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Danny Dolev, Matthias Függer, Christoph Lenzen, and Ulrich Schmid

Abstract

Today’s hardware technology presents a new challenge in designing robust systems. Deep
submicron VLSI technology introduced transient and permanent faults that were never consid-
ered in low-level system designs in the past. Still, robustness of that part of the system is crucial
and needs to be guaranteed for any successful product. Distributed systems, on the other hand,
have been dealing with similar issues for decades. However, neither the basic abstractions nor
the complexity of contemporary fault-tolerant distributed algorithms match the peculiarities of
hardware implementations.

This paper is intended to be part of an attempt striving to overcome this gap between theory
and practice for the clock synchronization problem. Solving this task sufficiently well will allow to
build a very robust high-precision clocking system for hardware designs like systems-on-chips in
critical applications. As our first building block, we describe and prove correct a novel Byzantine
fault-tolerant self-stabilizing pulse synchronization protocol, which can be implemented using
standard asynchronous digital logic. Despite the strict limitations introduced by hardware
designs, it offers optimal resilience and smaller complexity than all existing protocols.
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1 Introduction & Related Work

With today’s deep submicron technology running at GHz clock speeds [20], disseminating the high-
speed clock throughout a very large scale integrated (VLSI) circuit, with negligible skew, is difficult
and costly [2, 3, 12, 24, 29]. Systems-on-chip are hence increasingly designed globally asynchronous
locally synchronous (GALS) [4], where different parts of the chip use different local clock signals.
Two main types of clocking schemes for GALS systems exist, namely, (i) those where the local clock
signals are unrelated, and (ii) multi-synchronous ones that provide a certain degree of synchrony
between local clock signals [30, 34].

GALS systems clocked by type (i) permanently bear the risk of metastable upsets when con-
veying information from one clock domain to another. To explain the issue, consider a physical
implementation of a bistable storage element, like a register cell, which can be accessed by read
and write operations concurrently. It can be shown that two operations (like two writes with dif-
ferent values) occurring very closely to each other can cause the storage cell to attain neither of its
two stable states for an unbounded time [23], and thereby, during an unbounded time afterwards,
successive reads may return none of the stable states. Although the probability of a single upset
is very small, one has to take into account that every bit of transmitted information across clock
domains is a candidate for an upset. Elaborate synchronizers [8, 21, 28] are the only means for
achieving an acceptably low probability for metastable upsets here.

This problem can be circumvented in clocking schemes of type (ii): Common synchrony prop-
erties offered by multi-synchronous clocking systems are:

• bounded skew, i.e., bounded maximum time between the occurence of any two matching clock
transitions of any two local clock signals. Thereby, in classic clock synchronization, two clock
transitions are matching iff they are both the kth, k ≥ 1, clock transition of a local clock.

• bounded accuracy, i.e., bounded minimum and maximum time between the occurence of any
two successive clock transitions of any local clock signal.

Type (ii) clocking schemes are particularly beneficial from a designer’s point of view, since they
combine the convenient local synchrony of a GALS system with a global time base across the whole
chip. It has been shown in [27] that these properties indeed facilitate metastability-free high-speed
communication across clock domains.

The decreasing structure sizes of deep submicron technology also resulted in an increased like-
lihood of chip components failing during operation: Reduced voltage swing and smaller critical
charges make circuits more susceptible to ionized particle hits, crosstalk, and electromagnetic in-
terference [5, 18]. Fault-tolerance hence becomes an increasingly pressing issue in chip design.
Unfortunately, faulty components may behave non-benign in many ways. They may perform signal
transitions at arbitrary times and even convey inconsistent information to their successor compo-
nents if their outgoing communication channels are affected by a failure. This forces to model faulty
components as unrestricted, i.e., Byzantine, if a high fault coverage is to be guaranteed.

The darts fault-tolerant clock generation approach [15, 17] developed by some of the authors
of this paper is a Byzantine fault-tolerant multi-synchronous clocking scheme. darts comprises a
set of modules, each of which generates a local clock signal for a single clock domain. The darts
modules (nodes) are synchronized to each other to within a few clock cycles. This is achieved
by exchanging binary clock signals only, via single wires. The basic idea behind darts is to
employ a simple fault-tolerant distributed algorithm [35]—based on Srikanth & Toueg’s consistent
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broadcasting primitive [31]—implemented in asynchronous digital logic. An important property of
the darts clocking scheme is that it guarantees that no metastable upsets occur during fault-free
executions. For executions with faults, metastable upsets cannot be ruled out: Since Byzantine
faulty components are allowed to issue unrelated read and write accesses by definition, the same
arguments as for clocking schemes of type (i) apply. However, in [13], it was shown that by proper
chip design the probability of a Byzantine component leading to a metastable upset of darts can
be made arbitrarily small.

Although both theoretical analysis and experimental evaluation revealed many attractive ad-
ditional features of darts, like guaranteed startup, automatic adaption to current operating con-
ditions, etc., there is room for improvement. The most obvious drawback of darts is its inability
to support late joining and restarting of nodes, and, more generally, its lack of self-stabilization
properties. If, for some reasons, more than a third of the darts nodes ever become faulty, the
system cannot be guaranteed to resume normal operation even if all failures cease. Even worse,
simple transient faults such as radiation- or crosstalk-induced additional (or omitted) clock ticks
accumulate over time to arbitrarily large skews in an otherwise benign execution.

Byzantine-tolerant self-stabilization, on the other hand, is the major strength of a number of
protocols [1, 6, 9, 19, 22] primarily devised for distributed systems. Of particular interest in the
above context is the work on self-stabilizing pulse synchronization, where the purpose is to generate
well-separated anonymous pulses that are synchronized at all correct nodes. This facilitates self-
stabilizing clock synchronization, as agreement on a time window permits to simulate a synchronous
protocol in a bounded-delay system. Beyond optimal (i.e., dn/3e − 1, c.f. [26]) resilience, an
attractive feature of these protocols is a small stabilization time [1, 6, 19, 22], which is crucial
for applications with stringent availability requirements. In particular, [1] synchronizes clocks
in expected constant time in a synchronous system. Given any pulse synchronization protocol
stabilizing in a bounded-delay system in expected time T , this implies an expected (T + O(1))-
stabilizing clock synchronization protocol.

Nonetheless, it remains open whether a (with respect to the number of nodes n) sublinear
convergence time can be achieved: While the classical consensus lower bound of f + 1 rounds
for synchronous, deterministic algorithms in a system with f < n/3 faults [11] proves that exact
agreement on a clock value requires at least f + 1 ∈ Ω(n) deterministic rounds, one has to face the
fact that only approximate agreement on the current time is achievable in a bounded-delay system
anyway. However, no non-trivial lower bounds on approximate deterministic synchronization or
the exact problem with randomization are known by now.

Note that existing synchronization algorithms, in particular those that do not rely on pulse
synchronization, have deficiencies rendering them unsuitable in our context. For example, they
have exponential convergence time [9], require the relative drift of the nodes’ local clocks to be very
small [7, 22],1 provide larger skew only [22] or make use of linear-sized messages [6]. Furthermore,
standard models used by the distributed systems community do not account for metastability,
resulting in the same to be true for the existing solutions.

It is hence natural to explore ways of combining and extending the above lines of research. The
present paper is the first step towards this goal.

Detailed contributions. We describe and prove correct the novel FATAL pulse synchroniza-

1Note that it is too costly and space consuming to equip each node with a quartz oscillator. Simple digital
oscillators, like inverters with feedback, in turn exhibit drifts of at least several percent, which heavily vary with
operating conditions.
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tion protocol, which facilitates a direct implementation in standard asynchronous digital logic. It
self-stabilizes within O(n) time with probability 1 − 2n−f ,2 in the presence of up to dn/3e − 1
Byzantine faulty nodes, and is metastability-free by construction after stabilization in failure-free
runs. While executing the protocol, non-faulty nodes broadcast a constant number of bits in con-
stant time. In terms of distributed message complexity, this implies that stabilization is achieved
after broadcasting O(n) messages of size O(1), improving by factor Ω(n) on the number of bits
transmitted by previous algorithms.3 The protocol can sustain large relative clock drifts of more
than 10%, which is crucial if the local clock sources are simple ring oscillators (uncompensated ring
oscillators suffer from clock drifts of up to 9% [32]). If the number of faults is not overwhelming,
i.e., a majority of at least n− f nodes continues to execute the protocol in an orderly fashion, re-
covering nodes and late joiners (re)synchronize in constant time. This property is highly desirable
in practical systems, in particular in combination with Byzantine fault-tolerance: Even if nodes
randomly experience transient faults on a regular basis, quick recovery ensures that the mean time
until failure of the system as a whole is substantially increased. All this is achieved against a
powerful adversary that, at time t, knows the whole history of the system up to time t+ ε (where
ε > 0 is infinitesimally small) and does not need to choose the set of faulty nodes in advance.
Apart from bounded drifts and communication delays, our solution solely requires that receivers
can unambiguously identify the sender of a message, which is a property that arises naturally in
hardware designs.

We also describe how the pulse synchronization protocol can be implemented using asynchronous
digital logic. Moreover, we sketch how the pulse synchronization protocol will be integrated with
darts clocks to build a high-precision self-stabilizing clocking system for multi-synchronous GALS.
The basic idea of our integration is to let the pulse synchronization protocol non-intrusively mon-
itor the operation of darts clocks and to recover darts clocks that run abnormally. Like the
original darts, the joint system is metastability-free in failure-free runs after stabilization. During
stabilization, the fact that nodes merely undergo a constant number of state transitions in constant
time ensures a very small probability of metastable upsets.

2 Model

Our formal framework will be tied to the peculiarities of hardware designs, which consist of modules
that continuously4 compute their output signals based on their input signals. Following [14, 16],
we define (the trace of) a signal to be a timed event trace over a finite alphabet S of possible signal
states: Formally, signal σ ⊆ S × R+

0 . All times and time intervals refer to a global reference time
taken from R+

0 , that is, signals describe the system’s behaviour from time 0 on. The elements of σ
are called events, and for each event (s, t) we call s the state of event (s, t) and t the time of event
(s, t). In general, a signal σ is required to fulfill the following conditions: (i) for each time interval
[t−, t+] ⊆ R+

0 of finite length, the number of events in σ with times within [t−, t+] is finite, (ii) from
(s, t) ∈ σ and (s′, t) ∈ σ follows that s = s′, and (iii) there exists an event at time 0 in σ.

2Note that the algorithm from [1] achieving an expected constant stabilization time in a synchronous model needs
to run for Ω(n) rounds to ensure the same probability of stabilization.

3We remark that [22] achieves the same complexity, but considers a much simpler model. In particular, all
communication is restricted to broadcasts, i.e., all nodes observe the same behaviour of a given other node, even if it
is faulty.

4In sharp contrast to classic distributed computing models, there is no computationally complex discrete zero-time
state-transition here.
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Note that our definition allows for events (s, t) and (s, t′) ∈ σ, where t < t′, without having an
event (s′, t′′) ∈ σ with s′ 6= s and t < t′′ < t′. In this case, we call event (s, t′) idempotent. Two
signals σ and σ′ are equivalent, iff they differ in idempotent events only. We identify all signals of
an equivalence class, as they describe the same physical signal. Each equivalence class [σ] of signals
contains a unique signal σ0 having no idempotent events. We say that signal σ switches to s at
time t iff event (s, t) ∈ σ0.

The state of signal σ at time t ∈ R+
0 , denoted by σ(t), is given by the state of the event with

the maximum time not greater than t.5 Because of (i), (ii) and (iii), σ(t) is well defined for each
time t ∈ R+

0 . Note that σ’s state function in fact depends on [σ] only, i.e., we may add or remove
idempotent events at will without changing the state function.

Distributed System On the topmost level of abstraction, we see the system as a set of V =
{1, . . . , n} physically remote nodes that communicate by means of channels. In the context of a
VLSI circuit, “physically remote” actually refers to quite small distances (centimeters or even less).
However, at gigahertz frequencies, a local state transition will not be observed remotely within
a time that is negligible compared to clock speeds. We stress this point, since it is crucial that
different clocks (and their attached logic) are not too close to each other, as otherwise they might
fail due to the same event such as a particle hit. This would render it pointless to devise a system
that is resilient to a certain fraction of the nodes failing.

Each node i comprises a number of input ports, namely Si,j for each node j, an output port
Si, and a set of local ports, introduced later on. An execution of the distributed system assigns to
each port of each node a signal. For convenience of notation, for any port p, we refer to the signal
assigned to port p simply by signal p. We say that node i is in state s at time t iff Si(t) = s. We
further say that node i switches to state s at time t iff signal Si switches to s at time t.

Nodes exchange their states via the channels between them: for each pair of nodes i, j, output
port Si is connected to input port Sj,i by a FIFO channel from i to j. Note that this includes a
channel from i to i itself. Intuitively, Si being connected to Sj,i by a (non-faulty) channel means
that Sj,i(·) should mimic Si(·), however, with a slight delay accounting for the time it takes the
signal to propagate. In contrast to an asynchronous system, this delay is bounded by the maximum
delay d > 0.6

Formally we define: The channel from node i to j is said to be correct during [t−, t+] iff
there exists a function τi,j : R+

0 → R+
0 , called the channel’s delay function, such that: (i) τi,j is

continuous and strictly increasing, (ii) ∀t ∈ [t−, t+] : 0 ≤ τi,j(t)−t < d, and (iii) for each t ∈ [t−, t+],
(s, τi,j(t)) ∈ Sj,i ⇔ (s, t) ∈ Si. We say that node i observes node j in state s at time t if Si,j(t) = s.

Clocks and Timeouts Nodes are never aware of the current reference time and we also do not
require the reference time to resemble Newtonian “real” time. Rather we allow for physical clocks
that run arbitrarily fast or slow, as long as their speeds are close to each other in comparison. One
may hence think of the reference time as progressing at the speed of the currently slowest correct
clock. In this framework, nodes essentially make use of bounded clocks with bounded drift.

Formally, clock rates are within [1, ϑ] (with respect to reference time), where ϑ > 1 is constant
and ϑ − 1 is the (maximum) clock drift. A clock C is a continuous, strictly increasing function

5To facilitate intuition, we here slightly abuse notation, as this way σ denotes both a function of time and the
signal (trace), which is a subset of S×R+

0 . Whenever referring to σ, we will talk of the signal, not the state function.
6With respect to O-notation, we normalize d ∈ O(1), as all time bounds simply depend linearly on d.
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C : R+
0 → R+

0 mapping reference time to some local time. Clock C is said to be correct during
[t−, t+] ⊆ R+

0 iff we have for any t, t′ ∈ [t−, t+], t < t′, that t′ − t ≤ C(t′) − C(t) ≤ ϑ(t′ − t).
Each node comprises a set of clocks assigned to it, which allow the node to estimate the progress
of reference time.

Instead of directly accessing the value of their clocks, nodes have access to so-called timeout
ports of watchdog timers. A timeout is a triple (T, s, C), where T ∈ R+ is a duration, s ∈ S is a
state, and C is a clock, say of node i. Each timeout (T, s, C) has a corresponding timeout port
TimeT,s,C , being part of node i’s local ports. Signal TimeT,s,C is Boolean, that is, its possible states
are from the set {0, 1}. We say that timeout (T, s, C) is correct during [t−, t+] ⊆ R+

0 iff clock C is
correct during [t−, t+] and the following holds:

1. For each time ts ∈ [t−, t+] when node i switches to state s, there is a time t ∈ [ts, τi,i(ts)]
such that (T, s, C) is reset, i.e., (0, t) ∈ TimeT,s,C . This is a one-to-one correspondence, i.e.,
(T, s, C) is not reset at any other times.

2. For a time t ∈ [t−, t+], denote by t0 the supremum of all times from [t−, t] when (T, s, C) is
reset. Then it holds that (1, t) ∈ TimeT,s,C iff C(t)− C(t0) = T . Again, this is a one-to-one
correspondence.

We say that timeout (T, s, C) expires at time t iff TimeT,s,C switches to 1 at time t, and it is
expired at time t iff TimeT,s,C(t) = 1. For notational convenience, we will omit the clock C and
simply write (T, s) for both the timeout and its signal.

A randomized timeout is a triple (D, s, C), where D is a bounded random distribution on R+
0 ,

s ∈ S is a state, and C is a clock. Its corresponding timeout port TimeD,s,C behaves very similar to
the one of an ordinary timeout, except that whenever it is reset, the local time that passes until it
expires next—provided that it is not reset again before that happens—follows the distribution D.
Formally, (D, s, C) is correct during [t−, t+] ⊆ R+

0 , if C is correct during [t−, t+] and the following
holds:

1. For each time ts ∈ [t−, t+] when node i switches to state s, there is a time t ∈ [ts, τi,i(ts)]
such that (D, s, C) is reset, i.e., (0, t) ∈ TimeD,s,C . This is a one-to-one correspondence, i.e.,
(D, s, C) is not reset at any other times.

2. For a time t ∈ [t−, t+], denote by t0 the supremum of all times from [t−, t] when (D, s, C) is
reset. Let µ : R+

0 → R+
0 denote the density of D. Then (1, t) ∈ TimeD,s,C “with probability

µ(C(t) − C(t0))” and we require that the probability of (1, t) ∈ TimeD,s,C—conditional to
t0 and C on [t0, t] being given—is independent of the system’s state at times smaller than t.
More precisely, if superscript E identifies variables in execution E and t′0 is the infimum of all
times from (t0, t

+] when node i switches to state s, then we demand for any [τ−, τ+] ⊆ [t0, t
′
0]

that

P
[
∃t′ ∈ [τ−, τ+] : (1, t′) ∈ TimeD,s,C

∣∣∣ tE0 = t0 ∧ C
∣∣E
[t0,t′]

= C
∣∣
[t0,t′]

]
=

∫ τ+

τ−
µ(C(τ)−C(t0)) dτ,

independently of E
∣∣
[0,τ−)

.

We will apply the same notational conventions to randomized timeouts as we do for regular
timeouts.
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Note that, strictly speaking, this definition does not induce a random variable describing the
time t′ ∈ [t0, t

′
0) satisfying that (1, t′) ∈ TimeD,s,C . However, for the state of the timeout port, we

get the meaningful statement that for any t′ ∈ [t0, t
′
0),

P [TimeD,s,C switches to 1 during [t0, t
′]] =

∫ t′

t0

µ(C(t′)− C(t0)) dτ.

The reason for phrasing the definition in the above more cumbersome way is that we want to
guarantee that an adversary knowing the full present state of the system and memorizing its whole
history cannot reliably predict when the timeout will expire.7

We remark that these definitions allow for different timeouts to be driven by the same clock,
implying that an adversary may derive some information on the state of a randomized timeout
before it expires from the node’s behaviour, even if it cannot directly access the values of the clock
driving the timeout. This is crucial for implementability, as it might be very difficult to guarantee
that the behaviour of a dedicated clock that drives a randomized timeout is indeed independent of
the execution of the algorithm.

Memory Flags Besides timeout and randomized timeout ports, another kind of node i’s local
ports are memory flags. For each state s ∈ S and each node j ∈ V , Memi,j,s is a local port of
node i. It is used to memorize whether node i has observed node j in state s since the last reset of
the flag. We say that node i memorizes node j in state s at time t if Memi,j,s(t) = 1. Formally, we
require that signal Memi,j,s switches to 1 at time t iff node i observes node j in state s at time t
and Memi,j,s is not already in state 1. The times t when Memi,j,s is reset , i.e., (0, t) ∈ Memi,j,s,
are specified by node i’s state machine, which is introduced next.

State Machine It remains to specify how nodes switch states and when they reset memory flags.
We do this by means of state machines that may attain states from the finite alphabet S. A node’s
state machine is specified by (i) the set S, (ii) a function tr, called the transition function, from
T ⊆ S2 to the set of Boolean predicates on the alphabet consisting of expressions “p = s” (used
for expressing guards), where p is from the node’s input and local ports and s is from the set of
possible states of signal p, and (iii) a function re, called the reset function, from T to the power
set of the node’s memory flags.

Intuitively, the transition function specifies the conditions (guards) under which a node switches
states, and the reset function determines which memory flags to reset upon the state change.
Formally, let P be a predicate on node i’s input and local ports. We define P holds at time t by
structural induction: If P is equal to p = s, where p is one of node i’s input and local ports and
s is one of the states signal p can obtain, then P holds at time t iff p(t) = s. Otherwise, if P is of
the form ¬P1, P1 ∧ P2, or P1 ∨ P2, we define P holds at time t in the straightforward manner.

We say node i follows its state machine during [t−, t+] iff the following holds: Assume node i
observes itself in state s ∈ S at time t ∈ [t−, t+], i.e., Si,i(t) = s. Then, for each (s, s′) ∈ T , both:

1. Node i switches to state s′ at time t iff tr(s, s′) holds at time t and i is not already in state s′.8

7This is a non-trivial property. For instance nodes could just determine, by drawing from the desired random
distribution at time t0, at which local clock value the timeout shall expire next. This would, however, essentially give
away early when the timeout will expire, greatly reducing the power of randomization!

8In case more than one guard tr(s, s′) can be true at the same time, we assume that an arbitrary tie-breaking
ordering exists among the transition guards that specifies to which state to switch.
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2. Node i resets memory flag m at some time in the interval [t, τi,i(t)] iff m ∈ re(s, s′) and i
switches from state s to state s′ at time t. This correspondence is one-to-one.

A node is defined to be non-faulty during [t−, t+] iff during [t−, t+] all its timeouts and random-
ized timeouts are correct and it follows its state machine. If it employs multiple state machines
(see below), it needs to follow all of them.

In contrast, a faulty node may change states arbitrarily. Note that while a faulty node may be
forced to send consistent output state signals to all other nodes if its channels remain correct, there
is no way to guarantee that this still holds true if channels are faulty.9

Metastability In our discrete system model, the effect of metastability is captured by the lack-
ing capability of state machines to instantaneously take on new states: Node i decides on state
transitions based on the delayed status of port Si,i instead of its “true” current state Si. This
non-zero delay from Si to Si,i bears the potential for metastability, as a successful state transition
can only be guaranteed if after a transition guard from some state s to some state s′ becomes true,
all other transition guards from s to s′′ 6= s′ remain false during this delay at least.

This is exemplified in the following scenario: Assume node i is in state s at some time t.
However, since it switched to s only very recently, it still observes itself in state s′ 6= s at time t
via Si,i. Given that there is a transition (s′, s′′) in T , s′′ 6= s, whose condition is fulfilled at time
t, it will switch to state s′′ at time t (although state s has not even stabilized yet). That is, due
to the discrepancy between Si,i and Si, node i switches from state s to state s′′ at time t even if
(s, s′′) is not in T at all.10 In a physical chip design, this premature change of state might even
result in inconsistent operations on the local memory, up to the point where it cannot be properly
described in terms of S, and thus in terms of our discrete model, anymore. Even worse, the state
of i is part of the local memory and the node’s state signal may attain an undefined value that is
propagated to other nodes and their memory. While avoiding the latter is the task of the input
ports of a non-faulty node, our goal is to prevent this erroneous behaviour in situations where input
ports attain legitimate values only.

Therefore, we define node i to be metastability-free, if the situation described above does not
occur.

Definition 2.1 (Metastability-Freedom). Node i ∈ V is called metastability-free during [t−, t+],
iff for each time t ∈ [t−, t+] when i switches to some state s ∈ S, it holds that τi,i(t) < t′, where t′

is the infimum of all times in (t, t+] when i switches to some state s′ ∈ S.

Multiple State Machines In some situations the previous definitions are too stringent, as there
might be different “components” of a node’s state machine that act concurrently and independently,
mostly relying on signals from disjoint input ports or orthogonal components of a signal. We model
this by permitting that nodes run several state machines in parallel. All these state machines share
the input and local ports of the respective node and are required to have disjoint state spaces. If
node i runs state machines M1, . . . ,Mk, node i’s output signal is the product of the output signals

9A single physical fault may cause this behaviour, as at some point a node’s output port must be connected to
remote nodes’ input ports. Even if one places bifurcations at different physical locations striving to mitigate this
effect, if the voltage at the output port drops below specifications, the values of corresponding input channels may
deviate in unpredictable ways.

10Note that while the “internal” delay τi,i(t)− t can be made quite small, it cannot be reduced to zero if the model
is meant to reflect physical implementations.
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of the individual machines. Formally we define: Each of the state machines Mj , 1 ≤ j ≤ k, has
an additional own output port sj . The state of node i’s output port Si at any time t is given
by Si(t) := (s1(t), . . . , sk(t)), where the signals of ports s1, . . . , sk are definied analogously to the
signals of the output ports of state machines in the single state machine case, each. Note that by
this definition, the only (local) means for node i’s state machines to interact with each other is by
reading the delayed state signal Si,i.

We say that node i’s state machine Mj is in state s at time t iff sj(t) = s, where Si(t) =
(s1(t), . . . , sk(t)), and that node i’s state machine Mj switches to state s at time t iff signal sj
switches to s at time t. Since the state spaces of the machines Mj are disjoint, we will omit the
phrase “state machine Mj” from the notation, i.e., we write “node i is in state s” or “node i
switched to state s”, respectively.

Recall that the various state machines of node i are as loosely coupled as remote nodes, namely
via the delayed status signal on channel Si,i only. Therefore, it makes sense to consider them
independently also when it comes to metastability.

Definition 2.2 (Metastability-Freedom (Multiple State Machines)). State machine M of node
i ∈ V is called metastability-free during [t−, t+], iff for each time t ∈ [t−, t+] when M switches to
some state s ∈ S, it holds that τi,i(t) < t′, where t′ is the infimum of all times in (t, t+] when M
switches to some state s′ ∈ S.

Note that by this definition the different state machines may switch states concurrently without
suffering from metastability.11 It is even possible that some state machine suffers metastability,
while another is not affected by this at all.12

Problem Statement The purpose of the pulse synchronization protocol is that nodes generate
synchronized, well-separated pulses by switching to a distinguished state accept . Self-stabilization
requires that they start to do so within bounded time, for any possible initial state. However, as
our protocol makes use of randomization, there are executions where this does not happen at all;
instead, we will show that the protocol stabilizes with probability one in finite time. To give a
precise meaning to this statement, we need to define appropriate probability spaces.

Definition 2.3 (Adversarial Spaces). Denote for i ∈ V by Ci = {Ci,k | k ∈ {1, . . . , ci}} the set
of clocks of node i. An adversarial space is a probabilistic space that is defined by subsets of
nodes and channels W ⊆ V and E ⊆ V × V , a time interval [t−, t+], a protocol P (nodes’ ports,
state machines, etc.) as previously defined, sets of clock and delay functions C =

⋃
i∈V Ci and

Θ = {τi,j : R+
0 → R+

0 | (i, j) ∈ V 2}, an initial state E0 of all ports, and an adversarial function A.
Here A is a function that maps a partial execution E|[0,t] until time t (i.e., all ports’ values until
time t), W , E, [t−, t+], P, C, and Θ to the states of all faulty ports during the time interval (t, t′],
where t′ is the infimum of all times greater than t when a non-faulty node or channel switches
states.

11However, care has to be taken when implementing the inter-node communication of the state components in a
metastability-free manner, cf. Section 6.

12This is crucial for the algorithm we are going to present. For stabilization purposes, nodes comprise a state
machine that is prone to metastability. However, the state machine generating pulses (i.e., having the state accept ,
cf. Definition 2.4) does not take its output signal into account once stabilization is achieved. Thus, the algorithm is
metastability-free after stabilization in the sense that we guarantee a metastability-free signal indicating when pulses
occur.
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The adversarial space AS(W,E, [t−, t+],P, C,Θ, E0,A) is now defined on the set of all executions
E satisfying that (i) the initial state of all ports is given by E|[0,0] = E0, (ii) for all i ∈ V and

k ∈ {1, . . . , ci} : CEi,k = Ci,k, (iii) for all (i, j) ∈ V 2, τEi,j = τi,j, (iv) nodes in W are non-faulty

during [t−, t+] with respect to the protocol P, (v) all channels in E are correct during [t−, t+], and
(vi) given E|[0,t] for any time t, E|(t,t′] is given by A, where t′ is the infimum of times greater than
t when a non-faulty node switches states. Thus, except for when randomized timeouts expire, E is
fully predetermined by the parameters of AS.13 The probability measure on AS is induced by the
random distributions of the randomized timeouts specified by P.

To avoid confusion, observe that if the clock functions and delays do not follow the model
constraints during [t−, t+], the respective adversarial space is empty and thus of no concern. This
cumbersome definition provides the means to formalize a notion of stabilization that accounts for
worst-case drifts and delays and an adversary that knows the full state of the system up to the
current time.

We are now in the position to formally state the pulse synchronization problem in our framework.
Intuitively, the goal is that after transient faults cease, nodes should with probability one eventually
start to issue well-separated, synchronized pulses by switching to a dedicated state accept . Thus,
as the initial state of the system is arbitrary, specifying an algorithm14 is equivalent to defining the
state machines that run at each node, one of which has a state accept .

Definition 2.4 (Self-Stabilizing Pulse Synchronization). Given a set of nodes W ⊆ V and a set
E ⊆ V ×V of channels, we say that protocol P is a (W,E)-stabilizing pulse synchronization protocol
with skew Σ and accuracy bounds T−, T+ that stabilizes within time T with probability p iff the
following holds. Choose any time interval [t−, t+] ⊇ [t−, t− + T + Σ] and any adversarial space
AS(W,E, [t−, t+],P, ·, ·, ·, ·) (i.e., C, Θ, E0, and A are arbitrary). Then executions from AS satisfy
with probability at least p that there exists a time ts ∈ [t−, t− + T ] so that, denoting by ti(k) the
time when node i switches to a distinguished state accept for the kth time after ts (ti(k) =∞ if no
such time exists), (i) ti(1) ∈ (ts, ts + Σ), (ii) |ti(k)− tj(k)| ≤ Σ if max{ti(k), tj(k)} ≤ t+, and (iii)
T− ≤ |ti(k + 1)− ti(k)| ≤ T+ if ti(k) + T+ ≤ t+.

Note that the fact that A is a deterministic function and, more generally, that we consider each
space AS individually, is no restriction: As P succeeds for any adversarial space with probability
at least p in achieving stabilization, the same holds true for randomized adversarial strategies A
and worst-case drifts and delays.

3 The FATAL Pulse Synchronization Protocol

In this section, we present our self-stabilizing pulse generation algorithm. In order to be suitable
for implementation in hardware, it needs to utilize very simple rules only. It is stated in terms of
a state machine as introduced in the previous section.

Since the ultimate goal of the pulse generation algorithm is to stabilize a system of darts
clocks, we introduce an additional port dartsi, for each node i, which is driven by node i’s darts

13This follows by induction starting from the initial configuration E0. Using A, we can always extend E to the next
time when a correct node switches states, and when correct nodes switch states is fully determined by the parameters
of AS except for when randomized timeouts expire. Note that the induction reaches any finite time within a finite
number of steps, as signals switch states finitely often in finite time.

14We use the terms “algorithm” and “protocol” interchangably throughout this work.
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Figure 1: Basic cycle of node i once the algorithm has stabilized.

instance. As for other state signals, its output raises flag Memi,darts, to which for simplicity
we refer to as dartsi as well. Note that the darts signals are of no concern to the liveliness or
stabilization of the pulse algorithm itself; rather, it is a control signal from the darts component
that helps in adjusting the frequency of pulses to the speed of the darts clocks once the system as a
whole (including the darts component) is stable. The pulse algorithm will stabilize independently
of the darts signal, and the darts component will stabilize once the pulse component did so.
Therefore we can partition the algorithm’s analysis into two parts. When proving the correctness
of the algorithm in Section 4, we assume that for each node i, dartsi is arbitrary. In Section 7, we
will outline how the pulse algorithm and darts interact.

3.1 Basic Cycle

The full algorithm makes use of a rather involved interplay between conditions on timeouts, states,
and thresholds to converge to a safe state despite a limited number of faulty components. As our
approach is thus difficult to present in bulk, we break it down into pieces. Moreover, to facilitate
giving intuition about the key ideas of the algorithm, in this section we assume that there are
f < n/3 faulty nodes, and the remaining n− f nodes are non-faulty within [0,∞) (where of course
the time 0 is unknown to the nodes). We further assume that channels between non-faulty nodes
(including loopback channels) are correct within [0,∞). We start by presenting the basic cycle that
is repeated every pulse once a safe configuration is reached (see Figure 1).

We employ graphical representations of the state machine of each node i ∈ V . States are
represented by circles containing their names, while transition (s, s′) ∈ T is depicted as an arrow
from s to s′. The guard tr(s, s′) is written as a label next to the arrow, and the reset function’s
value re(s, s′) is depicted in a rectangular box on the arrow. To keep labels more simple we make
use of some abbreviations. We write T instead of (T, s) if s is the state which node i leaves if
the condition involving (T, s) is satisfied. Threshold conditions like “≥ f + 1 s ”, where s ∈ S,
abbreviate Boolean predicates that reach over all of node i’s memory flags Memi,j,s, where j ∈ V ,
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and are defined in a straightforward manner. If in such an expression we connect two states by
“or”, e.g., “≥ n − f s or s′ ” for s, s′ ∈ S, the summation considers flags of both types s and s′.
Thus, such an expression is equivalent to

∑
j∈V max{Memi,j,s,Memi,j,s′} ≥ f + 1. For any state

s ∈ S, the condition Si,j = s, (respectively, ¬(Si,j = s)) is written in short as “j in s” (respectively,
“j not in s”). If j = i, we simply write “(not) in s”. We write “true” instead of a condition
that is always true (like e.g. “(in s) or (not in s)” for an arbitrary state s ∈ S). Finally, re(·, ·)
always requires to reset all memory flags of certain types, hence we write e.g. propose if all flags
Memi,j,propose are to be reset.

We now briefly introduce the basic flow of the algorithm once it stabilizes, i.e., once all n − f
non-faulty nodes are well-synchronized. Recall that the remaining up to f < n/3 faulty nodes may
produce arbitrary signals on their outgoing channels. A pulse is locally triggered by switching to
state accept . Thus, assume that at some time all non-faulty nodes switch to state accept within
a time window of 2d, i.e., a valid pulse is generated. Supposing that T1 ≥ 3ϑd, these nodes will
observe, and thus memorize, each other and themselves in state accept before T1 expires. This makes
timeout T1 the critical condition for switching to state sleep. From state sleep, they will switch
to states sleep → waking, waking , and finally ready , where the timeout (T2, accept) is determining
the time this takes, as it is considerably larger than ϑ(ϑ + 2)T1. The intermediate states serve
the purpose of achieving stabilization, hence we leave them out for the moment. Note that upon
switching to state ready , nodes reset their propose flags and dartsi. Thus, they essentially ignore
these signals between the most recent time they switched to propose before switching to accept and
the subsequent time when they switch to ready . This ensures that nodes do not take into account
outdated information for the decision when to switch to state propose. Hence, it is guaranteed that
the first node switching from state ready to state propose again does so because T4 expired or because
T3 expired and its darts memory flag is true. Due to the constraint min{T3, T4} ≥ ϑ(T2 + 4d), we
are sure that all non-faulty nodes observe themselves in state ready before the first one switches
to propose. Hence, no node deletes information about nodes that switch to propose again after the
previous pulse. The first non-faulty node that switches to state accept again cannot do so before
it memorizes at least n− f nodes in state propose, as the accept flags are reset upon switching to
state propose. Therefore, at this time at least n−2f ≥ f + 1 non-faulty nodes are in state propose.
Hence, the rule that nodes switch to propose if they memorize f + 1 nodes in states propose will
take effect, i.e., the remaining non-faulty nodes in state ready switch to propose after less than d
time. Another d time later all non-faulty nodes in state propose will have become aware of this
and switch to state accept as well, as the threshold of n − f nodes in states propose or accept is
reached. Thus the cycle is complete and the reasoning can be repeated inductively.

Clearly, for this line of argumentation to be valid, the algorithm could be simpler than stated in
Figure 1. We already mentioned that the motivation of having three intermediate states between
accept and ready is to facilitate stabilization. Similarly, there is no need to make use of the accept
flags in the basic cycle at all; in fact, it adversely affects the constraints the timeouts need to
satisfy for the above reasoning to be valid. However, the accept flags are much better suited for
diagnostic purposes than the propose flags, since nodes are expected to switch to accept in a small
time window and remain in state accept for a small period of time only (for all our results, it is
sufficient if T1 = 4ϑd). Moreover, two different timeout conditions for switching from ready to
propose are unnecessary for correct operation of the pulse synchronization routine. As discussed
before, they are introduced in order to allow for a seamless coupling to the darts system. We
elaborate on this in Section 7.
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Figure 2: Overview of the core routine of node i’s self-stabilizing pulse algorithm.

3.2 Main Algorithm

We proceed by describing the main routine of the pulse algorithm in full. Alongside the main
routine, several other state machines run concurrently and provide additional information to be
used during recovery.

The main routine is graphically presented in Figure 2, together with a very simple second
component whose sole purpose is to simplify the otherwise overloaded description of the main
routine. Except for the states recover and join and additional resets of memory flags, the main
routine is identical to the basic cycle. The purpose of the two additional states is the following:
Nodes switch to state recover once they detect that something is wrong, that is, non-faulty nodes
do not execute the basic cycle as outlined in Section 3.1. This way, non-faulty nodes will not
continue to confuse others by sending for example state signals propose or accept despite clearly
being out-of-sync. There are various consistency checks that nodes perform during each execution
of the basic cycle. The first one is that in order to switch from state accept to state sleep, non-faulty
nodes need to memorize at least n − f nodes in state accept . If this does not happen within T1

time after switching to state accept , by the arguments given in Section 3.1, they could not have
entered state accept within 2d of each other. Therefore, something must be wrong and it is feasible
to switch to state recover . Next, whenever a non-faulty node is in state waking , there should be
no non-faulty nodes in states accept or recover . Considering that the node resets its accept and
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recover flags upon switching to waking , it should not memorize f+1 or more nodes in states accept
or recover at a time when it observes itself in state waking . If it does, however, it again switches
to state recover . Similarly, when in state ready , nodes expect others not to be in state accept for
more than a short period of time, as a non-faulty node switching to accept should imply that every
non-faulty node switches to propose and then to accept shortly thereafter. This is expressed by
the second state machine comprising two states only. If a node is in state ready and memorizes
f + 1 nodes in state accept , it switches to suspect . Subsequently, if it remains in state ready until
a timeout of 2ϑd expires, it will switch to state recover . Last but not least, during a synchronized
execution of the basic cycle, no non-faulty node may be in state propose for more than a certain
amount of time before switching to state accept . Therefore, nodes will switch from propose to
recover when timeout T5 expires.

Nodes can join the basic cycle again via the second new state, called join. Since the Byzantine
nodes may “play nice” towards n − 2f or more nodes still executing the basic cycle, making
them believe that system operation continues as usual, it must be possible to join the basic cycle
again without having a majority of nodes in state recover . On the other hand, it is crucial that
this happens in a sufficiently well-synchronized manner, as otherwise nodes could drop out again
because the various checks of consistency detect an erroneous execution of the basic cycle.

In part, this issue is solved by an additional agreement step. In order to enter the basic
cycle again, nodes need to memorize n − f nodes in states join (the respective nodes detected an
inconsistency), propose (these nodes continued to execute the basic cycle), or accept (there are
executions where nodes reset their propose flags because of switching to join when other nodes
already switched to accept). Since there are thresholds of f + 1 nodes memorized in state join
both for leaving state recover and switching from ready to join, all nodes will follow the first
one switching from join to propose quickly, just as with the switch from propose to accept in an
ordinary execution of the basic cycle. However, it is decisive that all nodes are in states that permit
to participate in this agreement step in order to guarantee success of this approach.

As a result, still a certain degree of synchronization needs to be established beforehand, both
among nodes that still execute the basic cycle and those that do not. For instance, if at the point
in time when a majority of nodes and channels become non-faulty, some nodes already memorize
nodes in join that are not, they may switch to state join and subsequently propose prematurely,
causing others to have inconsistent memory flags as well. Again, Byzantine faults may sustain this
amiss configuration of the system indefinitely.

So why did we put so much effort in “shifting” the focus to this part of the algorithm? The key
advantage is that nodes outside the basic cycle may take into account less reliable information for
stabilization purposes. They may take the risk of metastable upsets (as we know it is impossible
to avoid these during the stabilization process, anyway) and make use of randomization.

In fact, to make the above scheme work, it is sufficient that all non-faulty nodes agree on a
so called resynchronization point (formally defined later on), that is, a point in time at which
nodes reset the memory flags for states join and sleep→ waking as well as certain timeouts, while
guaranteeing that no node is in these states close to the respective reset times. Except for state
sleep→ waking, all of these timeouts, memory flags, etc. are not part of the basic cycle at all, thus
nodes may enforce consistent values for them when they agree on such a resynchronization point.

Conveniently, the use of randomization also ensures that it is quite unlikely that nodes are
in state sleep → waking close to a resynchronization point, as the consistency check of having to
memorize n − f nodes in state accept in order to switch to state sleep guarantees that the time
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Figure 3: Extension of node i’s core routine.

windows during which non-faulty nodes may switch to sleep make up a small fraction of all times
only.

Consequently, the remaining components of the algorithm deal with agreeing on resynchroniza-
tion points and utilizing this information in an appropriate way to ensure stabilization of the main
routine. We describe this connection to the main routine first. It is done by another, quite simple
state machine, which runs in parallel alongside the core routine. It is depicted in Figure 3.

Its purpose is to reset memory flags in a consistent way and to determine when a node is
permitted to switch to join. In general, a resynchronization point (locally observed by switching
to state resync, which is introduced later) triggers the reset of the join and sleep → waking flags.
If there are still nodes executing the basic cycle, a node may become aware of it by observing f + 1
nodes in state sleep→ waking at some time. In this case it switches from the state passive, which
it entered at the point in time when it locally observed the resynchronization point, to the state
active, which enables an earlier transition to state join. This is expressed by the rather involved
transition rule tr(recover, join): T6 is much smaller than T7, but T6 is of no concern until the node
switches to state active and resets T6.15

It remains to explain how nodes agree on resynchronization points.

3.3 Resynchronization Algorithm

The resynchronization routine is specified in Figure 4 as well. It is a lower layer that the core routine
uses for stabilization purposes only. It provides some synchronization that is very similar to that of
a pulse, except that such “weak pulses” occur at random times, and may be generated inconsistently
after the algorithm as a whole has stabilized. Since the main routine operates independently of the
resynchronization routine once the system has stabilized, we can afford the weaker guarantees of
the routine: If it succeeds in generating a “good” resynchronization point merely once, the main
routine will stabilize deterministically.

Definition 3.1 (Resynchronization Points). Given W ⊆ V , time t is a W -resynchronization point
iff each node in W switches to state supp→ resync in the time interval (t, t+ 2d).

Definition 3.2 (Good Resynchronization Points). A W -resynchronization point is called good if

15The condition “not in dormant” here ensures that the transition is not performed because the node has been in
state resync a long time ago, but there was no recent switching to resync.
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Figure 4: Resynchronization algorithm, comprising two state machines executed in parallel at
node i.

no node from W switches to state sleep during (t− (ϑ+ 3)T1, t) and no node is in state join during
[t− T1 − d, t+ 4d).

In order to clarify that despite having a linear number of states (supp1, . . . , suppn), this part
of the algorithm can be implemented using 2-bit communication channels between state machines
only, we generalize our description of state machines as follows. If a state is depicted as a circle
separated into an upper and a lower part, the upper part denotes the local state, while the lower part
indicates the signal state to which it is mapped. A node’s memory flags then store the respective
signal states only, i.e., remote nodes do not distinguish between states that share the same signal.
Clearly, such a machine can be simulated by a machine as introduced in the model section. The
advantage is that such a mapping can be used to reduce the number of transmitted state bits; for
the resynchronization routine given in Figure 4, we merely need two bits (init/wait and none/supp)
instead of dlog(n+ 3)e+ 1 bits.

The basic idea behind the resynchronization algorithm is the following: Every now and then,
nodes will try to initiate agreement on a resynchronization point. This is the purpose of the small
state machine on the left in Figure 4. Recalling that the transition condition “true” simply means
that the node switches to state wait again as soon as it observes itself in state init , it is easy to see
that it does nothing else than creating an init signal as soon as R3 expires and resetting R3 again
as quickly as possible. As the time when a node switches to init is determined by the randomized
timeout R3 distributed over a large interval (cf. Equality (11)) only, it is impossible to predict when
it will expire, even with full knowledge of the execution up to the current point in time. Note that
the complete independence of this part of node i’s state from the remaining protocol implies that
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faulty nodes are not able to influence the respective times by any means.
Consider now the state machine displayed on the right of Figure 4. To understand how the

routine is intended to work, assume that at the time t when a non-faulty node i switches to state
init , all non-faulty nodes are not in any of the states supp → resync, resync, or supp i, and at
all non-faulty nodes the timeout (R2, supp i) has expired. Then, no matter what the signals from
faulty nodes or on faulty channels are, all non-faulty nodes will be in one of the states supp j,
j ∈ V , or supp→ resync at time t+ d. Hence, they will observe each other (and themselves) in one
of these states at some time smaller than t+ 2d. These statements follow from the various timeout
conditions of at least 2ϑd and the fact that observing node i in state init will make nodes switch
to state supp i if in none or supp j, j 6= i. Hence, all of them will switch to state supp → resync
during (t, t+ 2d), i.e., t is a resynchronization point. Since t follows a random distribution that is
independent of the remaining algorithm and, as mentioned earlier, most of the times nodes cannot
switch to state sleep and it is easy to deal with the condition on join states, there is a large
probability that t is a good resynchronization point. Note that timeout R1 makes sure that no
non-faulty node will switch to supp → resync again anytime soon, leaving sufficient time for the
main routine to stabilize.

The scenario we just described relies on the fact that at time t no node is in state supp→ resync
or state resync. We will choose R2 � R1, implying that R2 +3d time after a node switched to state
init all nodes have “forgotten” about this, i.e., (R2, supp i) is expired and they switched back to
state none (unless other init signals interfered). Thus, in the absence of Byzantine faults, the above
requirement is easily achieved with a large probability by choosing R3 as a uniform distribution
over some interval [R2 + 3d,R2 + Θ(nR1)]: Other nodes will switch to init O(n) times during this
interval, each time “blocking” other nodes for at most O(R1) time. If the random choice picks
any other point in time during this interval, a resynchronization point occurs. Even if the clock
speed of the clock driving R3 is manipulated in a worst-case manner (affecting the density of the
probability distribution with respect to real time by a factor of at most ϑ), we can just increase
the size of the interval to account for this.

However, what happens if only some of the nodes receive an init signal due to faulty channels
or nodes? If the same holds for some of the subsequent supp signals, it might happen that only
a fraction of the nodes reaches the threshold for switching to state supp → resync, resulting in an
inconsistent reset of flags and timeouts across the system. Until the respective nodes switch to state
none again, they will not support a resynchronization point again, i.e., about R1 time is “lost”.
This issue is the reason for the agreement step and the timeouts (R2, supp j). In order for any node
to switch to state supp→ resync, there must be at least n−2f ≥ f+1 non-faulty nodes supporting
this. Hence, all of these nodes recently switched to a state supp j for some j ∈ V , resetting
(R2, supp j). Until these timeouts expire, f + 1 ∈ Ω(n) non-faulty nodes will ignore init signals
on the respective channels. Since there are O(n2) channels, it is possible to choose R2 ∈ O(nR1)
such that this may happen at most O(n) times in O(n) time. Playing with constants, we can pick
R3 ∈ O(n) maintaining that still a constant fraction of the times are “good” in the sense that R3

expiring at a non-faulty node will result in a good resynchronization point.

3.4 Timeout Constraints

Condition 3.3 summarizes the constraints we require on the timeouts for the core routine and the
resynchronization algorithm to act and interact as intended.
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Condition 3.3 (Timeout Constraints). Define

λ :=

√
25ϑ− 9

25ϑ
∈
(

4

5
, 1

)
, (1)

∆g := (ϑ + 3)T1, ∆s := T2/ϑ − 2T1 − d, δs := 2T1 + 3d, and δ̃s := (ϑ + 2 − 1/ϑ)T1 + 4d. The
timeouts need to satisfy the constraints

T1 ≥ ϑ4d (2)

T2 ≥ ϑmax

{
T1 + ∆g − (4ϑ2 + 16ϑ+ 5)d,

(
3ϑ+ 1− 1

ϑ

)
T1 + T5

}
(3)

T3 ≥ max
{

(ϑ− 1)T2 + ϑ(2T1 + (2ϑ+ 4)d), (2ϑ2 + 3ϑ− 1)T1 − T2 + ϑ(T6 + 5d)
}

(4)

T4 ≥ T3 (5)

T5 ≥ max
{
ϑ(T4 + 7d)− T3 + (ϑ− 1)T2, (ϑ

2 + ϑ− 2)T1 + ϑ(T2 + T4 + 9d)− T6

}
(6)

T6 ≥ ϑ

(
δ̃s −

(
1− 1

ϑ

)
T1 + T2 + 2d

)
> ϑ∆s (7)

T7 ≥ ϑ(T2 + T4 + T5 + ∆s + δ̃s −∆g + d) + T6 − 4d (8)

R1 ≥ ϑmax

{
T7 + (4ϑ+ 8)d,

(
2ϑ+ 4− 3

ϑ

)
T1 + 2T4 + T5 −∆s −∆g + 17d

}
(9)

R2 ≥ 2ϑ(R1 + (ϑ+ 2)T1 + T2/ϑ+ (8ϑ+ 9)d)(n− f)

1− λ (10)

R3 = uniformly distributed random variable on [ϑ(R2 + 3d), ϑ(R2 + 3d) + 8(1− λ)R2] (11)

λ ≤ ∆s −∆g − δs
∆s

. (12)

We need to show for which values of ϑ this system can be solved. Furthermore, we would like
to allow for the largest possible drift of DARTS clocks, which necessitates to maximize the ratio
(T2 +T4)/(ϑ(T2 +T3 +4d)), that is, the minimal gap between pulses provided that the states of the
darts signals are zero divided by the maximal time it takes nodes to observe themselves in state
ready with T3 expired after a pulse (as then they will respond to dartsi switching to one).

Lemma 3.4. Define ϑmax ≈ 1.247 as the positive solution of 2ϑ+1 = ϑ3+ϑ2. Given that ϑ < ϑmax,
Condition 3.3 can be satisfied with T1, . . . , T7, R1 ∈ O(1) and R2 ∈ O(n). The ratio

(T2 + T4)/ϑ

T2 + T3 + 4d

can be made larger than any constant smaller than

ϑ3 + 2ϑ+ 1

2ϑ4 + ϑ3
.

Proof. First, we identify several redundant inequalities in the system. We have that(
2ϑ+ 2− 1

ϑ

)
T1 + T5

(6)
> 3ϑT1 + T2 + T4 − T6

(4,5)
> 7ϑT1

> T1 + ∆g − (4ϑ2 + 16ϑ+ 5)d,
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i.e., the left term in the maximum in Inequality (3) is redundant. The same holds true for the left
terms in the maxima in Inequality (4) and Inequality (6), since

(2ϑ2 + 3ϑ− 1)T1 − T2 + ϑ(T6 + 5d)
(7)
> 3ϑT1 + (ϑ− 1)T2 + 4d

(2)
> (ϑ− 1)T2 + ϑ(2T1 + (2ϑ+ 4)d)

and

ϑ(T4 + 7d)− T3 + (ϑ− 1)T2

(4)
< ϑ(T2 + T4 − T6 + 7d)

< (ϑ2 + ϑ− 2)T1 + ϑ(T2 + T4 + 9d)− T6.

Finally, we can eliminate the right term in the maximum in Inequality (9) from the system, as

T7 + (4ϑ+ 8)d
(8)
> T2 + T4 + T5 + T6 + 2δ̃s −∆g + 13d

(3)
>

(
2ϑ+ 4− 3

ϑ

)
T1 + T4 + 2T5 + T6 −∆g + 17d

(6)
>

(
2ϑ+ 4− 3

ϑ

)
T1 + T2 + 2T4 + T5 −∆g + 17d.

Next, it is not difficult to see that the right hand sides of all inequalities are strictly increasing
in T1 (except for Inequality (12), whose right hand side decreases with T1), implying that w.l.o.g.
we may set T1 := 4ϑd. Similarly, we demand that Inequality (8), Inequality (9), and Inequality (10)
are satisfied with equality, i.e.,

T7 = ϑ(T2 + T4 + T5) + T6 − (4ϑ2 + 4)d

R1 = ϑT7 + (4ϑ2 + 8ϑ)d

R2 =
2ϑ(R1 + T2/ϑ+ (4ϑ2 + 16ϑ+ 9)d)(n− f)

1− λ
R3 = uniformly distributed random variable on [ϑ(R2 + 3d), ϑ(R2 + 3d) + 8(1− λ)R2] .

We set T4 := αT3 for a parameter

α ∈
[
1,

2ϑ+ 1

ϑ3 + ϑ2

)
,

implying that Inequality (5) holds by definition. The remaining simpler system is as follows.

T2 ≥ (8ϑ3 + 8ϑ2 − 4ϑ)d+ ϑT5 (13)

T3 ≥ (8ϑ3 + 12ϑ2 + ϑ)d− T2 + ϑT6 (14)

T5 ≥ (4ϑ3 + 4ϑ2 + ϑ)d+ ϑ(T2 + αT3)− T6 (15)

T6 ≥ (4ϑ2 + 6ϑ− 4)d+ T2 (16)√
25ϑ− 9

25ϑ
≤ T2/ϑ− (4ϑ2 + 28ϑ+ 4)d

T2/ϑ− (8ϑ+ 1)d
.

Note the above equalities do not affect this system and can be resolved iteratively once the other
variables are fixed. We observe that the right hand side of Inequality (13) is increasing in T5, the
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right hand side of Inequality (15) is increasing in T3, and neither T3 nor T5 are present in any
further inequalities. Hence, we rule that Inequality (14) and Inequality (15) shall be satisfied with
equality, i.e.,

T3 = (8ϑ3 + 12ϑ2 + ϑ)d− T2 + ϑT6

T5 = (α(8ϑ4 + 12ϑ3 + ϑ2) + (4ϑ3 + 4ϑ2 + ϑ))d− (ϑα− 1)T2 + (ϑ2α− 1)T6

and arrive at the subsystem

T2 ≥ (α(8ϑ5 + 12ϑ4 + ϑ3) + (4ϑ4 + 12ϑ3 + 9ϑ2 − 4ϑ))d+ (ϑ3α− ϑ)T6

1 + ϑ− ϑ2α
(17)

T6 ≥ (4ϑ2 + 6ϑ− 4)d+ T2

T2 ≥ (4ϑ3 + 20ϑ2 + 3ϑ)d

1−
√

(25ϑ− 9)/(25ϑ)
,

where we used that 1 + ϑ− ϑ2α > 0. Now we can see that Inequality (17) is also increasing in T6,
set

T6 := (4ϑ2 + 6ϑ− 4)d+ T2,

and obtain

T2 ≥ (α(12ϑ5 + 18ϑ4 − 3ϑ3) + (4ϑ4 + 8ϑ3 + 3ϑ2))d

1 + 2ϑ− (ϑ3 + ϑ2)α
(18)

T2 ≥ 25(1 +
√

(25ϑ− 9)/(25ϑ))(4ϑ4 + 20ϑ3 + 3ϑ2)d

9
, (19)

exploiting that 1 + 2ϑ− (ϑ3 + ϑ2)α > 0.
Since α and thus ϑ are constantly bounded (and we treat d as constant as well), we have a

feasible solution for T2 ∈ O(1) (considering asymptotic with respect to n). Resolving the equalities
we derived for the other variables, we see that T1, . . . , T7, R1 ∈ O(1) and R2 ∈ O(n) as claimed.

It remains to determine the maximal ratio (T2 + T4)/(ϑ(T2 + T3 + 4d)) = (T2 + αT3)/(ϑ(T2 +
T3 + 4d)) we can ensure. Obviously, for any value of α, fixing either T2 or T3 implies that we want
to minimize T2 or maximize T3, respectively. Have a look at Inequalities (13)–(16) again. The
solution we constructed minimized T3 and subsequently T2, parametrized by feasible values of α.
Increase now T3 by x ∈ R+ in Inequality (14). Consequently, we may increase T6 in Inequality (16)
by x/ϑ compared to our previous solution (where we minimized all inequalities). Hence, we need
to increase T5 by (ϑα− 1/ϑ)x according to Inequality (15), and finally T2 by ϑ(ϑα− 1/ϑ)x. Thus,
for any feasible α and any ε > 0, we can achieve that T2 ≤ (ϑ2α− 1 + ε)T3 if we just choose x large
enough. We conclude that we can get arbitrarily close to the ratio

(α+ (ϑ2α− 1))T3

ϑ(1 + (ϑ2α− 1))T3
=
ϑ2α+ α− 1

ϑ3α
.

Inserting the supremum of admissible values for α, this expression becomes

(2ϑ+ 1)(ϑ2 + 1)− (ϑ3 + ϑ2)

ϑ3(2ϑ+ 1)
=
ϑ3 + 2ϑ+ 1

2ϑ4 + ϑ3
.

This shows the last claim of the lemma, concluding the proof.

20



4 Analysis

In this section we derive skew bounds Σ, as well as accuracy bounds T−, T+, such that the presented
protocol is a (W,E)-stabilizing pulse synchronization protocol, for proper choices of the set of nodes
W and the set of channels E, with skew Σ and accuracy bounds T−, T+ that stabilizes within time
T (k) ∈ O(kn) with probability 1− 1/2k(n−f), for any k ∈ N.

To start our analysis, we need to define the basic requirements for stabilization. Essentially, we
need that a majority of nodes is non-faulty and the channels between them are correct. However,
the first part of the stabilization process is simply that nodes “forget” about past events that are
captured by their timeouts. Therefore, we demand that these nodes indeed have been non-faulty
for a time period that is sufficiently large to ensure that all timeouts have been reset at least once
after the considered set of nodes became non-faulty.

Definition 4.1 (Coherent States). The subset of nodes W ⊆ V is called coherent during the time
interval [t−, t+], iff during [t− − (ϑ(R2 + 3d) + 8(1− λ)R2)− d, t+] all nodes i ∈W are non-faulty,
and all channels Si,j, i, j ∈W , are correct.

We will show that if a coherent set of at least n− f nodes fires a pulse, i.e., switches to accept
in a tight synchrony, this set will generate pulses deterministically and with controlled frequency,
as long the set remains coherent. This motivates the following definitions.

Definition 4.2 (Stabilization Points). We call t a W -stabilization point (quasi-stabilization point)
iff all nodes i ∈W switch to accept during [t, t+ 2d) ([t, t+ 3d)).

Throughout this section, we assume the set of coherent nodes W with |W | ≥ n−f to
be fixed and consider all nodes in and channels originating from V \W as (potentially)
faulty. As all our statements refer to nodes in W , we will typically omit the word “non-faulty”
when referring to the behaviour or states of nodes in W , and “all nodes” is short for “all nodes
in W”. Note, however, that we will still clearly distinguish between channels originating at faulty
and non-faulty nodes, respectively, to nodes in W .

As a first step, we observe that at times when W is coherent, indeed all nodes reset their
timeouts, basing the respective state transition on proper perception of nodes in W .

Lemma 4.3. If the system is coherent during the time interval [t−, t+], any (randomized) timeout
(T, s) of any node i ∈ W expiring at a time t ∈ [t−, t+] has been reset at least once since time
t− − (ϑ(R2 + 3d) + 8(1− λ)R2). If t′ denotes the time when such a reset occurred, for any j ∈ W
it holds that Si,j(t

′) = Sj(τ
−1
j,i (t′)), i.e., at time t′, i observes j in a state j attained when it was

non-faulty.

Proof. According to Condition 3.3, the largest possible value of any (randomized) timeout is ϑ(R2+
3d) + 8(1− λ)R2. Hence, any timeout that is in state 1 at a time smaller than t− − (ϑ(R2 + 3d) +
8(1 − λ)R2) expires before time t1 or is reset at least once. As by the definition of coherency all
nodes in W are non-faulty and all channels between such nodes are correct during [t− − (ϑ(R2 +
3d) + 8(1− λ)R2)− d, t+], this implies the statement of the lemma.

Phrased informally, any corruption of timeout and channel states eventually ceases, as correct
timeouts expire and correct links remember no events that lie d or more time in the past. Proper
cleaning of the memory flags is more complicated and will be explained further down the road.
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Throughout this section, we will assume for the sake of simplicity that the system is
coherent at all times and use this lemma implicitly, e.g. we will always assume that nodes from
W will observe all other nodes from W in states that they indeed had less than d time ago, expiring
of randomized timeouts at non-faulty nodes cannot be predicted accurately, etc. We will discuss
more general settings in Section 5.

We proceed by showing that once all nodes in W switch to accept in a short period of time,
i.e., a W -quasi-stabilization point is reached, the algorithm guarantees that synchronized pulses
are generated deterministically with a frequency that is bounded both from above and below.

Theorem 4.4. Suppose t is a W -quasi-stabilization point. Then

(i) all nodes in W switch to accept exactly once within [t, t+ 3d), and do not leave accept until
t+ 4d, and

(ii) there will be a W -stabilization point t′ ∈ (t+ (T2 + T3)/ϑ, t+ T2 + T4 + 5d) satisfying that no
node in W switches to accept in the time interval [t+ 3d, t′) and that

(iii) each node i’s, i ∈W , core state machine (Figure 1) is metastability-free during [t+4d, t′+4d).

Proof. Proof of (i): Due to Inequality (2), a node does not leave the state accept earlier than
T1/ϑ ≥ 4d time after switching to it. Thus, no node can switch to accept twice during [t, t+3d). By
definition of a quasi-stabilization point, every node does switch to accept in the interval [t, t+3d) ⊂
[t, t+ T1/ϑ). This proves Statement (i).

Proof of (ii): For each i ∈W , let ti ∈ [t, t+ 3d) be the time when i switches to accept . By (i) ti
is well-defined. Further let t′i be the infimum of times in (ti,∞) when i switches to recover , join,
or propose.16 In the following, denote by i ∈W a node with minimal t′i.

We will show that all nodes switch to propose via states sleep, sleep → waking, waking , and
ready in the presented order. By (i) nodes do not leave accept before t+ 4d. Thus at time t+ 4d,
each node in W is in state accept and observes each other node in W in accept . Hence, each node
in W memorizes each other node in W in accept at time t + 4d. For each node j ∈ W , let tj,s be
the time node j’s timeout T1 expires first after tj . Then tj,s ∈ (tj + T1/ϑ, tj + T1 + d).17 Since
|W | ≥ n− f , each node j switches to state sleep at time tj,s. Hence, by time t+ T1 + 4d, no node
will be observed in state accept anymore (until the time when it switches to accept again).

When a node j ∈ W switches to state waking at the minimal time tw larger than tj , it does
not do so earlier than at time t+ T1/ϑ+ (1 + 1/ϑ)T1 = t+ (1 + 2/ϑ)T1 > t+ T1 + 5d. This implies
that all nodes in W have already left accept at least d time ago, since they switched to it at their
respective times tj < t + T1 + 4d. Moreover, they cannot switch to accept again until t′i as it is
minimal and nodes need to switch to propose before switching to accept . Hence, nodes in W are
not observed in state accept during (t + T1 + 5d, t′i], in particular not by node j. Furthermore,
nodes in W are not observed in state recover during (tw − d, t′i]. As it resets its accept and recover
flags upon switching to waking , j will hence neither switch from waking to recover nor from trust
to suspect during (tw, t

′
i], and thus also not from ready to recover .

Now consider node i. By the previous observation, it will not switch from waking to recover ,
but to ready , following the basic cycle. Consequently, it must wait for timeout T2 to expire, i.e.,

16Note that we follow the convention that inf ∅ = ∞ if the infimum is taken with respect to a (from above)
unbounded subset of R+

0 .
17The upper bound comprises an additive term of d since T1 is reset at some time from (tj , tj + d).
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cannot switch to ready earlier than at time t + T2/ϑ. As nodes in W clear their join flags upon
switching to state ready , by definition of t′i node i cannot switch from ready to join, but has to
switch to propose. Again, by definition of i, it cannot do so before timeouts T3 or T4 expire, i.e.,
before time

t+
T2

ϑ
+

min{T3, T4}
ϑ

(5)
= t+

T2 + T3

ϑ

(4)
> t+ T2 + 5d. (20)

All other nodes in W will switch to waking , and for the first time after tj , observe themselves
in state waking at a time within (t+T1 + 4d, t+T1(2 +ϑ) + 7d). Recall that unless they memorize
at least f + 1 nodes in accept or recover while being in state waking , they will all switch to state
ready by time

max{t+ T2 + 4d, t+ (ϑ+ 2)T1 + 7d} (3)
= t+ T2 + 4d. (21)

As we just showed that t′i > t+T2 + 5d, this implies that at time t+T2 + 5d all nodes are observed
in state ready , and none of them leaves before time t′i.

Now choose t′ to be the infimum of times from (t+ (T2 + T3)/ϑ, t+ T2 + T4 + 4d] when a node
in W switches to state accept .18 Because of Inequality (20), t′ is the first time any node j ∈ W
may switch to accept again after its respective time tj . We will next show that no node j ∈ W
can switch to recover within [tj , t

′ + 2d]. Since at time t′i node j does not memorize other nodes
from W in state accept , it will also not do so during [t′i, t

′]. Hence, it cannot switch from ready to
recover during [t′i, t

′ + 2d] since it cannot be in state suspect during [t′i, t
′]. By Inequality (20), j

cannot switch to propose within [tj , t + (T2 + T3)/ϑ), and thus its timeout T5 cannot expire until
time

t+
T2 + T3 + T5

ϑ

(6)

≥ t+ T2 + T4 + 7d ≥ t′ + 3d, (22)

making it impossible for j to switch from propose to recover at a time within [tj , t
′ + 3d]. What is

more, a node from W that switches to accept must stay there for at least T1/ϑ > 3d time. Thus,
by definition of t′, no node j ∈ W can switch from accept to recover at a time within [tj , t

′ + 3d].
Hence, no node j ∈W can switch to state recover after tj , but earlier than time t′ + 2d. As nodes
reset their join flags upon switching to state ready , it follows that no node in W can switch to
other states than propose or accept during [t+ T2 + 4d, t′ + 2d]. In particular, no node in W resets
its propose flags during [t+ T2 + 5d, t′ + 2d] ⊃ [t′i, t

′ + 2d].
If at time t′ a node in W switches to state accept , n−2f ≥ f+1 of its propose flags corresponding

to nodes in W are true, i.e., in state 1. As the node reset its propose flags at the most recent time
when it switched to ready and no nodes from W have been observed in propose between this time
and t′i, it holds that f + 1 nodes in W switched to state propose during [t′i, t

′). Since we established
that no node resets its propose flags during [t′i, t

′+ 2d], it follows that all nodes are in state propose
by time t′ + d. Consequently, all nodes in W will observe all nodes in W in state propose before
time t′+ 2d and switch to accept , i.e., t′ ∈ (t+ (T2 +T3)/ϑ, t+T2 +T4 + 4d) is a stabilization point.
Statement (ii) follows.

On the other hand, if at time t′ no node in W switches to state accept , it follows that t′ =
t + T2 + T4 + 4d. As all nodes observe themselves in state ready by time t + T2 + 5d, they switch
to propose before time t + T2 + T4 + 5d = t′ + d because T4 expired. By the same reasoning as in
the previous case, they switch to accept before time t′ + 2d, i.e., Statement (ii) holds as well.

18Note that since we take the infimum on (t+ (T2 + T3)/ϑ, t+ T2 + T4 + 4d], we have that t′ ≤ t+ T2 + T4 + 4d.
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Proof of (iii): We have shown that within [tj , t
′ + 2d], any node j ∈ W switches to states

along the basic cycle only. Moreover, such nodes switch to accept at some time in [t′, t′ + 2d].
Since T1 ≥ 4ϑd, this implies that no node observing itself in accept after time t′ will leave this
state before time t′ + 4d. To show the correctness of Statement (iii), it is thus sufficient to prove
that, whenever j switches from state s of the basic cycle to s′ of the basic cycle during time
[tj + d, t′ + 2d] ⊃ [t+ 4d, t′ + 2d], the transition from s to join or recover is disabled from the time
it switches to s′ until it observes itself in this state. We consider transitions tr(accept, recover),
tr(waking, recover), tr(ready, recover), tr(ready, join), and tr(propose, recover) one after the other:

1. tr(accept, recover): We showed that node j’s tr(accept, sleep) is satisfied before time t+ 4d ≤
t+ T1/ϑ, i.e., before tr(accept, recover) can hold, and no node resets its accept flags less than
d time after switching to state sleep. When j switches to state accept again at or after time
t′, T1 will not expire earlier than time t′ + 4d.

2. tr(waking, recover): As part of the reasoning in (ii), we derived that tr(waking, recover) does
not hold at nodes from W observing themselves in state waking .

3. tr(ready, recover) and tr(ready, join): Similarly, we proved that at no node in W , condition
tr(ready, recover) or tr(ready, join) can hold during (t+ (T2 +T3)/ϑ, t′+ 2d), and nodes in W
are in state ready during (t+ (T2 + T3)/ϑ, t′ + d) only.

4. tr(propose, recover): Finally, the additional slack of d in Inequality (22) ensures that T5 does
not expire at any node in W switching to state accept during (t′, t′ + 2d) earlier than time
t′ + 3d.

Since [tj , t
′ + 4d) ⊃ [t+ 3d, t′ + 4d), Statement (iii) follows.

Inductive application of Theorem 4.4 shows that by construction of our algorithm, nodes in W
provably do not suffer from metastability upsets once a W -quasi-stabilization point is reached, as
long as all nodes in W remain non-faulty and the channels connecting them correct. Unfortunately,
it can be shown that it is impossible to ensure this property during the stabilization period, thus
rendering a formal treatment infeasible. This is not a peculiarity of our system model, but a threat
to any model that allows for the possibility of metastable upsets as encountered in physical chip
designs. However, it was shown that, by proper chip design, the probability of metastable upsets
can be made arbitrarily small [13]. In the remainder of this work, we will therefore assume
that all non-faulty nodes are metastability-free in all executions.

The next lemma reveals a very basic property of the main algorithm that is satisfied if no nodes
may switch to state join in a given period of time. It states that in order for any non-faulty node to
switch to state sleep, there need to be f + 1 non-faulty nodes supporting this by switching to state
accept . Subsequently, these nodes cannot do so again for a certain time window. In particular, this
implies that during the respective time window no node may switch to sleep.

Lemma 4.5. Assume that at time ts, some node from W switches to sleep and no node from W
is in state join during [ts−T1− d, t+ ]. Then there is a subset A ⊆W of at least n− 2f nodes such
that

(i) each node from A has been in state accept at some time in the interval (ts − T1 − d, ts) and
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(ii) no node from A is in state propose or switches to state accept during the time interval(
ts,min

{
ts + ∆s, t

+
})
.

Proof. In order to switch to sleep at time ts, a node must have observed n − 2f non-faulty nodes
in state accept at times from (ts − T1, ts], since it resets its accept flags at the time ta ≥ ts − T1

(that is minimal with this property) when it switched to state accept . Each of these nodes must
have been in state accept at some time from (ts−T1− d, ts), showing the existence of a set A ⊆W
satisfying Statement (i).

We will next prove Statement (ii). Consider a node i ∈ A. In order to switch to propose or
again to accept , i must switch to join first or wait for T2 to expire after switching to state accept
some time after ts − 2T1 − d. However, by assumption the first option is impossible until time t+,
since no nodes are in state join during [ts − T1 − d, t+]. Therefore, j will not be in state propose
or switch to state accept again until ts − 2T1 + T2/ϑ− d = ts + ∆s or t+, respectively, whatever is
smaller. This proves Statement (ii).

Granted that nodes are not in state join, this implies that the time windows during which nodes
may switch to sleep and sleep→ waking, respectively, are well-separated.

Corollary 4.6. Assume that during [t− − T1 − d, t+] no node from W is in state join, where
t+ − t− ≤ ∆s. Then

(i) any time interval [ta, tb] ⊆ [t−, t+] of minimum length containing all switches of nodes in W
from accept to sleep during [t−, t+] has length at most 2T1 + 3d, and

(ii) granted that no node from W switches to state sleep during (t− − (ϑ + 1)T1 − d, t−), any
time interval [ta, tb] ⊆ [t−, t+ + (1 + 1/ϑ)T1] of minimum length containing all times in
[t−, t+ + (1 + 1/ϑ)T1] when a node from W switches to sleep→ waking has length at most δ̃s.

Proof. Consider Statement (i) first. If there is no node from W that switches from accept to sleep
during [t−, t+], the statement is trivially satisfied.

Otherwise, choose any such interval [ta, tb]. Since [ta, tb] 6= ∅ is minimal, both at time ta and tb
some nodes from W switch to sleep. Assume by means of contradiction that tb − ta > 2T1 + 3d.
Due to the constraints on t− and t+, we have that tb ≤ ta+ ∆s. Moreover, during [ta−T1−d, tb] ⊆
[t−−T1−d, t+] no node from W is in state join. Thus, we can apply Lemma 4.5 to ta and see that
at least n− 2f ≥ f + 1 nodes from W do not switch to accept in the time interval

(ta, ta + ∆s) ⊃ (tb − (2T1 + 3d), tb].

As nodes from W leave state accept as soon as T1 expires, these nodes are not in state accept during
[tb − (T1 + 2d), tb], implying that they are not observed in this state during [tb − (T1 + d), tb]. It
follows that no node in W can observe more than n− f − 1 different nodes in state accept during
[tb − (T1 + d), tb]. As nodes from W clear their accept flags upon switching to accept and leave
state accept after less than T1 + d time, we conclude that no node from W switches to state sleep
at time tb. This is a contradiction, implying that the assumption that tb − ta > 2T1 + 3d must be
wrong and therefore Statement (i) must be true.

To obtain Statement (ii), observe first that any node from W switching to state sleep at some
time t ≤ t− − (ϑ + 1)T1 − d switches to state sleep → waking before time t−. Subsequently, it
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needs to switch to state sleep again in order to be in state sleep → waking at or later than time
t−. On the other hand, every node that switches to sleep after time t+ will not switch to sleep→
waking again before time t+ + (1 + 1/ϑ)T1. Hence, any node switching to state sleep → waking
during the considered interval must switch to sleep during [t−, t+]. Applying Statement (i) to
[t−, t+] yields that nodes from W can only switch to sleep within a time interval of length at most
2T1 + 3d. Considering the fastest and slowest possible transitions from sleep to sleep→ waking we
obtain that nodes from W can switch to sleep → waking within a time interval of length at most
2T1 + 3d+ (ϑ+ 1)T1 + d− (1 + 1/ϑ)T1 = δ̃s. Statement (ii) follows.

We are now ready to advance to proving that good resynchronization points are likely to occur
within bounded time, no matter what the strategy of the Byzantine faulty nodes and channels is.
To this end, we first establish that in any execution, at most of the times a node switching to state
init will result in a good resynchronization point. This is formalized by the following definition.

Definition 4.7 (Good Times). Given an execution E of the system, denote by E ′ any execution
satisfying that E|′[0,t) = E|[0,t), where at time t a node i ∈ W switches to state init in E ′. Time

t is good in E with respect to W provided that for any such E ′ it holds that t is a good W -
resynchronization point in E ′.

The previous statement thus boils down to showing that in any execution, the majority of the
times is good.

Lemma 4.8. Given any execution E and any time interval [t−, t+], the volume of good times in E
during [t−, t+] is at least

λ2(t+ − t−)− 11(1− λ)R2

10ϑ
.

Proof. Assume w.l.o.g. that |W | = n− f (otherwise consider a subset of size n− f) and abbreviate

N :=

(
ϑ(t+ − t−)

R2
+

11

10

)
(n− f)

≥
⌈
ϑ(t+ − t−) +R2/10

R2

⌉
(n− f)

(10)

≥
⌈
ϑ(t+ − t−) + ϑ(R1 + (ϑ+ 2)T1 + T2/ϑ+ (8ϑ+ 9)d)/(5(1− λ))

R2

⌉
(n− f)

(1)

≥
⌈
ϑ(t+ − t− + (R1 + (ϑ+ 2)T1 + T2/ϑ+ (8ϑ+ 9)d))

R2

⌉
(n− f)

(3)

≥
⌈
ϑ(t+ − t− +R1 + T1 + 4d+ ∆g)

R2

⌉
(n− f).

The proof is in two steps: First we construct a measurable subset of [t−, t+] that comprises
good times only. In a second step a lower bound on the volume of this set is derived.

Constructing the set: Consider an arbitrary time t ∈ [t−, t+], and assume a node i ∈W switches
to state init at time t. When it does so, its timeout R3 expires. By Lemma 4.3 all timeouts of node
i that expire at times within [t−, t+], have been reset at least once until time t−. Let tE3 be the
maximum time not later than t when R3 was reset. Due to the distribution of R3 we know that

tE3

(11)

≤ t− (R2 + 3d).
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Thus, node i is not in state init during time [t−(R2 +2d), t), and no node j ∈W observes i in state
init during time [t− (R2 + d), t). Thereby any node j’s, j ∈W , timeout (R2, supp i) corresponding
to node i is expired at time t.

We claim that the condition that no node from W is in or observed in one of the states resync
or supp → resync at time t is sufficient for t being a W -resynchronization point. To see this,
assume that the condition is satisfied. Thus all nodes j ∈ W are in states none or supp k for
some k ∈ {1, . . . , n} at time t. By the algorithm, they all will switch to state supp i or state
supp → resync during (t, t + d). It might happen that they subsequently switch to another state
supp k′ for some k′ ∈ V , but all of them will be in one of the states with signal supp during
(t + d, t + 2d]. Consequently, all nodes will observe at least n − f nodes in state supp during
(t′, t + 2d) for some time t′ < t + 2d. Hence, those nodes in W that were still in state supp i (or
supp k′ for some k′) at time t + d switch to state supp → resync before time t + 2d, i.e., t is a
W -resynchronization point.

We proceed by analyzing under which conditions t is a good W -resynchronization point. Recall
that in order for t to be good, it has to hold that no node from W switches to state sleep during
(t−∆g, t) or is in state join during (t− T1 − d, t+ 4d).

We begin by characterizing subsets of good times within (tr, t
′
r) ⊂ [t−, t+], where tr and t′r are

times such that during (tr, t
′
r) no node from W switches to state supp→ resync. Due to timeout

R1

(9)

≥ (4ϑ+ 2)d,

we know that during (tr + R1 + 2d, t′r), no node from W will be in, or be observed in, states
supp → resync or resync. Thus, if a node from W switches to init at a time within (tr + R1 +
2d, t′r), it is a W -resynchronization point. Further, all nodes in W will be in state dormant during
(tr + R1 + 2d, t′r + 4d). Thus all nodes in W will be observed to be in state dormant during
(tr + R1 + 3d, t′r + 4d), implying that they are not in state join during (tr + R1 + 3d, t′r + 4d). In
particular, any time t ∈ (tr + R1 + T1 + 4d, t′r) satisfies that no node in W is in state join during
(t− T1 − d, t+ 4d).

Further define ta to be the infimum of times from (tr + R1 + T1 + 4d, t′r] when a node from
W switches to state sleep. By Corollary 4.6, no node from W switches to state sleep during
(ta + δs,min{ta + ∆s, t

′
r}). Hence, if ta < ∞, all times in both (tr + R1 + T1 + 4d + ∆g, ta) and

(ta + δs + ∆g,min{ta + ∆s, t
′
r}) are good.

In case ta < t′r −∆s we can repeat the reasoning, defining that t′a is the infimum of times from
[ta + ∆s, t

′
r] when a node switches to state sleep. By analogous arguments as before we see that all

times in the sets [ta + ∆s, t
′
a) and (t′a + δs + ∆g,min{t′a + ∆s, t

′
r}) are good.

By induction on the times ta, t
′
a, . . . , t

k
a (halting once tka ≥ t′r − ∆s), we infer that the total

volume of times from (tr, t
′
r) as well as from (tr +R1 + T1 + 4d+ ∆g, t

′
r) that is good is at least⌊

t′r − (tr +R1 + T1 + 4d+ ∆g)

∆s

⌋
(∆s −∆g − δs) >

t′r − (tr +R1 + T1 + 4d+ ∆g + ∆s)

∆s
(∆s −∆g − δs) . (23)

In other words, up to a constant loss in each interval (tr, t
′
r), a constant fraction of the times

are good.
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Volume of the set: In order to infer a lower bound on the volume of good times during [t−, t+],
we subtract from [t−, t+] all intervals [tr, tr + R1 + T1 + 4d + ∆g], where a node from W switches
to supp→ resync at a time tr within [t− − (R1 + T1 + 4d+ ∆g), t

+]. Formally define

Ḡ =
⋃

tr∈[t−−(R1+T1+4d+∆g),t+]
∃i∈W : i switches to supp→resync at tr

[tr, tr +R1 + T1 + 4d+ ∆g].

What remains is the set [t−, t+] \ Ḡ, that has as subset the union of intervals (tr +R1 + T1 + 4d+
∆g, t

′
r) ⊆ [t−, t+], where tr and t′r are times at which a node from W switches to supp → resync

and no node from W switches to supp→ resync within (tr, t
′
r). Note that for each such interval we

already know it contains a certain amount of good times because of Inequality (23). In order to
lower bound the good times in [t−, t+], it is thus feasible to lower bound the volume and number
of connected components (i.e., maximal intervals) of any subset of [t−, t+] \ Ḡ.

Observe that any node in W does not switch to state init more than⌈
t+ − t− +R1 + T1 + 4d+ ∆g

R3

⌉
(11)

≤
⌈
t+ − t− +R1 + T1 + 4d+ ∆g

R2 + d

⌉
≤ N

n− f (24)

times during [t− − (R1 + T1 + 4d+ ∆g), t
+].

Now consider the case that a node in W switches to state supp→ resync at a time t satisfying
that no node in W switched to state init during (t− (8ϑ+ 6)d, t). This necessitates that this node
observes n − f of its channels in state supp during (t − (2ϑ + 1)d, t), at least n − 2f ≥ f + 1 of
which originate from nodes in W . As no node from W switched to init during (t − (8ϑ + 6)d, t),
every node that has not observed a node i ∈ V \W in state init at a time from (t − (8ϑ + 4)d, t)
when (R2, supp i) is expired must be in a state whose signal is none during (t − (2ϑ + 2)d, t) due
to timeouts. Therefore its outgoing channels are not in state supp during (t − (2ϑ + 1)d, t). By
means of contradiction, it thus follows that for each node j of the at least f + 1 nodes (which are
all from W ), there exists a node i ∈ V \W such that node j resets timeout (R2, supp i) during the
time interval (t− (8ϑ+ 4)d, t).

The same reasoning applies to any time t′ 6∈ (t − (8ϑ + 6)d, t) satisfying that some node in
W switches to state supp → resync at time t′ and no node in W switched to state init during
(t′− (8ϑ+ 6)d, t′). Note that the set of the respective at least f + 1 events (corresponding to the at
least f + 1 nodes from W ) where timeouts (R2, supp i) with i ∈ V \W are reset and the set of the
events corresponding to t are disjoint. However, the total number of events where such a timeout
can be reset during [t− − (R1 + T1 + 4d+ ∆g), t

+] is upper bounded by

|V \W ||W |
⌈
t+ − t− +R1 + T1 + 4d+ ∆g

R2/ϑ

⌉
< (f + 1)N, (25)

i.e., the total number of channels from nodes not in W (|V \W | many) to nodes in W multiplied
by the number of times the associated timeout can expire at the receiving node in W during
[t− − (R1 + T1 + 4d+ ∆g), t

+].

With the help of inequalities (24) and (25), we can show that Ḡ can be covered by less than
2N intervals of size (R1 + T1 + 4d + ∆g) + (8ϑ + 6)d each. By Inequality (24), there are no more
than N times t ∈ [t− − (R1 + T1 + 4d + ∆g), t

+] when a non-faulty node switches to init and
thus may cause others to switch to state supp → resync at times in [t, t + (8ϑ + 6)d]. Similarly,
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Inequality (25) shows that the channels from V \W to W may cause at most N − 1 such times
t ∈ [t−− (R1 +T1 + 4d+ ∆g), t

+], since any such time requires the existence of at least f + 1 events
where timeouts (R2, supp i), i ∈ V \W , are reset at nodes in W , and the respective events are
disjoint. Thus, all times tr ∈ [t− − (R1 + T1 + 4d + ∆g), t

+] when some node i ∈ W switches to
supp→ resync are covered by at most 2N − 1 intervals of length (8ϑ+ 6)d.

This results in a cover Ḡ′ ⊇ Ḡ consisting of at most 2N − 1 intervals that satisfies that

vol
(
Ḡ
)
≤ vol

(
Ḡ′
)
< 2N(R1 + T1 + ∆g + (8ϑ+ 10)d).

Summing over the at most 2N intervals that remain in [t−, t+] \ Ḡ′ and using Inequality (23),
we conclude that the volume of good times during [t−, t+] is at least

t+ − t− − 2N(R1 + T1 + (8ϑ+ 10)d+ ∆g + ∆s)

∆s
(∆s −∆g − δs)

=
t+ − t− − 2N(R1 + (ϑ+ 2)T1 + T2/ϑ+ (8ϑ+ 9)d)

∆s
(∆s −∆g − δs)

(12)

≥ λ

(
t+ − t− − 2

(
ϑ(t+ − t−)

R2
+

11

10

)
(n− f)(R1 + (ϑ+ 2)T1 + T2/ϑ+ (8ϑ+ 9)d)

)
= λ

(
1− 2ϑ(R1 + (ϑ+ 2)T1 + T2/ϑ+ (8ϑ+ 9)d)(n− f)

R2

)
(t+ − t−)

−11λ(R1 + (ϑ+ 2)T1 + T2/ϑ+ (8ϑ+ 9)d)(n− f)

5
(10)

≥ λ2(t+ − t−)− 11(1− λ)R2

10ϑ
,

as claimed. The lemma follows.

We are now in the position to prove our second main theorem, which states that a good resyn-
chronization point occurs within O(R2) time with overwhelming probability.

Theorem 4.9. Denote by Ê3 := ϑ(R2 + 3d) + 8(1 − λ)R2 + d the maximal value the distribution
R3 can attain plus the at most d time until R3 is reset whenever it expires. For any k ∈ N and
any time t, with probability at least 1− (1/2)k(n−f) there will be a good W -resynchronization point
during [t, t+ (k + 1)Ê3].

Proof. Assume w.l.o.g. that |W | = n−f (otherwise consider a subset of size n−f). Fix some node
i ∈ W and denote by t0 the infimum of times from [t, t+ (k + 1)Ê3] when node i switches to init .
We have that t0 < t + Ê3. By induction, it follows that node i will switch to state init at least
another k times during [t, t+ (k + 1)Ê3] at the times t1 < t2 < . . . < tk. We claim that each such
time tj , j ∈ {1, .., k}, has an independently by 1/2 lower bounded probability of being good and
therefore being a good W -resynchronization point.

We prove this by induction on j: As induction hypothesis, suppose for some j ∈ {1, . . . , k−1}, we
showed the statement for j′ ∈ {1, . . . , j−1} and the execution of the system is fixed until time tj−1,
i.e., E|[0,tj−1] is given. Now consider the set of executions that are extensions of E|[0,tj−1] and have
the same clock functions as E . For each such execution E ′ it holds that E ′|[0,tj−1] = E|[0,tj−1], and all

nodes’ clocks make progress in E ′ as in E . Clearly each such E ′ has its own time tj < t+ (j + 1)Ê3
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when R3 expires next after tj−1 at node i, and i switches to init . We next characterize the
distribution of the times tj .

As the rate of the clock driving node i’s R3 is between 1 and ϑ, tj > tj−1 is within an interval,
call it [t−, t+], of size at most

t+ − t− ≤ 8(1− λ)R2,

regardless of the progress that i’s clock C makes in any execution E ′.
Certainly we can apply Lemma 4.8 also to each of the E ′, showing that the volume of times

from [t−, t+] that are not good in E ′ is at most

(1− λ2)(t+ − t−) +
11(1− λ)R2

10ϑ
.

Since clock C can make progress not faster than at rate ϑ and the probability density of R3 is
constantly 1/(8(1−λ)R2) (with respect to the clock function C), we obtain that the probability of
tj not being a good time is upper bounded by

(1− λ2)(t+ − t−) + 11(1− λ)R2/(10ϑ)

8(1− λ)R2/ϑ
≤ ϑ(1− λ2) +

11

80

(1)
< ϑ

9

25ϑ
+

7

50
=

1

2
.

Here we use that the time when R3 expires is independent of E ′|[0,tj−1].
We complete our reasoning as follows. Given E|[0,tj−1], we permit an adversary to choose E ′,

including random bits of all nodes and full knowledge of the future, with the exception that we
deny it control or knowledge of the time tj when R3 expires at node i, i.e., E ′ is an imaginary
execution in which R3 does not expire at i at any time greater than tj−1. Note that for the good
W -resynchronisation points we considered, the choice of E ′ does not affect the probability that
t1, . . . , tj−1 are good W -resynchronization points: The conditions referring to times greater than a
W -resynchronisation point t, i.e., that all nodes in W switch to state supp→ resync during (t, t+2d)
and no node in W shall be in state join during (t− T1− d, t+ 4d), are already fully determined by
the history of the system until time t. As we fixed E ′, the behaviour of the clock driving R3 is fixed
as well. Next, we determine the time tj when R3 expires according to its distribution, given the
behaviour of node i’s clock. The above reasoning shows that time tj is good in E ′ with probability
at least 1/2, independently of E ′|[0,tj−1] = E|[0,tj−1]. We define that E|[0,tj) = E ′|[0,tj) and in E node
i switches to state init (because R3 expired). As — conditional to the clock driving R3 and tj−1

being specified — tj is independent of E|[0,tj), E is indistinguishable from E ′ until time tj . Because
tj is good with probability at least 1/2 independently of E|′[0,tj−1] = E|[0,tj−1], so it is in E . Hence,

in E tj is a good W -resynchronization point with probability 1/2, independently of E|[0,tj−1]. Since
E ′ was chosen in an adversarial manner, this completes the induction step.

In summary, we showed that for any node in W and any execution (in which we do not
manipulate the times when R3 expires at the respective node), starting from the second time
during [t, t+(k+1)Ê3] when R3 expires at the respective node, there is a probability of at least 1/2
that the respective time is a good W -resynchronization point. Since we assumed that |W | = n− f
and there are at least k such times for each node in W , this implies that having no good W -
resynchronization point during [t, t + (k + 1)Ê3] is as least as unlikely as k(n − f) unbiased and
independent coin flips all showing tail, i.e., (1/2)k(n−f). This concludes the proof.

Having established that eventually a good W -resynchronization point tg will occur, we turn to
proving the convergence of the main routine. We start with a few helper statements wrapping up
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that a good resynchronization point guarantees proper reset of flags and timeouts involved in the
stabilization process of the main routine.

Lemma 4.10. Suppose tg is a good W -resynchronization point. Then

(i) each node i ∈W switches to passive at a time ti ∈ (tg + 4d, tg + (4ϑ+ 3)d) and observes itself
in state dormant during [tg + 4d, τi,i(ti)),

(ii) Memi,j,join |[τi,i(ti),tjoin] ≡ 0 for all i, j ∈ W , where tjoin ≥ tg + 4d is the infimum of all times
greater than tg − T1 − d when a node from W switches to join,

(iii) Memi,j,sleep→waking |[τi,i(ti),ts] ≡ 0 for all i, j ∈ W , where ts ≥ tg + (1 + 1/ϑ)T1 is the infimum
of all times greater or equal to tg when a node from W switches to sleep→ waking,

(iv) no node from W resets its sleep→ waking flags during [tg + (1 + 1/ϑ)T1, tg +R1/ϑ], and

(v) no node from W resets its join flags due to switching to passive during [tg + (1 + 1/ϑ)T1, tg +
R1/ϑ].

Proof. All nodes in W switch to state supp → resync during (tg, tg + 2d) and switch to state
resync when their timeout of ϑ4d expires, which does not happen until time tg + 4d. Once this
timeout expired, they switch to state passive as soon as they observe themselves in state resync,
i.e., by time tg + (4ϑ+ 3d). Hence, every node i ∈W does not observe itself in state resync within
[tg + 3d, τi,i(ti)), and therefore is in state dormant during [tg + 3d, τi,i(ti)]. This implies that it
observes itself in state dormant during [tg + 4d, τi,i(ti)), completing the proof of Statement (i).

Moreover, from the definition of a good W -resynchronization point we have that no nodes from
W are in state join at times in [tg − T1 − d, tjoin). Statement (ii) follows, as every node from W
resets its join flags upon switching to state passive at time ti.

Regarding Statement (iii), observe first that no nodes from W are in state sleep→ waking during
(tg − d, tg + (1 + 1/ϑ)T1) for the following reason: By definition of a good W -resynchronization
point no node from W switches to sleep during (tg −∆g, tg) ⊇ (tg − (ϑ+ 1)T1 − 3d, tg). Any node
in W that is in states sleep or sleep→ waking at time tg − (ϑ+ 1)T1 − 3d switches to state waking
before time tg − d due to timeouts. Finally, any node in W switching to sleep at or after time tg
will not switch to state sleep→ waking before time tg + (1 + 1/ϑ)T1. The observation follows.

Since nodes in W reset their sleep→ waking flags at some time from

[ti, τi,i(ti)] ⊂ (tg + 3d, tg + (4ϑ+ 4)d)
(2)

⊆ (tg + 3d, tg + (1 + 1/ϑ)T1),

Statement (iii) follows.

Statements (iv) and (v) follow from the fact that all nodes in W switch to state passive until
time

tg + (3 + 4ϑ)d
(2)

≤ tg +

(
1 +

1

ϑ

)
T1 − d,

while timeout (R1, supp→ resync) must expire first in order to switch to dormant and subsequently
passive again.
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Before we proceed, in the next lemma we make the basic yet crucial observation that after a
good W -resynchronization point tg, no node from W will switch to state join until either time
tg + T7/ϑ+ 4d or T6/ϑ time after the first non-faulty node switched to sleep→ waking again after
tg. By proper choice of T6 and T7 > T6, this will guarantee that nodes from W do not switch to
join prematurely during the final steps of the stabilization process.

Lemma 4.11. Suppose tg is a good W -resynchronization point. Denote by ts the infimum of times
greater than tg when a node in W switches to state sleep → waking and by tjoin the infimum of
times greater than tg − T1 − d when a node in W switches to state join. Define t+ := tg + ∆s −
∆g + δ̃s + T2 + T4 + T5 + d. Then, starting from time tg + 4d, tr(recover, join) is not satisfied at
any node in W until time

min

{
ts +

T6

ϑ
, tg +

T7

ϑ
+ 4d

}
≥ min{ts + ∆s, t

+}

and tjoin is larger than this time.

Proof. By Statements (ii) and (iii) of Lemma 4.10 and Inequality (2), we have that ts ≥ tg+T1+4d ≥
tg+(4ϑ+4)d and tjoin ≥ tg+4d. Consider a node i ∈W not observing itself in state dormant at some
time t ∈ [tg+4d, tjoin]. According to Statements (i) and (ii) of Lemma 4.10, the threshold condition
of f+1 nodes memorized in state join cannot be satisfied at such a node. By statements (i) and (iii)
of the lemma, the threshold condition of f + 1 nodes memorized in state sleep→ waking cannot be
satisfied unless t > ts. Hence, if at time t a node from W satisfies that it observes itself in state
active and T6 expired, we have that t > ts + T6/ϑ. Moreover, by Statement (i) of Lemma 4.10, we
have that if T7 is expired at any node in W at time t, it holds that t > tg + T7/ϑ+ 4d. Altogether,
we conclude that tr(recover, join) is not satisfied at any node in W during[

tg + 4d,min

{
ts +

T6

ϑ
, tg +

T7

ϑ
+ 4d

}]
(7,8)

⊇
[
tg + 4d,min{ts + ∆s, t

+}
]
.

In particular, tjoin must be larger than the upper boundary of this interval, concluding the proof.

Before we can move on to proving eventual stabilization, we need one last key lemma. Essen-
tially, it states that after a good W -resynchronization point, any node in W switches to recover or
to sleep → waking within bounded time, and all nodes in W doing the latter will do so in rough
synchrony, i.e., within a time window of δ̃s. Using the previous lemma, we can show that this
happens before the transition to join is enabled for any node.

Lemma 4.12. Suppose tg is a good W -resynchronization point and use the notation of Lemma 4.11.
Then either

(i) ts < t+−∆s and any node in W switches to state sleep→ waking at some time in [ts, ts+ δ̃s]
or is observed in state recover during [ts + T1 + T5, tjoin] or

(ii) all nodes in W are observed in state recover during [t+, tjoin].

Proof. By Lemma 4.11, it holds that

tjoin > min{ts + ∆s, t
+}. (26)
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For any node in W , consider the supremum t of all times smaller or equal to tg − ∆g when it
switched to sleep. After that, it observed itself in state waking before time

t+ (ϑ+ 1)T1 + 3d ≤ tg − T1 − d (27)

(w.l.o.g. assuming that the node has ever been in state sleep since it became non-faulty). By
definition of a good W -resynchronization point, nodes in W are not in state join during (tg − T1−
d, tjoin) and do not switch to state sleep during (tg −∆g, ts). Continuing to execute the basic cycle
after time tg − d > tg −T1− d thus necessitates that the node is in one of the states waking , ready ,
propose or accept at time tg − d.

Assume that it is in state waking (we just showed that if not, it already was in waking by time
tg − d). As timeout T2 cannot have been reset later than time t−T1/ϑ+ d ≤ tg −∆g −T1/ϑ+ d at
the respective node, it observes itself in state ready by time tg−∆g−T1/ϑ+T2 +2d, in state propose
by time tg −∆g − T1/ϑ+ T2 + T4 + 3d, in state accept by time tg −∆g − T1/ϑ+ T2 + T4 + T5 + 4d,
in state sleep by time tg−∆g + (1− 1/ϑ)T1 +T2 +T4 +T5 + 5d, and must switch to sleep→ waking
before time t+ −∆s.

We next distinguish between two cases:

Case 1: Assume that ts < t+ −∆s. We already established that no node in W observes itself
in states sleep or sleep → waking at time ts, and by Inequality (27), any node in W observing
itself in states waking or ready reset its accept flags after time tg − T1 − d. Denote by t′s ∈
(ts − (ϑ+ 1)T1 − d, ts − (1 + 1/ϑ)T1) the minimal time greater or equal to tg when a node from W
switches to state sleep; by the timeout condition for switching from sleep to sleep→ waking and the
definitions of ts and good W -resynchronization points, such a time exists. According to Lemma 4.5,
at least f + 1 nodes have been in state accept at times in (t′s − T1 − d, t′s). By Statements (i)
and (iii) of Lemma 4.10, all nodes are in state passive until at least time ts. Hence, any nodes
from W observing themselves in state waking or ready at time t′s + d satisfy tr(waking, recover) or
tr(unsuspect, suspect), respectively. Consequently, they will leave these states no later than time

t′s + (2ϑ+ 2)d ≤ ts −
(

1 +
1

ϑ

)
T1 + (2ϑ+ 2)d

(2)

≤ ts − 4d.

It follows that any nodes from W that are in state propose at time ts observe themselves in
this state since at least time ts − 3d, implying that they switch to states accept or recover by time
ts + T5 − 3d. After switching to accept , a node from W switches to sleep and subsequently to
sleep→ waking within another (2ϑ+1)T1 +2d or is observed in state recover after less than T1 +2d
time. Thus, as

tjoin > ts + ∆s − (ϑ− 1/ϑ)T1 − d)
(3)
> ts + T1 + T5 − d,

all nodes in W that do not switch to state sleep→ waking during

[ts, ts + (2ϑ+ 1)T1 + T5 − d]
(3)

⊆
[
ts, ts + ∆s −

(
ϑ− 1

ϑ

)
T1 − d

]
⊆
[
ts, t

′
s + ∆s +

(
1 +

1

ϑ

)
T1

]
are observed in state recover at time ts +T1 +T5. Because tjoin > ts + ∆s− (ϑ− 1/ϑ)T1− d and no
nodes from W switch to state sleep during (tg−∆g, ts), we can apply Statement (ii) of Corollary 4.6
to conclude that no nodes from W switch to state sleep→ waking during(

ts + δ̃s, t
′
s + ∆s +

(
1 +

1

ϑ

)
T1

]
,
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i.e., any node from W that does not switch to state sleep→ waking during [ts, ts + δ̃s] is observed
in state recover during [ts + T1 + T5, tjoin]. Statement (i) follows.

Case 2: Assume ts ≥ t+ −∆s. Then by Inequality (26), tjoin ≥ t+ holds. By definition of ts,
the first node in W switching to sleep→ waking after tg does so at time ts, and by the arguments
given above, no node from W executing the basic cycle does so later than t+−∆s < t+−d. Hence,
it is observed in state recover during [t+, tjoin], as it cannot leave recover through join before time
tjoin. Hence Statement (ii) holds and the proof concludes.

We have everything in place for proving that a good resynchronization point leads to stabiliza-
tion within R1/ϑ− 3d time.

Theorem 4.13. Suppose tg is a good W -resynchronization point. Then there is a quasi-stabilization
point during (tg, tg +R1/ϑ− 3d].

Proof. For simplicity, assume during this proof that R1 =∞, i.e., by Statement (i) of Lemma 4.10
all nodes in W observe themselves in states passive or active at times greater or equal to tg + (4ϑ+
4)d. We will establish the existence of a quasi-stabilization point at a time larger than tg and show
that it is upper bounded by tg + R1/ϑ − 3d. Hence this assumption can be made w.l.o.g., as the
existence of the quasi-stabilization point depends on the execution up to time tg +R1/ϑ only, and
R1 cannot expire before this time at any node in W . We use the notation of Lemma 4.11. By
Statements (ii) of Lemma 4.10 and Inequality (2), we have that ts ≥ tg + T1 + 4d ≥ tg + (4ϑ+ 4)d.
By Lemma 4.11, it holds that tjoin > min{ts + ∆s, t

+}. We differentiate several cases.

Case 1: Assume ts ≥ t+ − ∆s. According to Lemma 4.10, all nodes in W switched to state
passive during (tg +4d, tg +(3+4ϑ)d), implying that at any node in W , T7 will expire at some time
from (tg + T7/ϑ + 4d, tg + T7 + (4ϑ + 4)d. By Lemma 4.12 we have that all non-faulty nodes are
observed in state recover during [t+, tjoin]. By Statement (v) of Lemma 4.10, no node in W resets its
join flags after time t+ before it switches to state propose, returning to the basic cycle. Thus, any
node from W will switch to state join before time tg +T7 + (4ϑ+ 4)d and switch to propose as soon
as it memorizes all non-faulty nodes in state join. Denote by tp ∈ (tg+T7/ϑ+4d, tg+T7 +(4ϑ+5)d)
the minimal time when a node from W switches from join to propose. Certainly, nodes in W do not
switch from waking to ready during (tp, tp + 2d) and therefore also not reset their join flags before
time tp+3d. As nodes in W reset their propose and accept flags upon switching to state join, some
node in W must memorize n− 2f ≥ f + 1 non-faulty nodes in state join at time tp. According to
Statement (ii) of Lemma 4.10, these nodes must have switched to state join at or after time tjoin.
Hence, all nodes in W will memorize them in state join by time tp + d and thus have switched to
state join. Hence, all nodes in W will switch to state propose before time tp + 2d and subsequently
to state accept before time tp + 3d, i.e. tp ≤ tg + T7 + (4ϑ+ 5)d is a quasi-stabilization point.

Case 2a: Assume ts < t+ − ∆s and < f + 1 nodes in W switch to sleep → waking during

[ts, ts + δ̃s]. We then have that t+
(3)
> ts + T1 + T5. According to Lemma 4.12, any node in W

that does not switch to state sleep→ waking is observed in state recover during [ts +T1 +T5, tjoin].
Thus, any node in W will observe at least n − 2f ≥ f + 1 nodes from W in state recover during
[ts + T1 + T5, tjoin]. As nodes in W reset their propose flags when switching to state ready and

ts + T1 + T5

(3,4)

≤ ts +
T2 + T3

ϑ
− (ϑ+ 2)T1 − (2ϑ+ 4)d,
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a node from W switching to state sleep→ waking at or after time ts cannot switch to propose via
states waking and ready before time ts + T1 + T5 + (2ϑ + 1)d. Any node in W switching to state
sleep→ waking during [ts, ts + δ̃s] will observe itself in state waking before time

ts + δ̃s + 2d
(2,3)

≤ ts + ∆s − (2ϑ+ 2)d ≤ t+ − (2ϑ+ 2)d.

By Lemma 4.11, tr(recover, join) cannot be satisfied at any node in W until time min{ts + ∆s, t
+}.

Thus, we have that no node from W switches from ready to join during [ts, tjoin) by definition of
tjoin and any node in W that observes itself in states ready and suspect will switch to state recover
once (2ϑd, suspect) expires. In summary, any node in W switching to state sleep → waking at
some time in [ts, ts + δ̃s] will switch from waking to recover or from unsuspect to suspect by time
ts+∆s−(2ϑ+2)d, and in the latter case it cannot leave state ready before switching to state recover
due to tr(ready, recover) being satisfied. As the latter happens before time ts+∆s−d < tjoin−d, all
nodes in W are observed in state recover during [ts+∆s, tjoin]. From here we can argue analogously
to the first case, i.e., there exists a quasi-stabilization point tp ≤ tg + T7 + (4ϑ+ 5)d.

Case 2b: Assume ts < t+ − ∆s and ≥ f + 1 nodes in W switch to sleep → waking during
[ts, ts + δ̃s]. By Statements (ii) and (iv) of Lemma 4.10, no node from W resets its sleep→ waking
flags at or after time ts ≥ tg + (1 + 1/ϑ)T1. Hence, by Statement (i) of the lemma, all nodes in W
switch to active during (ts, ts + δ̃s + d). Between T6/ϑ and T6 + d time later T6 will expire. We
have that

ts +
T6

ϑ
< t+ −∆s +

T6

ϑ

(8)

≤ tg +
T7

ϑ
+ 4d.

Thus, according to Lemma 4.11, tjoin > ts+T6/ϑ. On the other hand, at the latest once T6 expires,
tr(recover, join) holds at every node.

By time

ts +
T6

ϑ

(7)

≥ ts + δ̃s −
(

1− 1

ϑ

)
T1 + T2 + 2d,

the nodes in W that switched to state sleep → waking observe themselves in state ready because
of timeouts or are in state recover . By Statement (v) of Lemma 4.10, after this time no node in W
resets its join flags again before it runs through the basic cycle again and switches to state ready .

Hence, all nodes in W will switch to states join or propose until time

max

{
ts + δ̃s −

(
1 +

1

ϑ

)
T1 + T2 + T4 + 2d, ts + δ̃s + T6 + 3d

}
+ d

(4,5)
= ts +

(
ϑ+ 1− 2

ϑ

)
T1 + T2 + T4 + 7d,

where we accounted for an additional delay of d due to a possible transition from ready to recover
just before time ts + δ̃s + T6 + 2d and, if no node from W switches from ready to join, all nodes in
W needing to be observed in state join for a node in W to switch to state propose. It follows that
a minimal time tp ∈ (ts + T6/ϑ, ts + (ϑ + 1 − 2/ϑ)T1 + T2 + T4 + 7d) exists when a node from W
switches to state propose. Again, we distinguish two cases.

Case 2b-I: Assume that some node in W switches from state join to state propose at time tp.
Thus, there must be at least n− 2f ≥ f + 1 non-faulty nodes in state join at time tp− ε (for some
arbitrarily small ε > 0), as any propose or accept flag corresponding to a non-faulty node has been
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reset at a time t satisfying that the respective node has not been observed in one of these states
during [t, tp]. Thus, all nodes in W will switch to states join or propose before time tp + d. At
time tp + 2d, they will observe all non-faulty nodes in one of the states join, propose, or accept ,
i.e., they switch to state propose before time tp+ 2d. Finally, they will observe all non-faulty nodes
in states propose or accept before time tp + 3d < tp + T1/ϑ and switch to state accept . As tp is
minimal, we conclude that all nodes in W switched to state accept during (tp, tp + 3d), i.e., tp is a
quasi-stabilization point.

Case 2b-II: Otherwise, some node in W switched from state ready to state propose at time tp.
As we have that

ts + δ̃s + T6 + 4d
(4)

≤ ts − (ϑ+ 1)T1 +
T2 + T3

ϑ
− d,

T6 is expired at all nodes in W since time tp − 2d, i.e., tr(recover, join) is satisfied at all nodes in
W since time tp − 2d. Hence, all nodes in W are observed in states ready or join at time tp, and
no node from W may switch to state recover again or reset its propose flags before switching to
resync or accept first after time tp.

Denote by ta the infimum of times greater than tp when a node from W switches to accept and
assume for the moment that no node from W may switch from propose to recover before switching
to accept first after time tp. As nodes in W reset their propose flags upon switching to states ready
or join, there must be n−2f ≥ f+1 non-faulty nodes that switched to state propose during [tp, ta)
(unless ta = ∞, which will be ruled out shortly). Thus, all nodes in W leave state ready before
time ta + d, and are observed in states propose or join before time ta + 2d. Recalling that all nodes
in W switch to states join or propose until time

ts +

(
ϑ+ 1− 2

ϑ

)
T1 + T2 + T4 + 7d,

we get that indeed all nodes in W are observed in one of these states after time tp and before time

min

{
ta + 2d, ts +

(
ϑ+ 1− 2

ϑ

)
T1 + T2 + T4 + 8d

}
.

Thus, at any node from W , tr(join, propose) will be satisfied before this time, and it will be observed
in state propose less than d time later. It follows that all nodes in W switch to state accept before
time

tq + 3d := min

{
ta + 3d, ts +

(
ϑ+ 1− 2

ϑ

)
T1 + T2 + T4 + 9d

}
,

i.e., tq is a quasi-stabilization point. As we made the assumption that no node from W switches
from propose to recover before switching to accept , we need to show that T5 does no expire at any
node from W in state propose until time tq + 3d. This holds true because

tp +
T5

ϑ
> ts +

T5 + T6

ϑ

(6)

≥ ts +

(
ϑ+ 1− 2

ϑ

)
T1 + T2 + T4 + 9d ≥ tq + 3d.

It remains to check that in all cases, the obtained quasi-synchronisation point tq occurs no later
than time tg +R1/ϑ− 3d. In Cases 1 and 2a, we have that

tq ≤ tg + T7 + (4ϑ+ 5)d
(9)

≤ tg +
R1

ϑ
− 3d.
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In Case 2b, it holds that

tq ≤ ts +

(
ϑ+ 1− 2

ϑ

)
T1 + T2 + T4 + 9d

≤ t+ −∆s +

(
ϑ+ 1− 2

ϑ

)
T1 + T2 + T4 + 9d

(9)

≤ tg +
R1

ϑ
− 3d.

We conclude that indeed all nodes in W switch to accept within a window of less than 3d time
before at any node in W , R1 expires and it leaves state resync, concluding the proof.

Finally, putting together our main theorems and Lemma 3.4, we deduce that the system will
stabilize from an arbitrary initial state provided that a subset of n− f nodes remains coherent for
a sufficiently large period of time.

Corollary 4.14. Suppose that ϑ < ϑmax ≈ 1.247 as given in Lemma 3.4. Let W ⊆ V , where
|W | ≥ n− f , and define for any k ∈ N

T (k) := (k + 2)(ϑ(R2 + 3d) + 8(1− λ)R2 + d) +R1/ϑ.

Then, for any k ∈ N, the proposed algorithm is a (W,W 2)-stabilizing pulse synchronization protocol
with skew 2d and accuracy bounds (T2 + T3)/ϑ− 2d and T2 + T4 + 7d stabilizing within time T (k)
with probability at least 1 − 1/2k(n−f). It is feasible to pick timeouts such that T (k) ∈ O(kn) and
T2 + T4 + 7d ∈ O(1).

Proof. The satisfiability of Condition 3.3 with T (k) ∈ O(kn) and T2 + T4 + 7d ∈ O(1) follows
from Lemma 3.4. Assume that t+ is sufficiently large for [t− + T (k) + 2d, t+] to be non-empty,
as otherwise nothing is to show. By definition, W will be coherent during [t−c , t

+], with t−c =
t− + ϑ(R2 + 3d) + 8(1 − λ)R2 + d. According to Theorem 4.9, there will be some good W -
resynchronization point tg ∈ [t−c , t

−
c + (k + 1)(ϑ(R2 + 3d) + 8(1 − λ)R2 + d)] with probability at

least 1 − 1/2k(n−f). If this is the case, Theorem 4.13 shows that there is a W -stabilization point
t ∈ [tg, t

− + T (k)]. Applying Theorem 4.4 inductively, we derive that the algorithm is a (W,E)-
stabilizing pulse synchronization protocol with the bounds as stated in the corollary that stabilizes
within time T (k) with probability at least 1− 1/2k(n−f).

5 Generalizations and Extensions

5.1 Synchronization Despite Faulty Channels

Theorem 4.13 and our notion of coherency require that all involved nodes are connected by correct
channels only. However, it is desirable that non-faulty nodes synchronize even if they are not
connected by correct channels. To capture this, the notions of coherency and stability can be
generalized as follows.

Definition 5.1 (Weak Coherency). We call the set C ⊆ V weakly coherent during [t−, t+], iff for
any node i ∈ C there is a subset C ′ ⊆ C that contains i, has size n − f , and is coherent during
[t−, t+].
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In particular, if there are in total at most f nodes that are faulty or have faulty outgoing
channels, then the set of non-faulty nodes is (after some amount of time) weakly coherent.

Corollary 5.2. For each k ∈ N let T ′(k) := T (k)− ((ϑ(R2 + 3d) + 8(1− λ)R2 + d)), where T (k)
is defined as in Corollary 4.14. Suppose the subset of nodes C ⊆ V is weakly coherent during
the time interval [t−, t+] ⊇ [t− + T ′(k) + T2 + T4 + 8d, t+] 6= ∅. Then, with probability at least
1− (f + 1)/2k(n−f), there is a C-quasi-stabilization point t ≤ t− + T ′(k) + T2 + T4 + 5d such that
the system is weakly C-coherent during [t, t+].

Proof. By the definition of weak coherency, every node in C is in some coherent set C ′ ⊆ C
of size n − f . Hence, for any such C ′ it holds that we can cover all nodes in C by at most
1 + |V \ C ′| ≤ f + 1 coherent sets C1, . . . , Cf+1 ⊆ C. By Corollary 4.14 and the union bound,
with probability at least 1 − (f + 1)/2k(n−f), for each of these sets there will be at least one
stabilization point during [t−, t− + T ′(k) − (T2 + T4 + 5d)]. Assuming that this is indeed true,
denote by ti0 ∈ [t−, t− + T ′(k)− (T2 + T4 + 5d)] the time

max
i∈{1,...,f+1}

{max{t ≤ t− + T ′(k)− (T2 + T4 + 5d) | t is a Ci-stabilization point}},

where i0 ∈ {1, . . . , f+1} is an index for which the first maximum is attained and ti0 is the respective
maximal time, i.e., ti0 is a Ci0-stabilization point.

Define t′i0 ∈ (ti0 , t
− + T ′(k)] to be minimal such that it is another Ci0-stabilization point. Such

a time must exist by Theorem 4.4. Since the theorem also states that no node from Ci0 switches
to state accept during [ti0 + 2d, t′i0) and Ci ∩Ci0 6= ∅, there can be no Ci-stabilization point during
(ti0 + 2d, t′i0 − 2d) for any i ∈ {1, . . . , f + 1}. Applying the theorem once more, we see that there
are also no Ci-stabilization points during (t′i0 + 2d, t′i0 + (T2 +T3)/ϑ)−2d for any i ∈ {1, . . . , f + 1}.
On the other hand, the maximality of ti0 implies that every Ci had a stabilization point by time
ti0 . Applying Theorem 4.4 to the latest stabilization point until time ti0 for each Ci, we see that it
must have another stabilization point before time ti0 + T2 + T4 + 5d. We have that

2(T2 + T3)

ϑ
− 2d

(3)
>
T2 + T3 + T5

ϑ

(6)
> T2 + T4 + 5d,

i.e., all Ci have stabilization points within a short time interval of (t′i0 −2d, t′i0 + 2d). Arguing anal-
ogously about the previous stabilization points of the sets Ci (which exist because ti0 is maximal),
we infer that all Ci had their previous stabilization point during (ti0 − 2d, ti0 + 2d).

Now suppose ta is the minimal time in (t′i0−2d, t′i0 +2d) when a node from C switches to accept
and this node is in set Ci for some i ∈ {1, . . . , f + 1}. As usual, there must be at least f + 1 non-
faulty nodes from Ci in state propose at time ta and by time ta+d all nodes from Ci will be in either
of the states propose or accept . As |Ci ∩Cj | ≥ f + 1 for any j ∈ {1, . . . , f + 1} all nodes in Cj will
observe f+1 nodes in state propose at times in (ta, ta+2d). We have that ta ≥ ti0 +(T2 +T3)/ϑ−2d
according to Theorem 4.4. As no nodes switched to state accept during (ti0 + 2d, ta) and none of
them switch to state recover (cf. Theorem 4.4), it follows from the Inequality

(T2 + T3)/ϑ− 4d
(4)
> T2 + 2T1

(2)
> T2 + 5d

that all nodes from Cj observe themselves in one of the states ready or propose at time ta. Hence,
they will switch from ready to propose if they still are in ready before time ta + 2d. Less than d
time later, all nodes in Cj will memorize Cj in state propose and therefore switch to accept if not
done so yet. Since j was arbitrary, it follows that ta is a C-quasi-stabilization point.
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Corollary 5.3. Suppose C is weakly coherent during [t−, t+] and t ∈ [t−, t+ − (T2 + T4 + 8d)] is a
C-quasi-stabilization point. Then

(i) all nodes from C switch to accept exactly once within [t, t+ 3d) and

(ii) there will be a C-quasi-stabilization point t′ ∈ [t + (T2 + T3)/ϑ, t + T2 + T4 + 5d) satisfying
that no nodes switch to accept in the time interval [t+ 3d, t′)

(iii) and each node i’s, i ∈ W , state of the basic cycle (Figure 1) is metastability-free during
[t+ 4d, t′ + 4d)

Proof. Analogously to the proofs of Theorem 4.4 and Corollary 5.2.

We point out that one cannot get stronger results by the proposed technique. Even if there are
merely f+1 failing channels, this can e.g. effectively render a node faulty (as it may never see n−f
nodes in states propose or accept) or exclude the existence of a coherent set of size n − f (if the
channels connect f + 1 disjoint pairs of nodes, there can be no subset of n−f nodes whose induced
subgraph contains correct channels only). Stronger resilience to channel faults would necessitate
to propagate information over several hops in a fault-tolerant manner, imposing larger bounds on
timeouts and weaker synchronization guarantees.

Combination of Corollary 5.2 and Corollary 5.3 finally yields:

Corollary 5.4. Suppose that ϑ < ϑmax ≈ 1.247 as given in Lemma 3.4. Let C ⊆ V be such that,
for each i ∈ C, there is a set Ci ⊆ C with |Ci| = n − f , and let E =

⋃
i∈C C

2
i . Then the proposed

algorithm is a (C,E)-stabilizing pulse synchronization protocol with skew 3d and accuracy bounds
(T2 + T3)/ϑ − 3d and T2 + T4 + 8d stabilizing within time T (k) + T2 + T4 + 5d with probability at
least 1− (f + 1)/2k(n−f), for any k ∈ N.

Proof. Analogously to the proof of Corollary 4.14

5.2 Late Joining and Fast Recovery

An important aspect of combining self-stabilization with Byzantine fault-tolerance is that the sys-
tem can remain operational when facing a limited number of transient faults. If the affected
components stabilize quickly enough, this can prevent future faults from causing system failure.
In an environment where transient faults occur according to a random distribution that is not too
far from being uniform (i.e., one deals not primarily with bursts), the mean time until failure is
therefore determined by the time it takes to recover from transient faults. Thus, it is of significant
interest that a node that starts functioning according to the specifications again synchronizes as
fast as possible to an existing subset of correct nodes making a quasi-stabilization point. Moreover,
it is of interest that a node that has been shut down temporarily, e.g. for maintenance, can join the
operational system again quickly.

In the presented form, the algorithm suffers from the drawback that a node in state recover may
be caught there until the next good resynchronization point. Since Byzantine faults of a certain
pattern may deterministically delay this for Ω(n) time, we would like to modify the algorithm in a
way ensuring that a non-faulty node can synchronize to others more quickly if a quasi-stabilization
point is reached.

This can be done in a simple manner. Whenever a node switches to state none, it stays until
a new timeout (R1,none) expires. When switching to none, it switches also to passive, resets its
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join and sleep → waking flags, and repeats to reset its sleep → waking flags whenever a timeout
of (ϑ − 1)(ϑ + 2)T1 + ϑ5d expires. Thus, it will not switch to state active because of outdated
information. On the other hand, it will not miss the next occurrence of a set C, that are weakly
coherent since a C-quasi-stabilization point, switching to state sleep→ waking within a time window
of (1 − 1/ϑ)(ϑ + 2)T1 + ϑ5d, as it will reset its sleep → waking flags at most once in this window,
whereas |C| ≥ n−f ≥ 2f . Subsequently, it will switch to state join at an appropriate time to enter
the basic cycle again at the occurrence of the next C-stabilization point. Since nodes refrain from
leaving state none for a constant period of time only, this way stabilization time in face of severe
failures can still be kept linear, while in a stable system, nodes recovering from faults or joining
late stabilize in constant time.

Corollary 5.5. The pulse synchronization routine can be modified such that it retains all shown
properties, Ê3 increases by a constant factor, and it holds that, for any node i in V , if there is a
C-quasi-stabilization point at some time t < t−, so that C is weakly coherent during [t, t+], and
(C ∪ {i})-coherent during [t−, t+], then there exists a (C ∪ {i})-quasi-stabilization point at some
time t′ ≤ t− +O(1), so that (C ∪ {i}) is weakly coherent during [t′, t+].

Proof Sketch. Essentially, the fact that n−f nodes continue to execute the basic cycle narrows down
the possibilities in the proof of Theorem 4.13 to Case 2b-II, where the threshold for leaving state join
will be achieved close to the next C-stabilization point due to the involved threshold conditions.
Since the nodes in C execute the basic cycle, they are not affected by the re-synchronisation
subroutine at all. Thus, v stabilizes independently of this subroutine provided that it resets its
join and sleep→ waking flags in an appropriate fashion. We explained above how this is done and
why a consistent reset of the sleep→ waking flags is achieved. The join flags are not an issue since
at most n − |C| ≤ f channels can attain state join. As a node switches to state none again in
constant time whenever it leaves, the node will stabilize in constant time provided that there is a
C-quasi-stabilization point from where on C is weakly coherent until time t+. On the other hand,
we can easily adapt the re-synchronisation subroutine, Lemma 4.8, Theorem 4.9, and Condition 3.3
to allow for the additional time nodes are non-responsive with respect to the re-synchronisation
subroutine, increasing Ê3 by a constant factor only.

5.3 Stronger Adversary

So far, our analysis considered a fixed set C of coherent (or weakly coherent) nodes. But what
happens if whether a node becomes faulty or not is not determined upfront, but depends on the
execution? Phrased differently, does the algorithm still stabilize quickly with a large probability if
an adversary may “corrupt” up to f nodes, but may decide on its choices as time progresses, fully
aware of what happened so far? Since we operate in a system where all operations take positive
time, it might even be the case that a node might fail just when it is about to perform a certain
state transition, and would not have done so if the execution had proceeded differently. Due to the
way we use randomization, this however makes little difference for the stabilization properties of
the algorithm.

Corollary 5.6. Suppose at every time t, an adversary has full knowledge of the state of the system
up to and including time t, and it might decide on in total up to f nodes (or all channels originating
from a node) becoming faulty at arbitrary times. If it picks a node at time t, it fully controls its
actions after and including time t. Furthermore, it controls delays and clock drifts of non-faulty
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components within the system specifications, and it initializes the system in an arbitrary state at
time 0. For any k ∈ N, define

tk := 2(k + 2)(ϑ(R2 + 3d) + 8(1− λ)R2 + d) +R1/ϑ+ T2 + T4 + 5d.

Then the set of all non-faulty nodes have reached a quasi-stabilization point by time T (k) from
where on they are weakly coherent, with probability at least

1− (f + 1)e−k(n−f)/2.

Proof. We need to show that Theorem 4.9 holds for the modified time interval [t, t + (k + 2)Ê3]
with the modified probability of at least 1 − e−k(n−f)/2. If this is the case, we can proceed as in
Corollaries 5.2 and 5.3.

We start to track the execution from time 0. Whenever a node switches to state init at a good
time, the adversary must corrupt it in order to prevent subsequent deterministic stabilization. In
the proof of Theorem 4.9, we showed that for any non-faulty node, there are at least k+ 1 different
times until 2ϑ(k+ 2)Ê3 when it switches to init that have an independently by 1/2 lower bounded
probability to be good. Since Lemma 4.8 holds for any execution where we have at most f faults,
the adversary corrupting some node at time t affects the current and future trials of that node only,
while the statement still holds true for the non-corrupted nodes. Thus, the probability that the
adversary may prevent the system from stabilizing until time tk is upper bounded by the probability
that (k+ 1)(n− f) independent and unbiased coin flips show f or less times tail. Chernoff’s bound
states for the random variable X counting the number of tails in this random experiment that for
any δ ∈ (0, 1),

P [X < (1− δ)E[X]] <

(
e−δ

(1− δ)1−δ

)E[X]

< e−δE[X].

Inserting δ = k/(k + 1) and E[X] = (k + 1)(n− f)/2, we see that the probability that

P [X ≤ f ] ≤ P [X < (n− f)/2] < e−k(n−f)/2,

as claimed.

6 Implementation Issues

In this section, we briefly survey some core aspects of the VLSI implementation of the pulse syn-
chronization algorithm, which is currently being developed. Thereby we focus on the three major
building blocks: (1) asynchronous state machines, (2) memory flags with thresholds and (3) watch-
dog timers.

The pulse synchronization algorithm at every node consists of several simple state machines that
execute asynchronously and concurrently. There are several types of conditions that can trigger
state transitions:

(i) The state machines of a certain number (1, ≥ f + 1, or ≥ n − f) of remote nodes reached
some particular state, indicated by memory flags.

(ii) Some local state machine reached a particular state.
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(iii) A watchdog timer expires.

These conditions may also be combined (using AND or OR).
We will employ standard Huffman-type asynchronous state machines [25] for implementing our

state machines, as they fit nicely to the Θ-Model already used in darts.19 Analyzing the transition
conditions of all the five state machines (Figures 2, 3 and 4) of a single node reveals that we need
to communicate six different states (recover , accept , join, propose, sleep→ waking and “other”) of
the core state machine (Figure 2) and two states each (supp, none and init , wait) for the two state
machines making up the resynchronization algorithm from every node to every node. There are
several possibilities for implementing this communication. For example, both a simple high-speed
serial protocol and a parallel five bit bundled data bus with a strobe signal are viable alternatives,
each offering different trade-offs between implementation complexity, speed, area consumption, etc.

We note, however, that any method for communicating states is complicated by the fact that
state occupancy times may be very short in an asynchronous state machine: Reaching a state must
always be faithfully conveyed to all remote nodes even if it is almost immediately left again. In
addition, the core state machine may undergo various sequences of state transitions, implying that
we cannot use a state encoding where only a single bit changes between successive states. Care
must hence be taken in order not to trigger hazardous intermediate state occupancies at the receiver
when communicating some multi-bit state change. Both problems can be handled using suitable
bounded delay conditions.

Remote Memory Flags and Thresholds

Figure 5 shows the principle of implementing remote memory flags, which are the basic mechanism
required for type (i) state transition conditions at node i. For every remote node j, it consists
of a hazard-free demultiplexer that decodes the communicated state of node j’s state machines, a
resettable memory flag per state that remembers whether node j has ever reached the respective
state since the most recent flag reset, and optionally a threshold module that combines the cor-
responding flag outputs for all remote nodes. Note that every memory flag is implemented as a
(resettable) Muller C Gate20 here, but could also be built by using a flip-flop.

Implementing local state input transition conditions (ii) is pretty much straightforward, as one
simply needs to incorporate (single) state signals from local state machines here. Note that every
transition condition comprises the node observing itself in a particular state, which also falls into
this category. To avoid metastable upsets in the asynchronous state machine (see below), it may
be necessary to add memory flags for local signals as well.

Watchdog Timers

Our implementation of the watchdog timers, which are required for realizing state transition con-
ditions (iii), will rest upon a single local clock generator (we will use a simple ring oscillator, i.e.,
a single inverter with feedback and a prescaler) per node that drives all watchdog timers, instead
of a crystal oscillator, because of the possibility to integrate it on-chip. However, the oscillator
frequency of such ring oscillators vary heavily with operating conditions, in particular with supply

19The Θ-Model assumes that we can enforce a certain ratio between slowest and fastest end-to-end delay along
critical signaling paths.

20A Muller C Gate retains its current output value when its inputs are different, and sets its output to the common
input otherwise.
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Figure 5: Implementation principle of remote memory flags and thresholds.

voltage and temperature, as well as with process conditions. The resulting (two-sided) clock drift
ξ (with respect to supply voltage, temperature and process variation) is typically in the range of
7% to 9% for uncompensated ring oscillators and can be lowered down to 1% to 2% by proper
compensation techniques [32]. The two-sided clock drifts map to ϑ = (1 + ξ)/(1 − ξ) bounds of
1.15 to 1.19 and 1.02 to 1.04, respectively. Recalling from Lemma 3.4 that ϑmax ≈ 1.247, one sees
that both uncompensated and compensated ring oscillators are suitable for implementation of the
pulse synchronization protocol’s watchdog timers. However, care must be taken when the protocol
is used to stabilize darts: to compensate a typical drift of 15% of darts clocks, one must ensure
that ϑ is smaller than roughly 1.064 (cf. Section 7). Thus, here, only compensated ring oscillators
are sufficiently accurate. Note, however, that these are conservative bounds, assuming that the
synchronization protocol and darts drift into different directions. Considering that a large share
of the drift in both systems is due to variations in temperature, it seems reasonable to assume that,
in the long term, both drift into the same direction.

As shown in Figure 6, every watchdog timer consists of a resettable up-counter and a timeout
register, which holds the timeout value. A comparator compares the counter value and the timeout
register after every clock tick, and raises a stable expiration output signal if the counter value is
greater or equal to the register value. The asynchronous reset of the counter, which also resets the
timeout output signal, is used to re-trigger the watchdog.
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Nodei Clock
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retrigger
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Up-Counter
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Figure 6: Implementation principle of watchdog timers.

As for the watchdog timer with random timeout R3 in the resynchronization algorithm, the
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simplest implementation would load a uniformly distributed random value into the timeout reg-
ister whenever the watchdog is re-triggered. Depending on the implementation technology, such
random values can be generated either via true random sources (thermal noise) or pseudo-random
sources (LFSRs) clocked by another ring oscillator. If we could guarantee that the content of the
timeout and the random source can, by no means, read or probed somehow by anybody, such
an implementation satisfies the model requirements.21 Alternatively, one could use random sam-
pling per clock tick, which avoids storing the future timeout value and also converges to uniformly
distributed timeouts for sufficiently large values of R3.

Combined State Transition Conditions

Combining different state transition conditions (i)–(iii) via AND/OR requires some care, since an
asynchronous state machine requires stable input signals in order not to become metastable during
its state transition. Combining several conditions (i) does not cause any problems, since the memory
flags ensure that all outputs are stable. Non-stable signals, like “T1 AND < n− f accept” require
sampling via a flip-flop clocked by a stable signal. For example, the status of < n− f = ¬ ≥ n− f
is sampled when the signal reporting expiration of T1 is issued. Similarly, it might happen that
conditions requiring conflicting state transitions are satisfied at the same time, e.g., (T2, accept)
might expire simultaneously with the threshold of “≥ f + 1 recover or accept” being reached.

Obviously, both of the above situations could create a metastable upset, either of the sampling
flip-flop, or directly of the register(s) holding the node’s state. Fortunately, Theorem 4.4 revealed
that this can happen during stabilization only. In regular operation, e.g. the critical threshold of ≥
n−f accept is always reached before T1 expires. Thus, the former is acceptable, as metastable upsets
occur rarely and increase convergence time only. Moreover, to further decrease the probability of a
metastable upset that might affect stabilization time, it is perfectly feasible to insert a synchronizer
or an elastic pipeline after the sampling flip-flop for capturing metastability [13]. This additional
precaution merely increases the latency by a constant delay, which due to being restricted to the
pulse synchronization component will not adversely affect the final precision and accuracy of the
stabilized darts clocks.

7 Coupling of DARTS and Pulse Synchronization Algorithm

In this section, we describe how the self-stabilizing pulse synchronization protocol could be coupled
with darts clocks. As this requires certain implementation details, we also sketch some ideas
that might be used in a prototype implementation. The joint system provides a high-precision
self-stabilizing Byzantine fault-tolerant clocking system for multi-synchronous GALS.

The coupling between the pulse synchronization protocol and darts clocks involves two direc-
tions:

1. The pulse synchronization protocol primarily monitors the operation of the darts clocks.
As long as darts ticks are generated correctly, it must not interfere with the darts tick
generation rules at all.

21Note that in practice this is a reasonable assumption, as even the node itself does not access this value except
for checking whether the timer expired and the computational power of the system is very limited.
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2. If darts clocks become inconsistent w.r.t. the behavior of the pulse synchronization protocol,
the latter must interfere with the regular darts tick generation, possibly up to resetting
darts clocks.

To assist the reader, we first provide a very brief overview of the original darts and its imple-
mentation.

7.1 DARTS Overview

darts clocks (called TG-Algs in the sequel) are instances of a simple synchronizer [35] for the
Θ-Model based on consistent broadcasting [31]. They generate ticks Tick (0), Tick (1), Tick (2),
. . . approximately simultaneously at all correct nodes. Since actual darts ticks are just binary
clock signal transitions, which cannot carry tick numbers, the original algorithm had to be modified
significantly in order to be implementable in asynchronous digital logic. Figure 7 shows a schematic
of a single TG-Alg for a 5-node system.

C

C

C

C

C

C

C

C

...

3f+1 C
b

o
tt
o

m

Ctop

RemoteClk

Pipe Compare Signal Generator

Diff-Gate Local PipeRemote Pipe

Counter Module 1 of 3f+1

...

Threshold
Modules

Pipe Compare Signal Gen.

Local 

Pipeline

Diff-

Gate

Remote 

Pipeline

Counter Module 2

Pipe Compare Signal Gen.

Local 

Pipeline

Diff-

Gate

Remote 

Pipeline

Counter Module 3

Pipe Compare Signal Generator

Local 

Pipeline

Diff-

Module

Remote 

Pipeline

Counter Module n-1

...

f+1

2f+1

Tick

Gen

GR  GEQ

ClockOut

Error Containment Boundary

Figure 7: Schematic of darts TG-Alg Implementation

Key components of a TG-Alg are counter modules, one per remote TG-Alg, which just count the
difference between the number of ticks generated locally and remotely. They are implemented using
a pair of elastic pipelines [33], which implement FIFO buffers for signal transitions. Matching ticks
in both pipelines, which are obviously irrelevant for the difference, are removed by the connecting
Diff-Gate. The status (> 0, ≥ 0) of all counter modules is fed into two threshold modules, whose
outputs trigger the generation of the next local tick. A detailed discussion of the implementation
can be found in [10].

The correctness proof and performance analysis in [16, 17, 15] revealed that correct TG-Algs
indeed generate synchronized clock ticks, in the presence of up to f Byzantine faulty TG-Algs
in a system with n ≥ 3f + 2 nodes: For any two correct nodes p, q, the number of clock ticks
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generated by p and q by time t do not differ by more than a (very small) constant π, and the
frequency of any correct clock (and thus the maximum drift ρ) is within a certain range. In
addition, expressions (in the order of π) for the maximum size of the elastic pipelines in the counter
modules were established, which guarantee overflow-free operation. Experiments with both FPGA
and ASIC prototype implementations demonstrated that darts clocks indeed offer close to perfect
synchronization and very reliable operation.

Nevertheless, as already mentioned, (almost) simultaneous start-up of all TG-Algs and at most
f failures during the whole life-time of the system are mandatory preconditions for these results to
hold. darts neither supports late joining or recovery of TG-Algs, nor recovery from more than f
failures.

7.2 Required Extensions for Coupling DARTS and Pulse Synchronization

The major obstacle for supporting late joining of TG-Algs, removing spuriously generated ticks
in the pipelines etc. are the anonymous clock ticks used in darts: Since they are just signal
transitions on a single wire, they cannot encode any information except their occurrence time. The
most important extension of darts is hence to add an additional bundled data wire to the clock
signal, which carries 1 bit of data. This way, single ticks can be marked with a 1, distinguishing
them from ordinary non-marked ticks that carry a 0.

We will actually mark every T -th darts tick, for some suitably chosen T . Such a marked tick
kT , k ≥ 0, is to be understood as the start of the (k + 1)-st darts round, which consists of the
marked darts tick kT and T − 1 subsequent unmarked ticks kT + 1, kT + 2, . . . , (k+ 1)T − 1; the
marked tick (k + 1)T starts the next darts round. Note that the resulting darts ticks can be
interpreted as a discrete, bounded clock operating modulo T . As darts rounds at any two correct
TG-Algs are synchronous, marked ticks must always match in the pipelines of every counter, i.e.,
the Diff-Gate must always remove pairs of matching marked (or non-marked) ticks and can hence
detect and remove any inconsistency.

The actual coupling between the instance of the pulse synchronization protocol and the darts
clock running at node i is accomplished by means of two signals, namely, dartsi and pulsei:

• dartsi reports darts rounds to the pulse synchronization protocol. The rising edge of the
dartsi signal, which may trigger a switch from ready to propose; is issued when the darts
clock of node i generates tick kT − X, for some fixed X < T . The falling edge of dartsi
reports the occurrence of the marked tick kT .

• pulsei reports the generation of a pulse to the darts clock. Its rising edge is issued on the
transition to accept , and its falling edge signals the expiration of a fixed timeout Ty that is
reset at the time the rising edge is transmitted.

The basic idea underlying the coupling of the pulse synchronization protocol and darts is to
align marked ticks and pulses as follows: If the system operates normally, every correct node i first
reaches some darts tick kT − X and issues dartsi = 1. Next, a pulse is generated at node i
by the the pulse synchronization protocol, which thus sets pulsei = 1. Subsequently, the darts
marked tick kT occurs, which is signaled by dartsi = 0. Finally, the pulse timeout Ty and hence
pulsei = 0 occurs. Normal operation thus expects that the darts marked tick (= the falling edge
of dartsi) occurs within the time window where pulsei is 1. Provided that the timeout used for
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generating this window22 is chosen sufficiently large, namely, ϑρ(π + 2d+ 1), this interleaving can
indeed be guaranteed in normal operation.

As long as this is the case, we just let darts generate its ticks using its standard rules. Should
a darts clock fail, however, such that pulsei and dartsi are not properly interleaved, then we
will force marking the next darts tick (and possibly resetting the TG-Alg, if needed) upon the
falling edge of pulsei. darts ticks and pulses (as well as marked darts ticks at different nodes)
will hence only be re-aligned in case of errors or desynchronization: As long as darts clocks work
correctly, any two correct TG-Algs will mark tick kT within the darts synchronization precision.

Provided that X and Ty are suitably chosen, it is not difficult to prove that the joint system
consisting of pulse synchronization protocol and darts clocks will stabilize: After some unsta-
ble period, the pulse synchronization algorithm will stabilize, which we have proved to happen
independently of the (non-)operation of darts clocks. When the pulse synchronization protocol
eventually starts to generate synchronous pulses, the darts clocks will start to recover in a guided
(synchronized) manner. When all correct darts clocks are eventually synchronized to within the
intrinsic darts precision, the system will perpetually ensure the above interleaving at all correct
nodes.

Some additional observations:

(1) Since the darts precision is typically considerably smaller than the worst case pulse synchro-
nization precision, the underlying darts clocks may be viewed as a “precision amplifier” (as
well as a clock multiplier, see Section 7.2).

(2) There is no need to specify properties possibly achieved by darts clocks during their own
recovery. We only require that they eventually reach full synchronization in the presence of
synchronous pulses at all correct nodes. In practice, darts clocks will typically also gradually
improve their synchronization precision during this interval.

(3) Although the pulse synchronization algorithm stabilizes even when the darts clocks behave
arbitrary, it is nevertheless the case that it achieves better pulse synchronization precision
when the darts clocks are fully synchronized.

(4) One might ask why we did not just use the k-th rising edge of pulsei to mark the very next
darts tick generated by the TG-Alg at node i. This simple solution has several major draw-
backs. First, the pulse synchronization precision is typically worse than the synchronization
precision provided by darts. Thus, every pulse would result in a temporary deterioration
of the darts synchronization quality. Second, marked ticks are not necessarily generated
exactly every T darts ticks. And last but not least, since darts clocks and pulse synchro-
nization execute completely asynchronously, marking darts ticks at pulse occurrence times
would create the potential of metastability every kT darts ticks, even if there is no failure
at all.

7.3 DARTS ⇒ pulse synchronization

To implement this part of the coupling, every darts clock signals the upcoming occurrence of
marked tick kT to its local instance of the pulse synchronization protocol. This is accomplished
by the rising edge of dartsi, the dedicated darts signal, which is generated upon darts tick

22We remark that it is vital not to rely on the darts clock here.
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KT − X. If all correct nodes happen to do this within some time window when they are (w.r.t.
the pulse algorithm) in state ready with T3 < T4 already expired, all correct nodes will switch to
state propose within π time.23 Subsequently, they will all switch to state accept within d time. To
make sure that indeed all correct nodes are in state ready with T3 already expired, up to small
additional terms of O(d), we must choose the minimal duration of a darts round to be larger
than T2 + T3 + 4d, while (T2 + T4)/ϑ is to exceed its maximal duration. Assuming that ρ < 1.15,
Lemma 3.4 shows that this is feasible up to ϑ ≈ 1.064, which is clearly within the reach of ring
oscillators [32].24

7.4 Pulse synchronization ⇒ DARTS

This part of the coupling between darts and the pulse synchronization protocol requires two
mechanisms:

(1) A way to force a marked darts tick at node i upon the occurrence of the falling edge of
pulsei, provided that no marked tick (i.e., the falling edge of dartsi) has been generated
while pulsei was 1. This may also include recovering from a complete stall of the darts tick
generation.

(2) A way to recover accurate darts synchronization after forcing marked ticks, which may also
include the need to get rid of any information from the preceding unstable period.

To achieve (1), we use a simple asynchronous circuit that supervises the interleaving of pulsei
and dartsi, and generates a “force marking” signal if dartsi does not occur in time. Note that
this device can be built in a way that entirely avoids metastability in case of normal operation. In
an unstable period, however, it may happen that force marking occurs exactly at the time when
darts generates its marked tick, so a metastable upset or two very close marked ticks (a forced
and a regularly generated one) are possible.

There are several variants for implementing the forced marking itself, including the simplest
variant of just resetting the TG-Alg in order to generate marked tick 0. The need for possibly
resetting a TG-Alg originates from the fact that stateful TG-Alg components may deadlock due
to earlier failures. For example, a deadlocked pipe will never propagate ticks from its input to
the Diff-Gate. Unfortunately, resetting TG-Algs complicates darts recovery considerably: If a
TG-Alg reset would also reset the remote pipes of its counters, it might lose “fresh” marked ticks
generated by remote TG-Algs. Hence, remote pipes should only be reset when the remote node is
reset. However, since a remote node might never observe a discrepancy between darts rounds and
pulses, this approach might end up in the pipe not being reset at all. This is problematic as it might
effectively render the node faulty despite all its components being operational. Luckily, we may
utilize the fact that solving (2) under the assumption that correct pipes are not deadlocked yields a
trivial means to distinguish a locked pipe from an operational one: If the Diff-Gate cannot remove
any ticks within a certain time interval after a (correct) pulse, the pipe must have deadlocked and
can safely be reset. At the next pulse, all pipes will have recovered from previous deadlocks and a
solution to (2) assuming deadlock-free pipes will succeed.

23In contrast to the model we employed for our analysis, we neglect the local signaling delay here, as it is smaller
than the time to generate a single tick.

24This is true regardless of the additional term of O(d), as the bound is derived from an asymptotic statement.
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To explain how we achieve (2), we start with the observation that our way of marking every
T -th tick implies that, for any two correct darts TG-Algs, it will always be a marked tick kT from
a remote node that is matched by the local marked tick kT in every counter of Figure 7 when the
Diff-Gate removes it. That is, if ever a marked tick is matching a non-marked tick in a counter,
ticks have been lost or spuriously generated somewhere, or local and remote node are severely out
of synchrony.

Assume for the moment that we could generate exactly one marked tick at every correct node,
we made sure that no such tick is in the system before this happens, and that we have elastic
pipelines of infinite size. The following simple strategy would eventually establish matching darts
ticks: Whenever a Diff-Gate encounters a marked tick in one pipe matched by an ordinary tick
in the other, it removes the ordinary tick only. At the pipe level, this rule implies that whatever
the state of the pipes was before the marked ticks were generated, they will be cleared before the
matching pair of marked ticks is removed. Since all darts tick generation rules ensure that no
TG-Alg generates any tick kT +1, kT +2, . . . based on information from the previous darts round
k−1 (consisting of darts ticks up to kT−1) all counter states will be valid as soon as the matching
marked ticks kT have been removed. As darts essentially generates ticks based on comparing the
number of locally and remotely generated ticks, this is enough to ensure stabilization of the darts
system; full darts precision will be achieved quickly because nodes “catch up”, i.e., generate tick
numbers that at least f+1 correct darts clocks already reached, faster than “new ticks”, i.e., ones
that no correct node generated yet, may occur.

The issue of finite-size pipes is (largely) solved by the pulse synchronization protocol: Pulses and
hence marked ticks are generated close to each other, in a time window of at most 2d+ Ty ∈ O(d)
(provided that Ty is not unnecessarily large). Hence, apart from implementation issues, pipes that
can accommodate all ticks that may be generated within this time window are sufficient for not
losing any valid darts tick.

In reality, however, we cannot always expect the “single marked tick” setting described above:
Elastic pipelines may initially be populated with arbitrarily many marked ticks from the unstable
period. We must hence make sure that all these marked ticks (and the white ticks in between)
are eventually removed, and that we do not generate new marked ticks close to each other. The
pulse synchronization protocol will ensure that forced ticks are separated by T darts ticks, and
our implementations of (1) and (2) will ensure with a large probability that a forced marked tick
will not be generated close to a marked tick generated regularly by darts. Under these conditions,
it is a relatively easy task to clear all superfluous marked ticks between pulses.

For example, we could asynchronously reset the whole data flip-flop chain that holds the mark-
ings of the ticks (not the ticks themselves!) currently in a pipe shortly after the rising flank
of pulsei. Enlarging X and Ty slightly, we can be sure that all TG-Algs will remove spurious
markings from their pipes before any marked tick associated with the respective correct pulse is
generated. Although this could generate metastability in the Diff-Gate, namely, when the tick at
the head of the pipe is a marked tick and the Diff-Gate is about to act when the pipe is reset upon
arrival of a new marked tick arrives, this cannot happen during normal operation.
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