Skip to main content

Silence Is Golden: Self-stabilizing Protocols Communication-Efficient after Convergence

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6976))

Motivation

Self-stabilization is a general paradigm to provide forward recovery capabilities to distributed systems. A self-stabilizing protocol can eventually recover its intended behavior even when starting from an arbitrary initial configuration, and thus, it has high adaptability to transient faults (e.g., process state corruptions and message corruptions) and network topology changes. The high adaptability is usually acquired at the cost of efficiency. A crucial difference in cost between self-stabilizing and non-self-stabilizing protocols lies in the cost of communication after reaching a desired configuration. It is quite evident for static problems, e.g., spanning-tree construction. Self-stabilizing protocols cannot allow any process to terminate its communication even after converging to a desired configuration (where a solution of the problem is already obtained), while non-self-stabilizing ones can eventually allow every process to terminate all the activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Robust stabilizing leader election. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 219–233. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Devismes, S., Masuzawa, T., Tixeuil, S.: Communication efficiency in self-stabilizing silent protocols. In: Proc. the 29th ICDCS, pp. 474–481 (2009)

    Google Scholar 

  3. Kutten, S., Zinenko, D.: Low communication self-stabilization through randomization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 465–479. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Masuzawa, T., Izumi, T., Katayama, Y., Wada, K.: Brief announcement: Communication-efficient self-stabilizing protocols for spanning-tree construction. In: Proc. the 13th OPODIS, pp. 219–224 (2009)

    Google Scholar 

  5. Takimoto, T., Ooshita, F., Kakugawa, H., and Masuzawa, T.: Communication-efficient self-stabilizing protocols in wireless networks. In: Proc. the 7th WTCS (to appear) (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masuzawa, T. (2011). Silence Is Golden: Self-stabilizing Protocols Communication-Efficient after Convergence. In: Défago, X., Petit, F., Villain, V. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2011. Lecture Notes in Computer Science, vol 6976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24550-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24550-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24549-7

  • Online ISBN: 978-3-642-24550-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics