Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6976))

Included in the following conference series:

Abstract

We propose the notion of active stabilization for computing systems. Unlike typical stabilizing programs (called passive stabilizing in this paper) that require that the faults are absent for a long enough time for the system to recover to legitimate states, active stabilizing programs ensure recovery in spite of constant perturbation during the recovery process by an adversary. We identify the relation between active and passive stabilization in terms of their behavior and by comparing their cost of verification. We propose a method for designing active stabilizing programs by a collection of passive stabilizing programs. Finally, we compare active stabilization with fault-contained stabilization and stabilization in the presence of Byzantine faults.

This work is partially sponsored by Canada NSERC DG 357121-2008, ORF RE03-045, ORE RE-04-036, and ISOP IS09-06-037 grants, and, by USA AFOSR FA9550-10-1-0178 and NSF CNS 0914913 grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, A.: Efficient reconfiguration of trees: A case study in methodical design of nonmasking fault-tolerant programs. In: Science of Computer Programming (1996)

    Google Scholar 

  2. Arora, A., Gouda, M.G., Varghese, G.: Constraint satisfaction as a basis for designing nonmasking fault-tolerance. In: ICDCS, pp. 424–431 (1994)

    Google Scholar 

  3. Beauquier, J., Kekkonen-Moneta, S.: On ftss-solvable distributed problems. In: WSS, pp. 64–79 (1997)

    Google Scholar 

  4. Demirbas, M., Arora, A., Gouda, M.: A pursuer-evader game for sensor networks. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 1–16. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. self vs. probabilistic stabilization. In: Proceedings of the 2008 The 28th International Conference on Distributed Computing Systems, ICDCS 2008, pp. 681–688. IEEE Computer Society, Washington, DC, USA (2008)

    Google Scholar 

  6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11) (1974)

    Google Scholar 

  7. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  8. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self-stabilizing leader election. Information Processing Letters (1996)

    Google Scholar 

  9. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.: Fault-containing self-stabilizing algorithms. In: Principles of Distributed Computing (PODC), pp. 45–54 (1996)

    Google Scholar 

  10. Gouda, M.G., Multari, N.: Stabilizing communication protocols. IEEE Transactions on Computers 40(4), 448–458 (1991)

    Article  Google Scholar 

  11. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Kulkarni, S.S., Arora, A.: Multitolerance in distributed reset. Chicago J. Theor. Comput. Sci (1998)

    Google Scholar 

  13. Malekpour, M.R.: A byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 411–427. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Nesterenko, M., Arora, A.: Local tolerance to unbounded byzantine faults. In: IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 22–31 (2002)

    Google Scholar 

  15. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election. IEEE Transactions on Parallel and Distributed Systems 8(4), 424–440 (1997)

    Article  Google Scholar 

  16. Zhang, H., Arora, A.: Guaranteed fault containment and local stabilization in routing. In: Computer Networks. Elsevier, Amsterdam (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonakdarpour, B., Kulkarni, S.S. (2011). Active Stabilization. In: Défago, X., Petit, F., Villain, V. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2011. Lecture Notes in Computer Science, vol 6976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24550-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24550-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24549-7

  • Online ISBN: 978-3-642-24550-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics