
Static Analysis of String Values

Giulia Costantini1, Pietro Ferrara2, and Agostino Cortesi1

1 University Ca’ Foscari of Venice, Italy
{costantini,cortesi}@dsi.unive.it

2 ETH Zurich, Switzerland
{pietro.ferrara}@inf.ethz.ch

Abstract. In this paper we propose a unifying approach for the static
analysis of string values based on abstract interpretation, and we present
several abstract domains that track different types of information. In
this way, the analysis can be tuned at different levels of precision and
efficiency, and it can address specific properties.

1 Introduction

Strings are widely used in modern programming languages. Their applications
vary from providing an output to a user to the construction of programs ex-
ecuted through reflection. For instance, in PHP strings can be a way of com-
municating programs, while in Java they are widely used as SQL queries, or
to access information about the classes through reflection. The execution of
str.substring(str.indexOf(′a′)) raises an exception if str does not contain an
′a′ character: in this case, it would be useful being able to track the characters
surely contained on the variable str. As another example, when dealing with
SQL queries, what happens if we execute the query “DELETE FROM Table WHERE

ID = ” + id when id is equal to “10 OR TRUE”? The content of Table would be
permanently erased! It’s clear that a wrong manipulation of strings could lead
not only to subtle exceptions, but to dramatic and permanent effects as well
[20].

For all these reasons, the interest on approaches that automatically analyse
and discover bugs on strings is constantly raising. On the other hand, the state-
of-the-art in this field is still limited: approaches that rely on automata and use
regular expressions are precise but slow, and they do not scale up [14, 24, 21,
13], while many other approaches are focused on particular properties or class of
programs [10, 18, 12]. Genericity and scalability are the main advantages of the
abstract interpretation approach [4, 5], though its instantiation to textual values
has been quite limited up to now.

The main contribution of this paper is the formalisation of a unifying abstract
interpretation based framework for string analysis, and its instantiations with
four different domains that track distinct types of information. In this way, we
can tune the analysis at diversified levels of accuracy, yielding to faster and
rougher, or slower but more precise string analyses.

1 var query = "SELECT ’$\$$’ ||

2 (RETAIL/100) FROM INVENTORY WHERE ";

3 if (l != null)

4 query = query+"WHOLESALE > "+l+" AND ";

5

6 var per = "SELECT TYPECODE, TYPEDESC FROM

7 TYPES WHERE NAME = ’fish’ OR NAME = ’meat’";

8 query = query+"TYPE IN (" + per + ");";

9 return query;
(a) The first running example

1 string x = "a";

2 while(cond)

3 x = "0" + x + "1";

4 return x;
(b) The second running
example

Fig. 1. The running examples

We inspired our work looking at the approach adopted for numerical domains
for static analysis of software [7, 11, 19]. The interface of a numerical domain is
nowadays standard: each domain has to define the semantics of arithmetic ex-
pressions (like i+ 5) and boolean conditions (like i < 5). Similarly, we consider
a limited list of basic string operators that can be easily extended to the various
programming languages. The concrete semantics of these operators is approx-
imated in the four different abstract domains. In addition, after 30 years of
practice with numerical domains, it is clear that a monolithic domain precise on
any program and property (e.g., Polyhedra [7]) gives up in terms of efficiency,
while to achieve scalability we need specific approximations on a given property
(e.g., Pentagons [17]) or class of programs (e.g., ASTRÉE [6]). With this sce-
nario in mind, we develop several domains inside the same framework to tune the
analysis at different levels of precision and efficiency w.r.t. the analysed program
and property. Other abstractions are possible and welcomed, and we expect our
framework to be generic enough to support them.

The paper is structured as follows. In the rest of this Section we introduce two
running examples, and we recall some basics of abstract interpretation. Section
2 defines the syntax of the string operators we will consider. Section 3 introduces
the concrete semantics, while in Section 4 the abstract domains are formalised.
Finally, Section 5 discusses the related work, and Section 6 concludes.

1.1 Running Examples

Along the paper, we will always refer to the two examples reported in Tables
1(a) and 1(b). The first Java program is taken from [10], and it dynamically
builds an SQL query by concatenating some strings. One of these concatena-
tions applies only if a certain value (unknown at compile time) is not null. We
are interested in checking if the SQL query resulting by the execution of such
code is well formed. For the sake of readability, we will use some shortcuts to
identify string constants of this program, as reported in Table 1. The second
program modifies a string inside a while loop whose condition cannot be stati-
cally evaluated. Therefore, we will need to apply a widening operator [2] to force

2

Name String constant

s1 “SELECT ′$′ || (RETAIL/100) FROM INVENTORY WHERE ”
s2 “WHOLESALE > ”
s3 “ AND ”
s4 “SELECT TYPECODE, TYPEDESC FROM TYPES

WHERE NAME = ′fish′ OR NAME = ′meat′”
s5 “TYPE IN (”
s6 “); ”

Table 1. Shortcuts of string constants in the first running example

the convergence of the analysis. Intuitively, this program produces strings in the
form “0na1n”.

1.2 Abstract Interpretation

Abstract interpretation is a theory to define and soundly approximate the se-
mantics of a program [4, 5], focusing on some runtime properties of interest.
Usually, each concrete state is composed by a set of elements (e.g., all the pos-
sible computational states), that is approximated by an unique element in the
abstract domain. Formally, the concrete domain ℘(D) forms a complete lattice
⟨℘(D),⊆, ∅,D,∪,∩⟩. On this domain, a semantics S is defined. In the same way,
an abstract semantics is defined, and it is aimed to approximate the concrete
one in a computable way. Formally, the abstract domain A has to form a com-
plete lattice ⟨A,≤A,⊥A,⊤A,⊔A,⊓A⟩. The concrete elements are related to the
abstract domain by a concretization γA and an abstraction αA functions. In or-
der to obtain a sound analysis, we require that the abstraction and concretization
functions above form a Galois connection. An abstract semantics S is defined as
a sound approximation of the concrete one, i.e., ∀a ∈ A : αA ◦ SJγA(a)K ≤A SJaK.

When abstract domains do not satisfy the ascending chain condition, a widen-
ing operator ∇A is required in order to guarantee the convergence of the fixed
point computation. This is an upper bound operator such that for all increasing
chains a0 ≤A . . . an ≤A . . . the increasing chain defined as w0 = a0, . . . ,wi+1 =
wi∇Aai+1 is not strictly increasing.

2 Syntax

Different languages define different operators on strings, and usually each lan-
guage supports a huge set of such operators: in Java 1.6 the String class contains
65 methods plus 15 constructors, System.Text in .Net contains about 12 classes
that work with Unicode strings, and PHP provides 111 string functions. Consid-
ering all these operators would be quite verbose, and in addition the most part
of them perform similar actions using slightly different data. We restrict our de-
scription on a small but representative set of common operators. We chose these

3

SJnew String(str)K() = {str}
SJconcatK(S1,S2) = {s1s2 : s1 ∈ S1 ∧ s2 ∈ S2}
SJreadLineK() = S
SJsubstringebK(S1) = {cb..ce : c1..cn ∈ S1 ∧ n ≥ e ∧ b ≤ e}

BJcontainscK(S1) =


true if ∀s ∈ S1 : c ∈ char(s)
false if ∀s ∈ S1 : c /∈ char(s)
⊤B otherwise

Table 2. The concrete semantics, where ⊤B represents that the condition could be
evaluated to true or false depending on the string in S1 we are considering.

operators looking at some case studies. Other operators can be easily added to
our approach. For each operator, this would mean to define its concrete seman-
tics, and its approximations on the different domains we will introduce.

A common operation is the creation of a new constant string (new String(str)
where str is a sequence of characters). Usually programs concatenate strings
(concat(s1, s2) where s1 and s2 are strings), read inputs from the user (readLine()),
and take a substring of a given string (substringeb(s), where s is a string, and b

and e are integer values) as well. A common test is to check if a string contains
a character (containsc(s), where s is a string and c is a character).

3 Concrete Domain and Semantics

3.1 Concrete Domain

Our concrete domain is simply made of strings. Given an alphabet K, that is
a finite set of characters, we define strings as (possibly infinite) sequences of
characters. Formally, S = K∗, where A∗ is an ordered sequence of elements in A,
that is, A∗ = {a1 · · · an : ∀i ∈ [1..n] : ai ∈ A}. A string variable in our program
could have different values in different executions, and our goal is to approximate
all these values (potentially infinite, e.g., when dealing with user input) in a finite,
computable, and hopefully efficient manner. Our lattice will be made of sets of
strings. As usual in abstract interpretation, the partial order is the set inclusion.
Formally, our concrete domain is defined by ⟨℘(S),⊆, ∅, S,∪,∩⟩.

3.2 Semantics

Table 2 formalises the concrete semantics. For each statement of the language
we introduced in Section 2, we define its semantics. For the first four statements,
we define a semantics S that, given the statement and eventually some sets of
concrete string values in S, returns a set of strings resulting from that operation.
The semantics of new String(str) returns a singleton containing str, while the
semantics of readLine returns a set containing all the possible strings, since we
may read any string from the standard input. The semantics of concat returns
all the possible concatenations of a string taken from the first set and a string

4

taken from the second set (we denote by s1s2 the concatenation of strings s1
and s2), while the semantics of substringeb returns all the substrings from the
b-th to e-th character of the given strings (note that if one of the strings is
too short, there is not any substring for it in the resulting set, since this would
cause a runtime error without producing any value). For containsc we define
a particular semantics B : [℘(S) → {true, false,⊤B}] that, given a set of strings,
returns true if all the strings contains the character c, false if none contains this
character, and ⊤B otherwise. This special boolean value represents a situation in
which the boolean condition may be evaluated to true some times, and to false
other times. We denoted by char a function that returns the set of characters
contained in the string in input.

4 Abstract Domains and Semantics

What is the relevant information contained in a string? How can we approx-
imate it in an efficient way? Tracking both sound and precise information at
compile time on strings in an efficient way is infeasible. Then we need to intro-
duce approximation. We want to track information precise enough to efficiently
analyse the behaviours of interest, considering the string operators we defined in
the previous section. Our purpose is to approximate strings as much as we can,
preserving the information we deem relevant.

4.1 Character Inclusion

For the first abstract domain we aim at approximating a string through the
characters we know it surely contains or it could contain. This information could
be particularly useful to track if the indexes extrapolated from a string with
operators like indexOf(c) could be used to cut the string (because c is surely
contained in the string), or they could be invalid (e.g., -1). A string will be
represented by a pair of sets: the set of certainly contained characters C and the
set of maybe contained characters MC (CI = {(C,MC) : C,MC ∈ ℘(K) ∧ C ⊆
MC} ∪ ⊥CI). The partial order ≤CI on CI is the following one:

(C1,MC1) ≤CI (C2,MC2) ⇔ (C1,MC1) = ⊥CI ∨ (C1 ⊇ C2 ∧MC1 ⊆ MC2)
This is because the more information we have on the string (that is, the more
characters are certainly contained and the less characters are maybe contained),
the less number of strings we are representing. For example the abstract el-
ement represented by the pair ({a}, {a}) is more precise than the one repre-
sented by (∅, {a, b}). In fact, the first pair represents the concrete set of strings
{a, aa, aaa, . . . } while the second pair corresponds to {ϵ, a, b, aa, bb, ba, ab, . . . }.
For these reasons, the least upper bound is defined by ⊔CI((C1,MC1), (C2,MC2))
= (C1 ∩ C2,MC1 ∪ MC2), and the greatest lower bound is defined by ⊓CI((C1,
MC1), (C2,MC2)) = (C1 ∪ C2,MC1 ∩MC2). The widening operator corresponds
to the ⊔CI operator, and it ensures the convergence of the analysis since we sup-
posed that the alphabet is finite. The top element of the lattice is ⊤CI = (∅,K),
while the bottom element ⊥CI corresponds to a “failure” state.

5

SCIJnew String(str)K() = (char(str), char(str))

SCIJconcatK((C1,MC1), (C2,MC2)) = (C1 ∪ C2,MC1 ∪MC2)

SCIJreadLineK() = (∅,K)
SCIJsubstringebK((C1,MC1)) = (∅,MC1)

BCIJcontainscK((C1,MC1)) =


true if c ∈ C1

false if c /∈ MC1

⊤B otherwise

Table 3. The abstract semantics of CI

#I Var CI
1 query α′

CI(s1)
3 l (∅,K)
3 query (π1(α

′
CI(s1)) ∪ π1(α

′
CI(s2))∪

π1(α
′
CI(s3)),K)

4 query (π1(α
′
CI(s1)),K)

5 per α′
CI(s1)

7 query (π1(α
′
CI(s1)) ∪ π1(α

′
CI(s4))∪

π1(α
′
CI(s5)) ∪ π1(α

′
CI(s6)),K)

(a) First running example

#I Var CI
1 x ({a}, {a})
3 x ({0, a, 1}, {0, a, 1})
4 x ({a}, {0, a, 1})
(b) Second running example

Fig. 2. The results of CI

The function which abstracts a single string s is: α′
CI(s) = (char(s), char(s)).

The abstraction function takes us from a set of strings to an element in CI, and
it returns the upper bound of the abstraction of all the concrete strings. Let πi

be the projection on the i-th component of a tuple.
αCI(S1) =

⊔
CI,s∈S1

α′
CI(s) = (

∩
s∈S1

π1(α
′
CI(s)),

∪
s∈S1

π2(α
′
CI(s)))

Semantics Table 3 defines the abstract semantics of the operators introduced
in Section 2 on the abstract domain CI. We denote by SCI and BCI the abstract
counterparts of S and B respectively.

When we evaluate a string, we know that the characters that are surely or
maybe included are exactly the ones that appear in the string. The concatenation
of two strings will contain all the characters that are surely or maybe contained
in the two strings. readLine returns a top value, while if we take a substring of
a given string, the result will possibly contain all the characters that are possibly
contained in the initial string, while we know nothing about the surely contained
characters. Finally, the semantics of containsc is quite precise, as it checks if a
character is surely contained or not contained respectively through C and MC.
Running Example Consider the examples introduced in Section 1.1. The re-
sults of the analysis of the first program using CI are depicted in Figure 2(a). At
the beginning, variable query is related to a state that contains the abstraction
of c1, that is, both C and MC contain all the characters of s1. Since we do not
know the value of l, we compute the least upper bound between the abstract
values of query after instructions 1 and 3. In this way, we obtain that after the

6

if statement the abstract value of query contains the abstraction of s1 in the C
component (since it surely contains all the characters of that constant string),
and the top value in the MC component (since we may have concatenated a
string that may contain any character). At the end of the given code, query
surely contains the characters of s1, s4, s5, and s6, and it may contain any char-
acter, since we possibly concatenated in query an input string (the l variable).
As for the second program, in Figure 2(b) we see that after instruction 1 x surely
contains ‘a’. Inside the loop (line 3), x surely contains ‘a’, ‘0’ and ‘1’. In line 4 we
report the least upper bound between the value of x before entering the loop (line
1) and the value after the loop (line 4): variable x surely contains the character
‘a’, and it also may contain the characters ‘0’ and ‘1’.

4.2 Prefix and Suffix

The next abstract domain we consider approximates strings by their prefix. A
string will be a sequence of characters which begins with a certain sequence of
characters and ends with any string (we use ∗ to represent any string, ϵ included).
For example, abc∗ represents all the strings which begin with “abc”, including
“abc” itself. Since the asterisk ∗ at the end of the representation is always present,
we do not include it in the domain and consider abstract elements made only of
sequence of characters: PR = K∗ ∪ ⊥PR The partial order on this domain is:
S ≤PR T ⇔ S = ⊥PR ∨ (∀i ∈ [0, len(T)− 1] : len(T) ≤ len(S) ∧ T[i] = S[i])

An abstract string S is smaller than T if T is a prefix of S or if S is the bottom
⊥PR of the domain. The least upper bound operator is defined as the longest
common prefix of two strings. The greater lower bound is defined by:

⊓PR(S1,S2) =

S1 if S1 ≤PR S2
S2 if S2 ≤PR S1
⊥PR otherwise

The widening operator is simply the upper bound operator above, as the
latter converges in finite time. Top and bottom elements are, respectively, ϵ
(the empty prefix) and ⊥PR. The function which abstracts a single string is
α′
PR(s) = s. The abstraction function is αPR(S1) =

⊔
PR,s∈S1

α′
PR(s). This

means that we consider the longest common prefix amongst all strings in S1.
We can track information about the suffix of a string as well. We define

another abstract domain, SU , where a string will be something which ends with
a certain sequence of characters. The notation and all the operators of this
domain are dual to those of the previous domain. The definition of the domain
is: SU = K∗ ∪ ⊥SU . The partial order is:

S ≤SU T ⇔ S = ⊥SU ∨ (∀i ∈ [0, len(T)− 1] : len(T) ≤ len(S)∧
T[i] = S[i+ len(S)− len(T)])

The least upper bound ⊔SU is the longest common suffix, while the greatest
lower bound ⊓SU is the smallest suffix (if they are comparable) or ⊥SU (if they
are not comparable). The widening operator is the least upper bound operator
above. The top element is ϵ. The function which abstracts a single string is:
α′
SU (s) = s, and the abstraction function is αSU (S1) =

⊔
SU ,s∈S1

α′
SU (s).

7

SPRJnew String(str)K() = str

SPRJconcatK(p1, p2) = p1
SPRJreadLineK() = ϵ

SPRJsubstringebK(p) =


p[b · · · e− 1] if e ≤ len(p)
p[b · · · len(p)− 1] if e > len(p) ∧ b < len(p)
ϵ otherwise

BPRJcontainscK(p) = {
true if c ∈ char(p)
⊤B otherwise

Table 4. The abstract semantics of PR

SSUJnew String(str)K() = str

SSUJconcatK(s1, s2) = s2
SSUJreadLineK() = ϵ

SSUJsubstringebK(s) = ϵ

BSUJcontainscK(s) =
=

{
true if c ∈ char(s)
⊤B otherwise

(a) The abstract semantics of
SU

#I Var PR SU
1 query s1 s1
3 l ϵ ϵ
3 query s1 s3
4 query s1 “ ”
5 per s4 s4
7 query s1 s6
(b) First running
example

#I Var PR SU
1 x a a
3 x 0 1
4 x ⊤ ⊤
(c) Second run-
ning example

Fig. 3. The abstract semantics of SU and the running examples

These abstract domains could be particularly useful to check if some simple
syntactic properties (e.g., a string that is used as an SQL command always begins
with “SELECT” and ends with “; ”) are respected by all possible executions.

Semantics Table 4 and 3(a) define the abstract semantics on PR and SU
respectively. The most precise suffix and prefix of a constant string are the string
itself. When we concatenate two strings, we consider as prefix and suffix of the
resulting string the abstract value of the left and right operand respectively. As
usual, the semantics of readLine returns the top value. The same happens for
substringeb in SU , since we do not know how many characters there are before
the suffix. Instead, PR can be more precise if b (and eventually e) are smaller
than the length of the prefix we have. Finally, the semantics of containsc returns
true iff c is in the prefix or suffix, and ⊤B otherwise, since we have no information
at all about which characters are after the prefix or before the suffix.

Running Example The results of the analyses using the prefix and suffix do-
mains on our running examples are reported in Figures 3(b) and 3(c).
For the first program, at line 1, query contains the whole string s1 as both prefix
and suffix. As already pointed out, l is an input of the user, so we do not know
what its prefix and suffix are. On the other hand, when we concatenate it at line
3, we still have some information on the prefix and suffix of the resulting string.
Thus, at the end of the analyses, we get that the prefix of query is string s1, its
suffix is s6, although we lose information about what there is in the middle.
For the second program, before entering the loop we know the prefix and suffix

8

of x. Inside the loop after line 3, the convergence for x is ‘0’ as prefix and ‘1’
as suffix. This state, combined through the lub operator with the state before
the loop, unfortunately goes to ⊤ (the longest common prefixes and suffixes are
empty), making us lose all the information.

4.3 Bricks

The next abstract domain, BR, captures both inclusion and order amongst char-
acters, using a simplification of regular expressions. Therefore, the information
tracked by this domain could be adopted to prove more sophisticated proper-
ties than the previous domains (e.g., the well-formedness of SQL queries). A
string is approximated by a combination of bricks. A brick is defined as an ele-
ment of: B = [℘(S)]min,max, where min and max are two integer positive values.
A brick represents all the strings which can be built through the given strings,
taken between min and max times altogether. For example, [{“mo”, “de”}]1,2 =
{mo, de,momo, dede,mode, demo}. We represent strings as ordered lists of bricks.
For example we have that [{“straw”}]0,1[{“berry”}]1,1 = {berry, strawberry}
since [{“straw”}]0,1 concretizes to {ϵ, “straw”} and [{“berry”}]1,1 to {“berry”}.
Since a particular set of strings could be represented by more than one combi-
nation of bricks, we adopted a normalised form in which the lists are made of
bricks like [T]1,1 or [T]0,max>0, where T is a set of strings. We defined a function
normBricks(L) which, given a list of bricks L, returns its normalized version.

The abstract domain of bricks is defined as: BR = B∗
, that is, the set of all

finite sequences composed of bricks. The top element ⊤BR is a list contain-
ing only ⊤B. The bottom element is ⊥BR, an empty list or any list which
contains at least one invalid element (⊥B). The partial order between single
bricks is: [C1]

min1,max1 ≤B [C2]
min2,max2 ⇔ (C1 ⊆ C2 ∧ min1 ≥ min2 ∧ max1 ≤

max2) ∨ [C2]
min2,max2 = ⊤B ∨ [C1]

min1,max1 = ⊥B where ⊤B and ⊥B are special
bricks, respectively greater and smaller than any other brick. The partial order
between lists of bricks L1 and L2 is as follows:

L1 ≤BR L2 ⇔ (L2 = ⊤BR) ∨ (L1 = ⊥BR) ∨ (∀i ∈ [1, n] : L1[i] ≤B L2[i])
where we make L1 and L2 have the same size n by adding empty bricks ([∅]0,0)

at the end of the shorter list. The upper bound operator on a single brick is:⊔
B([S1]

m1,M1 , [S2]
m2,M2) = [S1 ∪ S2]

min(m1,m2),max(M1,M2)

The upper bound operator on lists of bricks (elements of our domain) is as
follows: given two lists L1 and L2, we make them to have the same size n adding
empty bricks to the shorter one. Then:

⊔
BR(L1, L2) = LR[1]LR[2] . . . LR[n] where

∀i ∈ [1, n] : LR[i] = ⊔B(L1[i], L2[i]).
Let kL, kI and kS be three constant integer values. The widening operator ∇BR :
(BR× BR) → BR is defined as follows:

∇BR(L1, L2) =


⊤BR if (L1 �BR L2 ∧ L2 �BR L1)∨

(∃i ∈ [1, 2] : len(Li) > kL)
w(L1, L2) otherwise

where w(L1, L2) =

[Bnew
1 (L1[1], L2[1]);B

new
2 (L1[2], L2[2]); . . . ;B

new
n (L1[n], L2[n])], with n being the size

of the bigger list (we make them to have the same size n adding empty bricks to
the shorter one), and Bnew

i (L1[i], L2[i]) is defined by:

9

SBRJnew String(str)K() = [{str}]1,1
SBRJconcatK(b1, b2) = normBricks(concatList(b1, b2))

SBRJreadLineK() = ⊤BR

SBRJsubstringebK(b) = {
[T

′
]1,1 if b[0] = [T]1,1 ∧ ∀t ∈ T : len(t) ≥ e

⊤BR otherwise

BBRJcontainscK(b) =


true if ∃B ∈ b : B = [T]m,M ∧ 1 ≤ m ≤ M ∧ (∀t ∈ T : c ∈ char(t))

false if ∀[T]m,M ∈ b, ∀t ∈ T : c /∈ char(t)
⊤B otherwise

Table 5. The abstract semantics of BR

Bnew
i ([S1i]

m1i,M1i , [S2i]
m2i,M2i) =


⊤B if |S1i ∪ S2i| > kS

∨L1[i] = ⊤B ∨ L2[i] = ⊤B

[S1i ∪ S2i]
(0,∞)

if (M−m) > kI

[S1i ∪ S2i]
(m,M)

otherwise
where m = min(m1i,m2i) and M = max(M1i,M2i). ∇BR is an upper bound op-
erator because it returns either ⊤BR or w(L1, L2), which builds a new list of
bricks which is bigger (with respect to ≤BR) than both L1 and L2. The resulting
list is greater or equal because each brick is greater than or equal to the two cor-
responding bricks in L1 and L2, since we always take the union of the two strings
sets and an index range bigger than the initial two. Moreover, this operator con-
verges because a value of an ascending chain can increase along three axes: (i)
the length of the brick list, (ii) the indices range of a certain brick, and (iii) the
strings contained in a certain brick. The growth of an abstract value is bounded
along each axis with the help of the three constants. After the list has reached kL
elements, the entire abstract value is approximated to ⊤BR. If the range of a cer-
tain brick becomes larger than kI , the range is approximated to (0,+∞). Finally,
if the strings set of a certain brick reaches kS elements, the brick is approximated
to ⊤B. The lower bound operator is dual with respect to the upper bound op-
erator above. Formally,

d
B([S1]

m1,M1 , [S2]
m2,M2) = [S1∩S2]

max(m1,m2),min(M1,M2).
The abstraction function is defined by: α′

BR(s) = [{s}](1,1) and

αBR(S1) =
⊔

BR,s∈S1
α′
BR(s) = [S1]

(1,1)

Semantics Table 5 defines the abstract semantics on BR. When a constant
string is evaluated, the semantics returns a single brick containing exactly that
string with [1, 1] as index. For the concatenation of two strings, we rely on the
concatList function that concatenates two lists of bricks, and then we normalise
its result. readLine returns the top value, while substringeb returns the sub-
string iff the first brick of the list has index [1, 1] and the length of all the strings

contained in it is greater than e. Notice that T
′
= {t.substring(b, e)∀t ∈ T}.

Finally, the semantics of containsc returns true iff there is surely at least one
brick that contains c and whose minimal index is at least 1. It returns false iff
all the bricks do not contain c, and ⊤B otherwise.

10

#I Var BR
1 query [{s1}]1,1
3 l ⊤B
3 query [{s1 + s2}]1,1⊤B[{s3}]

1,1

4 query [{s1, s1 + s2}]1,1⊤B[{s3}]
0,1

5 per [{s4}]1,1
7 query [{s1, s1 + s2}]1,1⊤B[{s3}]

0,1

[{s5 + s4 + s6}]1,1
(a) First running example

#I Var BR
1 x [{“a”}]1,1
3 x ⊤
4 x ⊤
(b) Second run-
ning example

Fig. 4. The results of BR

Running Example The results of the analysis of the running examples using
BR are depicted in Figures 4(a) and 4(b). For the first program, the bricks of
the final result on query are four: (i) the first brick represents a string between
s1 and s1 + s2, (ii) the second brick corresponds to the input l, (iii) the third
brick could be the empty string ϵ or s3, and (iv) the fourth brick represents the
concatenation of s5, s4, and s6. We can see that the precision is higher than in
the previous domains, but still not the best we aim to get: amongst the concrete
results we have, for example, s1 + s3 + s5 + s4 + s6, which cannot be computed
in any execution of the analysed code. For the second program, the result is
unsatisfactory: the use of the widening operator makes us lose all information.
At the end of the program, variable x has value ⊤.

4.4 String Graphs

The last abstract domain we introduce exploits type graphs, a data structure
which represents tree automata [15], adapting them to represent sets of strings.
A type graph T is a triplet (N,AF ,AB) where (N,AF) is a rooted tree whose arcs
in AF are called forward arcs, and AB is a restricted class of arcs, backward arcs,
superimposed on (N,AF). Each node n ∈ N of a type graph has a label, denoted
by lb(n), indicating the kind of term it describes, and the nodes are divided into
three classes: simple, functor and OR nodes. We use the convention that n/i
denotes the i-th son of node n, and the set of sons of a node n is then denoted as
{n/1, . . . , n/k} with k = outdegree(n) where outdegree is a function that given a
node returns the number of its sons. We define a modified version of type graphs,
called string graphs, which represent strings instead of types. String graphs have
the same basic structure of type graphs. The following differences distinguish
them: (i) simple nodes have labels from the set {max,⊥, ϵ} ∪ K; (ii) the only
functor we consider is concat (with its obvious meaning of string concatenation).
Thus, functor nodes are labelled with concat/k. An example is depicted in Figure
5. The root of the string graph is an OR node with two sons: a simple node (b)
and a concat node with two sons of its own. The second son of the concat node
is the root (with the use of a backward arc). Such string graph represents the
following set of strings: {b, ab, aab, aaab, . . . } = a∗b.

11

Fig. 5. An example of
string graph

The abstract domain is: SG = NSG, where NSG is
the set of all Normal String Graphs. In fact, the type
graphs are very suitable for representing a set of terms.
However, several distinct type graphs can have the same
denotation. The existence of superfluous nodes and arcs
makes operations needed during abstract interpretation,
such as the ≤-operation, quite complex and inefficient.
In order to reduce this variety of type graphs, additional
restrictions are imposed (for details see [15]), defining
normal type graphs. We added a few other restrictions
(specific for string graphs), thus obtaining the definition
of normal string graphs. For example, we impose that
concat nodes are not allowed to have only one son (they
should be replaced by the son itself) or that a concat node cannot have two
successive sons with both label concat (they should be merged together). An
algorithm of normalisation (normStringGraph), encapsulating all those rules, is
defined as well.
The bottom element ⊥SG is a string graph made by one bottom node. The
top element is a string graph made by only one node, a max-node. To define
the partial order of the domain we can exploit an algorithm defined in [15]:
≤ (n,m, ∅). The algorithm compares the two nodes in input (n,m). In some
cases the procedure is recursively called, for example if n and m are both concat
or OR nodes. Note that the recursive call adds a new edge ({n,m}) to the third
input parameter (a set of edges). If, at the next execution of the procedure
(≤ (n′,m′,E)), the edge {n′,m′} is contained in E then the procedure immediately
returns true. The order is then:

T1 ≤SG T2 ⇔ T1 = ⊥SG ∨ (≤ (n0,m0, ∅) : n0 = root(T1) ∧ m0 = root(T2))

where root(T) is the root element of the tree defined in T. The least upper bound
between two string graphs T1 and T2 can be computed creating a new string
graph T whose root is an OR-node and whose sons are T1 and T2. Then we
apply the compaction algorithm that will transform T in a normal string graph:⊔

SG(T1,T2) = normStringGraph(OR(T1,T2))

The greatest lower bound operator is described in the appendix of [15], while
the widening operator is described in [23]. The abstraction of a string is: α′

SG(s) =

concat/k{s[i] : i ∈ [0, k− 1]} where k = len(s), and the abstraction function is:

αSG(S1) =
⊔

SG,s∈S1
α′
SG(s) = normStringGraph(OR{α′

SG(s) : s ∈ S1})
Semantics Table 6 defines the abstract semantics on SG. The evaluation of a
string returns a concat containing the sequence of all the characters of the string.
When we concatenate two strings, the semantics returns the normalisation of a
concat node containing the two strings in sequence. As usual, the semantics
of readLine returns the top value. The semantics of substringeb (where res =
concat/(e− b){(root(t)/i) : i ∈ [b, e− 1]}) returns a precise value only if the root
is a concat node with at least e characters. Finally, containsc returns true iff
there is a concat node containing c in the tree, and without any OR node in the
path from the root to this node.

12

SSGJnew String(str)K() = concat/k{str[i] : i ∈ [0, k− 1]}
SSGJconcatK(t1, t2) = normStringGraph(concat/2{t1, t2})
SSGJreadLineK() = ⊤SG

SSGJsubstringebK(t) = {
res if root(t) = concat/k ∧ ∀i ∈ [0, e− 1] : lb(root(t)/i) ∈ K
⊤SG otherwise

BSGJcontainscK(t) =


true if ∃m ∈ t : m = concat/k ∧ OR /∈ path(root,m)∧
∃i : lb(m/i) = c

false if @n ∈ t : lb(n) = max ∨ lb(n) = c

⊤B otherwise

Table 6. The abstract semantics of SG

#I Var SG
1 query concat[s1]
3 l max
3 query concat[s1 + s2;max; s3]

4 query SG1 = OR[concat[s1];
concat[s1 + s2;max; s3]]

5 per concat[s4]

7 query concat[SG1;
concat[s5 + s4 + s6]]

(a) First running example

#I Var SG
1 x concat[“a”]
3 x OR1[“a”; concat[“0”;OR1; “1”]]
4 x OR1[“a”; concat[“0”;OR1; “1”]]

(b) Second running example

Fig. 6. The results of SG

Running Example The results of the analysis of the running examples through
string graphs are depicted in Figures 6(a) and 6(b). For sake of simplicity, we
adopt the notation concat[s] to indicate a string graph with a concat node whose
sons are all the characters of string s. The symbol + represents, as usual, string
concatenation, while ; is used to separate different sons of a node.
For the first program, the resulting string graph for query represents exactly the
two possible outcomes of the procedure. For the second program, the resulting
string graph for x represents exactly all the concrete possible values of x. Note
that the resulting string graph contains a backward arc to allow the repetition
of the pattern 0n . . . 1n. This abstract domain is the most precise domain for
the analysis of both running examples: it tracks information similarly to BR
domain, but its lub and widening operators are definitely more accurate.

4.5 Discussion: Relations Between the Four Domains

The abstract domains we introduced in the previous sections track different types
of information. Let us discuss the relations between different domains. Intuitively,
there are two axes on which the analyses of string values can work: the characters
contained in a string, and their position inside the string. It is easy to see that the

13

CI, PR and SU are less precise than BR and SG. In fact, CI domain considers
only character inclusion and completely disregards the order. PR and SU do-
mains consider also the order, but limiting themselves to the initial/final segment
of the string, and in the same way they collect only partial information about
character inclusion. BR and SG, instead, track both inclusion and order along
the string. In [3] we studied these relationships in details: we defined pairs of
functions (abstraction and concretization) from domain to domain, and showed
that CI, PR and SU are more abstract (i.e., less precise) than both BR and SG.
In the case of BR versus SG, the comparison is more complex, since they exploit
very different data structures. For example, SG has OR-nodes, while BR can
only trace alternatives inside bricks but not outside (like: “these three bricks or
these other two”). From this perspective, SG is more precise than BR. Another
important difference is that SG has backward arcs which allow repetitions of pat-
terns, but they can be traversed how many times we want (even infinite times).

Fig. 7. The hierarchy of
abstract domains

With BR, instead, we can indicate exactly how
many times a certain pattern should be repeated
(through the range of bricks). This makes BR more
expressive than SG in that respect. So, these do-
mains are not directly comparable. We obtain the
lattice depicted in Figure 7, where the upper do-
mains are more approximated. We denote by ⊤ the
abstract domain that does not track any informa-
tion about string values, and by ℘(K∗) the (näıve
and uncomputable) domain that tracks all the pos-
sible strings values we can have.

In conclusion, the first three domains (CI, PR,
SU) are not so precise but the complexity is kept
linear, whereas the other domains (BR and SG) are
more demanding (though in the practice complexity
is still kept polynomial) but also more precise.

5 Related Work

The static analysis of strings was addressed in various directions.
Kim and Choe [16] introduced recently an approach based on abstract inter-

pretation. They abstract strings with pushdown automata (PDA). The result of
the analysis is compared with a grammar to determine if all the strings generated
by the PDA belong to the grammar. This approach has a fixed precision, and in
the worst case (not often encountered in practice) it has exponential complexity.

Hosoya and Pierce [14] used tree automata to verify dynamically generated
XML documents. The regular expression types of this approach recall our BR
domain, while the tree automata recall our SG domain. However, they are fo-
cused on building XML documents, while our focus is on collecting possible
values of generic string variables. In addition, they require to manually annotate
the code through types while our approach is completely automatic.

14

Amore recent work was developed by Yu et al. [24]. It presented an automata-
based approach for the verification of string operations in PHP programs. The
information tracked by this analysis is fixed, and it is specific for PHP programs.

Tabuchi et al. [21] presented a type system based on regular expressions. It is
focused on a λ-calculus supporting concatenation, and pattern matching. Some
type annotation is required when dealing with recursive function.

Thiemann [22] introduced a type system for string analysis based on context-
free grammars. Their analysis is more precise than those based on regular expres-
sions, but the only supported string operator is concatenation, and the analysis
is tuned at a fixed level of precision.

Context-free grammars are also the basis of the analysis of Christensen et al.
[1]. This analysis is tuned at a fixed level of abstraction. In the second running
example of this paper, SG domain reaches a better precision than theirs.

Minamide [18] presented an analysis to statically check some properties of
Web pages generated dynamically by a server-side program. This work is specific
for HTML pages, while we do not need to know the reference grammar a priori.
Also in this case, SG obtain a better precision on the loop example.

Doh et al. [8] proposed a technique called “abstract parsing”: it combines
LR(k)-parsing technology and data-flow analysis to analyse dynamically gener-
ated documents. Their technique is quite precise, but the level of abstraction is
fixed, and it cannot be tuned at different levels of precision and efficiency.

Given this context, our work is the first one that (i) is a generic, flexible,
and extensible approach to the analysis of string values, and (ii) can be tuned
at different levels of precision and efficiency.

6 Conclusion and Future Work

In this paper we introduced a new framework for the static analysis of string
values, and four different abstract domains. We chose some string operators on
which we focused our approach defining the concrete and the abstract semantics.
Future work We are working on the implementation of our approach in Sample
(Static Analyzer of Multiple Programming LanguagEs) [9]. We plan to apply
our analysis to some case studies to study the precision of our analysis. In order
to check the scalability and performances of our approach, we plan to apply our
analysis to some Scala standard libraries. Some preliminary experimental results
point out that CI and PR × SU are quite efficient, BR is slower but still fast,
while SG’s performances seem to be still critical.

Acknowledgments. Work partially supported by RAS project “TESLA - Tec-
niche di enforcement per la sicurezza dei linguaggi e delle applicazioni”, and by
SNF project “Verification-Driven Inference of Contracts”.

References

1. A. Christensen, A. Moller, and M. Schwartzbach. Precise analysis of string expres-
sions. In Proceedings of SAS ’03, pages 1–18. Springer-Verlag, 2003.

15

2. A. Cortesi and M. Zanioli. Widening and narrowing operators for abstract inter-
pretation. In Computer Languages, Systems and Structures, volume 37(1), pages
24–42. Elsevier, 2011.

3. G. Costantini. Abstract domains for static analysis of strings. Master’s thesis, Ca’
Foscari University of Venice, 2010.

4. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL ’77.
ACM, 1977.

5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL ’79. ACM, 1979.

6. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE analyzer. In Proceedings of ESOP ’05, LNCS. Springer-Verlag, 2005.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of POPL ’78. ACM Press, 1978.

8. K. Doh, H. Kim, and D. Schmidt. Abstract parsing: Static analysis of dynamically
generated string output using lr-parsing technology. In Proceedings of SAS ’09,
pages 256–272. Springer-Verlag, 2009.

9. P. Ferrara. Static type analysis of pattern matching by abstract interpretation. In
Proceedings of FORTE/FMOODS ’10, LNCS. Springer, 2010.

10. C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated queries
in database applications. In Proceedings of ICSE ’04, pages 645–654. IEEE Com-
puter Society, 2004.

11. P. Granger. Static analysis of linear congruence equalities among variables of a
program. In Proceedings TAPSOFT ’91, LNCS. Springer-Verlag, 1991.

12. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In Proceedings of POPL ’11. ACM, 2011.

13. P. Hooimeijer and M. Veanes. An evaluation of automata algorithms for string
analysis. In Proceedings of VMCAI ’11. Springer Verlag, 2011.

14. H. Hosoya and B. Pierce. Xduce: A statically typed xml processing language. ACM
Trans. Internet Technol., 3(2):117–148, 2003.

15. G. Janssens and M. Bruynooghe. Deriving description of possible values of program
variables by means of abstract interpretation. Journal of Logic Programming, 13(2-
3):205–258, 1992.

16. S.-W. Kim and K.-M. Choe. String analysis as an abstract interpretation. In
Proceedings of VMCAI ’11. Springer Verlag, 2011.

17. F. Logozzo and M. Fähndrich. Pentagons: A weakly relational domain for the
efficient validation of array accesses. In Proceedings of SAC ’08. ACM Press, 2008.

18. Y. Minamide. Static approximation of dynamically generated web pages. In Pro-
ceedings of WWW ’05, pages 432–441. ACM, 2005.

19. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
2006.

20. R.Halder and A.Cortesi. Obfuscation-based analysis of sql injection attacks. In
IEEE, editor, Proceedings of ISCC 2010, 2010.

21. N. Tabuchi, E. Sumii, and A. Yonezawa. Regular expression types for strings in a
text processing language. Electr. Notes Theor. Comput. Sci., 75, 2002.

22. P. Thiemann. Grammar-based analysis of string expressions. In Proceedings of
TLDI ’05, pages 59–70. ACM, 2005.

23. P. van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of prolog using
type graphs. Journal of Logic Programming, 22(3):179–208, 1995.

24. F. Yu, T. Bultan, M. Cova, and O. Ibarra. Symbolic string verification: An
automata-based approach. In Proceedings of SPIN ’08, 2008.

16

