of
the (non-faulty) system replicas receive the same inputs in the same sequence.
Provided that ¢t or fewer replicas are faulty, then some majority subset of the
2t + 1 will be correct and generate identical correct outputs. So the majority
output from all replicas is unaffected by the behaviors of faulty replicas. We
have built a ¢ fault-tolerant version of the system.

Implicit in using this or any other construction involving replication is the
assumption that replicas fail (approximately) independently. Under this inde-
pendence assumption, the probability that a majority of the replicas is faulty
is significantly smaller than the probability that fewer replicas are faulty. So
the fault-tolerance of the overall system is better than the fault-tolerance of its
individual components. However, if replicas exhibit correlated failures then repli-
cation does not enhance fault-tolerance. Fortunately, physically-separated com-
ponents connected only by narrow-bandwidth channels are generally observed



Beyond Traces and Independence 483

to exhibit uncorrelated failures and, therefore, approximate the independence
assumption.

A faulty component in the Byzantine fault model is indistinguishable from
a component that has been compromised and is under control of an attacker.
We might thus conclude that if a Byzantine fault-tolerant system can tolerate
t component failures then it also could resist as many as t attacks—we could
get attack-tolerance by implementing Byzantine fault-tolerance. Unfortunately,
the argument oversimplifies, and the conclusion is unsound. Physically-separated
replicas share many of the same vulnerabilities (because they will use the same
code) and, therefore, do not exhibit independence to attacks. If a single attack
might cause any number of components to exhibit Byzantine behavior then little
is gained by tolerating ¢ Byzantine components. The security community thus
cannot simply import Byzantine fault-tolerance methods from the fault-tolerance
community.

3.1 Obtaining and Preserving Independence

By eliminating all software bugs, we would eliminate the vulnerabilities that
cause assumptions about replica-independence to be unsound when attackers
are present. The construction of bug-free software is quite difficult, however.
So instead we might turn to another means of increasing replica independence:
diversity. Replicas need not actually be identical in either their design or their
implementation—it suffices that different replicas produce equivalent responses
for each given request. We use the term morph for this weaker notion of a replica.

The obvious way to create a set of morphs is by developing multiple imple-
mentations of each system componentH This, however, can be quite expensive,
because the cost of all facets of system development are multiplied by the num-
ber of replicas to be developed. In addition, interoperation of diverse compo-
nents is typically more difficult to orchestrate, not withstanding the adoption
of standards. Finally, experiments have shown that distinct development groups
working from a common specification will produce software having the same
bugs [5].

Less costly is to employ a scheme that introduces diversity automatically
during compilation, loading, or in the run-time environment [4/TT]. We call this
process obfuscation. Code can typically be generated and storage allocated in
any number of ways for a given high-level language program. By making dif-
ferent choices in producing the executables for different replicas, we introduce
a measure of diversityﬁ So, for obfuscation, morphs are produced by making

3 In addition, confidentiality is not helped by the replication. Cryptographic solutions
are required here—practical protocols for multiparty computation and homomorphic
encryption would be ideal here.

4 A special case is to procure pre-existing diverse components that have similar func-
tionality or can be easily modified to implement the same interface.

5 Different executables for the same high-level language program are still implemen-
tations of the same algorithms, though, so executables obtained in this manner will
continue to share any flaws in those algorithms.



484 F.B. Schneider

different choices for each executable. Moreover, the specific choices made in pro-
ducing a morph are kept confidential (from attackers), whereas the program
that performs obfuscation and the original source code are assumed to be public
knowledge (hence known to attackers).

Diversity brings independence, hence the potential for attack tolerance. But
this independence persists only as long as the cost to an attacker for successfully
compromising a majority of the morphs is significantly larger than the cost of
compromising a single morph. Unfortunately, actions by an attacker often can
cheaply determine what transformations were performed to create each morph.
That information then allows the attacker to design a custom exploit for each
morph, if some vulnerability does exist in the source code from which the morph
was derived. So independence of morphs produced using artificial diversity tends
to erode over time.

One defense against such erosion of independence is proactive obfuscation [9].
Proactive obfuscation introduces epochs to system operation.

— In each epoch, some server is rebooted using a freshly generated, diverse
executable.
— All n servers are rebooted after n epochs have elapsed.

Note that the inherent ability of a replicated system to tolerate outages by a
minority of its components means that the server reboots at the end of each
epoch can be made invisible to clients.

An epoch length of A seconds implies that an adversary is forced to compro-
mise more than ¢ replicas in nA seconds in order to subvert a service comprising
n replicas. And we can make the compromise of more than ¢ replicas ever more
difficult for a resource-bounded adversary by reducing the length of A, although
A is obviously bounded from below by the time needed to re-obfuscate and
reboot a single server morph.

In summary, independence is clearly a crucial ingredient when replication
is being used to tolerate aberrant behavior by components. But the means by
which independence can be achieved differs in subtle ways, depending on whether
natural events or attacks are to be masked. So the commonly held view—that
attack-tolerance is merely a matter of choosing an appropriate fault model—
misleads by ignoring independence. Independence will likely have to be elevated
to being a first-class notion before the fault-tolerance and security communities
could leverage each others’ work on replication.

4 Discussion

History and sociology are the obvious reasons that separate research communities
today exist in formal methods, fault-tolerance, and cyber-security. But there
are also technical reasons for these communities to have remained independent
despite their shared goal of facilitating the construction of systems we can depend
on. The different concerns being addressed by the communities justify different
and (surprisingly) incompatible foundations. With nations, organizations, and



Beyond Traces and Independence 485

individuals growing ever more dependent on computing systems, the time is ripe
to revisit and repudiate the technical rationale for these incompatibilities.

Acknowledgments. Brian Randall is not only the impetus for this paper (with
this volume marking his 75" birthday) but his research is also a foundation
and inspiration. He was an early—and remains a most vocal—proponent that
cyber-security and fault-tolerance would be better served by a single research
community devoted to the broader agenda he and others term “dependability.”

References

10.

11.

Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-
ters 21(4), 181-185 (1985)

. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput-

ing 2(3), 117-126 (1987)

Clarkson, M., Schneider, F.B.: Hyperproperties. Journal of Computer Secu-
rity 18(6), 1157-1210 (2010)

Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In:
Proc. 6th Workshop on Hot Topics in Operating Systems, pp. 67-72. IEEE Com-
puter Science Press, Los Alamitos (1997)

Knight, J.C., Leveson, N.G.: An experimental evaluation of the assumption of
independence in multiversion programming. IEEE Transactions on Software En-
gineering 12(1), 96-109 (1986)

Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering 3(2), 125-143 (1977)

Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages 4(3), 382-401 (1982)

Randell, B.: On failures and faults. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.)
FME 2003. LNCS, vol. 2805, pp. 18-39. Springer, Heidelberg (2003)

Roeder, T., Schneider, F.B.: Proactive obfuscation. ACM Transactions on Com-
puting Systems 28(2) (2010)

Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22(4), 299-319 (1990)

Xu, J., Kalbarczyk, Z., Iyer, R.K.: Transparent runtime randomization for security.
In: Proc. 22nd International Symposium on Reliable Distributed Systems, pp. 260—
269. IEEE Computer Science Press, Los Alamitos (2003)



	Beyond Traces and Independence
	Introduction
	Formal Methods
	Trace Properties
	Beyond Trace Properties

	From Fault-Tolerance to Attack Tolerance
	Obtaining and Preserving Independence

	Discussion
	References




