Refining Nodes and Edges of State Machines

Stefan Hallerstede! and Colin Snook?

L University of Diisseldorf
2 University of Southampton

Abstract. State machines are hierarchical automata that are widely
used to structure complex behavioural specifications. We develop two
notions of refinement of state machines, node refinement and edge re-
finement. We compare the two notions by means of examples and argue
that, by adopting simple conventions, they can be combined into one
method of refinement. In the combined method, node refinement can
be used to develop architectural aspects of a model and edge refine-
ment to develop algorithmic aspects. The two notions of refinement are
grounded in previous work. Event-B is used as the foundation for our
refinement theory and UML-B state machine refinement influences the
style of node refinement. Hence we propose a method with direct proof of
state machine refinement avoiding the detour via Event-B that is needed
by UML-B.

1 Introduction

Theories and calculi of verification and refinement are established: for instance,
Hoare logic [4], refinement calculus [I3] and Event-B [2]. Hoare logic is difficult
to use on a larger scale. Refinement addresses some shortcomings of Hoare logic
allowing properties of less detailed abstractions to be proved before turning to
the detailed implementation. However, the refinement calculi are rather restric-
tive when it comes to system modelling. The refinement method of Event-B
relaxes some of the restrictions by abandoning most control structure and using
a weaker semantic foundation. In [2] a large number of complex models are pre-
sented to demonstrate verification on a larger scale. Still, two problems remain:
it can be difficult to build larger models that are inherently structured and to
master more complex sequences of refinements. Our main concern in this article
is making verification and refinement easier to use. To this end, we are inter-
ested in methods and techniques for stating, managing and visualising complex
verification and refinement proofs.

UML-B, a UML-based notation defined on top of Event-B, has been devel-
oped over the last ten years to support the writing of more complex models
with consequent structuring needs, in particular, state machines [17]. UML-B
was first invented in [I8] as a UML profile with translation to B and has been
developed into a diagrammatic front-end to Event-B.

UML-B supports refinement of state machines but is not equipped with its
own theory of refinement. It relies on a translation to Event-B using explicit

variables to represent the state machines [14]. Recently we have also evaluated
the use of Event-B for the development of sequential programs [8]. The lack of
control structures can make modelling of such algorithms difficult. However, the
advances made by Event-B with respect to incremental proving [3] are mainly
due to the lack of control structures. Avoiding the reintroduction of control
structures we use state machine notation to provide the needed features [7]. The
refinement method of [14] could be named “node refinement”: nodes are replaced
by state machines. The choice of [7], “edge refinement” is different: edges are re-
placed by state machines. In this article we compare the two refinement methods.
We are specifically interested in their similaritiesﬂ For this purpose we have for-
malised the refinement notion underlying the conventions of UML-B via node
refinement. This formalisation of edge and node refinement is independent from
Event-B. It is an alternative refinement based on the diagrammatic notations
and, unlike UML-B, does not involve translation into the Event-B notation. We
suggest a combined method that allows us to switch between the two at any
refinement step. In the future, we think they could be merged entirely, so that
we would get one refinement method with perspectives of node and edge refine-
ment. However, this is likely to change both refinement methods. We believe it
is of interest to present the two methods before unifying them so that it will be
easier to judge what is gained and what is lost in the unification.

In our use of state machine diagrams, they serve to describe refinement
proofs. The possible execution semantics is secondary. We content ourselves with
the potential of an operational interpretation. Invariant based programming de-
scribed in [5] follows a similar approach for the construction of correct programs.
It uses refinement in the sense of [19] to construct a correctness proof along with
the corresponding correct program. In comparison, our approach is intended to
be used for program development but also for systems modelling. Our definitions
of refinement obey the “statechart refinement rules for behavioural compatibil-
ity” stated in [I5]. However, we focus on the development of a proof method
whereas [I5] uses the rules to formulate an approach for test case generation.
The related [12] focuses on common patterns of structural refinement that could
be used with state machines. In [IT] formal semantics of state machines is dis-
cussed and proof rules for superposition refinement are proposed. By contrast,
we use the more general Event-B refinement as a foundation of our approach.
Comparatively simple structural refinement for state machines based on Event-B
has been discussed in [I6]. In [6] JSD-like diagrams are used to illustrate con-
current Event-B models and their refinement but the diagrams are not formally
linked to Event-B models.

Overview. In Section [2] we briefly introduce the state machine notation that
we use and in Section [J] we outline the two refinement methods. In Section [4]
we present the construction of an iterative Quicksort algorithm using the two
methods side by side. This could give the impression that the two notions are
interchangeable. In Section [5| we present a development by node refinement of
a simple controller which is not an edge refinement and we suggest a combined

! When looking at [I4] and [7] the similarities are far from obvious.

refinement method that permits mixing node and edge refinement. Section [0]
draws a conclusion and sketches some future work.

2 State machines

State machines are a diagrammatic modelling notation where the condition of
a system is represented by states (denoted by the nodes of a graph) and the
behaviour of the system is represented by transitions connecting the nodes (de-
noted by edges of a graph). The UML contains a hierarchical state machine
notation which is widely used in industry and that has been adopted by UML-
B. Fig. shows a typical UML state machine. For our purposes it is easier

(a) UML notation (b) Reduced notation

Fig. 1: State machine notation

to work with a simpler reduced notation without explicit initial “®” and final
states “(@” as shown in Fig. This makes it easier to define (refinement)
proof obligations.

In this paper, we represent a node as () and an edge, connecting two nodes,
as —>. Convergent loop edges < may be used to indicate that the loop edge
may only be followed finitely often before an “ordinary edge” is followed. The
restriction to convergent loops is inherited from Event-B where event may be
marked ‘convergent’ or ‘anticipated’ﬂ Loop edges are often used to prepare for
introducing and proving the convergence of a more complex loop involving sev-
eral edges and nodes. Edges are labelled with events that describe the effect of
following that edge. An event has the shape any p when g then z := a. The
parameters p are non-deterministically chosen when an event occurs. The guard
g of an event states the condition, a first-order predicate, under which the event
may occurE| If its guard is true an event is said to be enabled. The action of an
event is an (simultaneous) update statement of the form = := a where z is a
variable (list) of the state machine containing the event and a is an expression
(list). Clauses of an event are simply left out when they would have no effect.

2 We do not distinguish those two concepts but simply allow convergence to be proved
at later refinement steps.
3 Predicates p, ¢ written on consecutive lines are implicitly conjoined.

The parameters may be left out if there are none, a guard if it is true, an action
ifitis z := .

Nodes are labelled by assertions. If A is the label of a node, we write “QA p”
to say that “A contains p” or, in other words, “p holds at A”. We also call
assertions of nodes with loop edges invariantsﬁ In formulas we use A to stand
for p. State machines are a notation for proofs similarly to proof outlines [4]. An
edge labelled e where e = any p when g then z := a connecting a node labelled
A to a node labelled B corresponds to a proof obligation: A A g = B[z := a.
Formal proof is the central aspect of our notation replacing the operational view
of UML-B.

State machine notation supports hierarchical construction where state ma-
chines may be nested within a node of the parent state-machine. We refer to
the node containing the nested state machine as a super-node and represent it
as (). Super nodes structure assertions: if a super node A contains a node (or
super node) B then B contains all assertions that A contains. This is their only
function in our approach. We do not attach any operational meaning to super
nodes. Super nodes are essential in our definition of node and edge refinement.
Super nodes (themselves) are not connected by edges. Sometimes we draw an
edge exiting a super-node as an abbreviation for an edge that exits all contained
nodes. This is often used in node refinement diagrams. For edge refinement dia-
grams we need a third kind of edge: anonymous edges — that are not labelled.
They can be imagined to be labelled with skip, the event that is always enabled
and does not change the state. In a state machine we identify initial nodes to be
those nodes that do not have entering edges, and final nodes to be those nodes
that do not have exiting edges. An anonymous edge entering a super node is to
be connected to the initial nodes of the contained state machine; an anonymous
edge exiting a super node is to be connected to the final nodes. An anonymous
edge connecting A to B corresponds to the proof obligation A= B. Anonymous
edges are needed in edge refinement diagrams to model conditional statements.

We have adapted the notation to emphasise similarities between the two no-
tions of refinement. In particular, we do not use the notation of [7] for edge
refinement and of [14] for node refinement. This makes it easy to see the dif-
ferences and similarities and suggests how combined use of the two methods is
possible. (The striking similarity that results from the common notation strongly
suggests combined use or unification.) We believe that it should be possible to
unify the two methods completely into a single refinement method, but as a
consequence they could both lose their defining characteristics: specialisation on
either architectural or algorithmic refinement. The new method will have to re-
cover the two aspects in order to provide strong methodological guidelines for
the use of the unified method.

4 By contrast, an Event-B model has only one “global” invariant. Nodes of our notation
would have to be represented in Event-B by abstract program counters.

3 Refinement

We discuss the two refinement notions by means of the refinement diagrams
stated in Fig. [2l The concepts are easy to generalise. See, e.g., [II] for node
refinement and [7] for edge refinement. Fig. shows a state machine that
we use as an abstraction (also called abstract model) for the refinements shown
in Fig. to Fig. (also called concrete models). The proof obligations
are adapted from corresponding Event-B proof obligations. We use the same

(a) State machine (b) Refinement of A and B (c) Refinement of A (d) Reuse of B

Fig.2: Refinement diagrams

diagrams to describe both refinement methods. Edges of concrete models may be
labelled with events e occurring already in the abstract model: the concrete event
e = any g when h then y := b refines the abstract event e = any p when g then x :=
a. For instance, the proof obligation for the edge labelled e in Fig. is:
CANRAW =gAD[z,y := a,b], where W is a predicate, called witness, that relates
the concrete parameters ¢ to the abstract parameters p. The existence of suitable
parameters ¢ must be proved: CAh=-(3q - W). A refinement may also introduce a
new name f for a refined event e by stating the abstract name in brackets behind
the new concrete name: f (e). Concrete edges otherwise labelled with events that
do not occur in the abstract model are said to be new. New events, e.g., ¢ in
Fig. must refine skip, the event that is always enabled and does not change
the state. For ¢ = any ¢ when h then y := b we have to prove: # Ah=Cly := b].
For a convergent loop edge (4)@ e where e = any p when g then z := a we have
to provide a wvariant u and prove AANg=u>0and AAg= ulx:=a] <u,or
the corresponding proof obligation for a refinement of eE| While e has not been
proved convergent, we have to show for refinements any ¢ when h then y := b of
e that they do not “disturb” new convergent edges introduced in a refinement
of A or e. We have to prove: FAh=-u> 0 and FAh=u[r := a] < u where F
is a node introduced in a refinement of A or e, and u the variant of some other
convergent event.

In Fig. only (super) node A looks affected by the refinement. However,
in a refinement all nodes are replaced. The outgoing edge labelled e is simply
connected to node B. The node B shown in the figure is considered a node
of the concrete model. We can think of it as a node B inside a super node B

® We also allow finite set as variants but do not provide proof obligations here. See [Z].

(see Fig. that is not shown. Assertions in refinements are always added
to concrete nodes. This approach avoids adding assertions accidentally to many
nodes when data-refining. The super nodes in refinement diagrams are also used
to indicate containment of assertions among concrete nodes. For instance, an
assertion added to B in Fig. is also added to D as indicated by the super
node labelled B. Edges in refinement diagrams can only connect concrete nodes.
Everything not shown in a refinement diagram stays structurally unchanged.

Node refinement. Node refinement replaces a node with a super-node, hence
an assertion with a collection of more precise assertions. The new nodes enable
new edges to be added and old edges to be replicated (for instance, elaborating
non-deterministic choices present in events, in the diagram). New edges may be
added between nodes inside a (refined) super-node and must not exit or enter
that super-node. Edges of the abstract state-machine must be preserved: their
refinements must connect the corresponding (refined) super-nodes. A loop edge,
having the same node for both its source and its target, is refined by a transition
between two nodes inside the corresponding refined super-node.

Edge refinement. Edge refinement replaces an edge with a state machine that
is to be inserted between the source and the target of the edge. State machines
occurring in edge refinements must have at most one initial node where the
execution of the modelled algorithm would start. Nodes occurring in state ma-
chines introduced by edge refinements may have at most one edge entering from
other nodes. But they may have several loops. More complex diagrams can be
constructed using super nodes and anonymous edges. The constructed diagrams
correspond closely to proof outlines as discussed in [4].

4 Development of a sequential algorithm

In [2] it is shown how Event-B can be used for the development of sequential
algorithms. The proof method is well-suited for this purpose, providing strong
support for finding invariants and carrying complex termination proofs. Recently,
we argued [8] that some structuring facilities would benefit the method in terms
of proof methodology and potential scaling. State machines could solve some
of the issues involved. Developing a sequential algorithm we present the two
approaches to state machine refinement side by side. Node and edge refinement
provide two different views on the same development with the same proofs,
documenting and explaining different aspects of the involved refinement steps.
We do not present the proof obligations and proofs in full. It is rather intricate.
Instead, we want to convey that using the two refinement techniques, finding the
proof and presenting it are made much easier. The associated proof obligations
have been produced by imitating the notation in Event-B. That is, we have used
Rodin tool [3] to carry out the proofs but the translation into Event-B has been
manual.

Fig. 3| gives a brief overview of the development. Along the sequence of (re-
fined) models M1 to M7 a number of variables modelling the state of the algo-
rithm are introduced and removed. The table provides, for each model, a short

model|introduced|removed|description variant

MO |a specification of sorting

M1 b,t,m,n introduction of outer loop and stack

M2 C lexicographic convergence of outer loop |C

M3 C lexicographic convergence of outer loop |t

M4 LR, introduction of inner loop R—-L

M5 |u,v implementation of inner loop (v—u)+1
M6 s,l,0,p,q |t,m,n |new representation of stack

M7 h replacement of pivot index by pivot value

Fig. 3: Overview of the development

description of its purpose and mentions the variant used for termination proofs
(if any).

MO. Fig.] shows the specification of the sorting algorithm consisting of a state
machine, an assertion a € D — Z specified to hold at A, and an event sort that
specifies sorting of array a using a permutation p. Initially, we assert that a is

sort sort = any p when
Vz,y-x € DAy€ DAz <y = (aop)(z) < (aop)(y)
then

QA a€eD—Z a:=aop

Fig. 4: Specification of a sorting algorithm

an array with domain D and range Z. There is nothing to prove because no
assertion has been specified at E. Our aim is to construct a state machine that
implements iterative Quicksort based on [4] and [I0].

M1. Fig. 5] shows the first node and edge refinement steps. Although the two
diagrams look identical they describe different viewpoints of the same proof.
Diagram |5fa)| describes how the abstract node A can be replaced by a super
node, indicating the internal structure of the super node and how the concrete
edge sort is to be connected to neighbours of the super node. Diagram
describes how the abstract edge can be replaced by the four edges init, part,
drop and sort. The super-state node in this diagram only indicates that at I all
assertions of A hold. Event init sets up the variables for the loop. Event part
specifies partitioning of the section m(¢) .. n(¢t) of the array b containing at least
two elements described by the top of the stack. The sub-sections m(t) .. r and

(a) Node refinement of A (b) Edge refinement of sort

Fig. 5: First refinement

l..n(t) are stored on the stack and the corresponding partitioning is stored in b,

part = any p Il v f when
t>0Amt) <nt)ANfem(t).nt)Ape PANL>rA...
Ve -z € (bop)[m(t)..1-1] =z < b(f)
Ve -z € (bop)r+l..n(t)]=0(f) <=z
then
bym,n,t:=bop,m< {t+1— I}, n<s {t—~rt+1—n(t)}t+1.

Event drop removes intervals from the stack that contain at most one element.
The abstract event sort of Fig. 4] is refined by the concrete event sort of Fig.
(as indicated by the reuse of the name), sort = when ¢ < 0 then a := b. We have
to prove this: using p € P Ab = a o p as a witness for the abstract parameter
p —its existence is guaranteed by I below—, the invariant and concrete guard
I ANt < 0 imply the guard of the corresponding abstract event sort and the
equality a = b which establishes the simulation by the abstract event’s action
a := a o p. Among other assertions I contains the following:

QI t>0An(0)=0A(3q-qe PAb=aoq)A...
Ve,y-x € DAyen(t)+1..NAx <y=b(z) <by) .

We omit the proofs that the new events init, part and drop refine skip. During
those proofs more assertions would be added to node I incrementally [3].

M2 and M3. In refinement step M2 convergence of event part is proved and
convergence of event drop in refinement step M3, establishing a lexicographic
variant (see [2]). We introduce a variable C' to express the variant, adding C' :=
0..N+1x0.. N+1 to the action of event init and C := C\ ((0.. m(t) x r+1 ..
N+1)U(0..1—-1xn(t)..N+1)) to the action of event part. We add some assertions
to the node I:

@I Ce€0..N+1+0..N+1
Vi-iel..t=>m(i)—n()eC
Ve,y-e—y€e€CAy<N=W-vexzt+l..y+l=v—yel)
Ve,y-e—yeCAhaz>l=>MVMw-wer-1l..y—1=2x—wel).

Using C' as a variant we can prove that part is convergent. Event drop obviously
does not change C. Compared to direct verification (e.g. [4]) Event-B refinement
offers the advantage of introducing and removing auxiliary variables whenever
it appears convenient. Compared to program refinement [I3] it offers more flex-
ibility with complex refinement steps. Convergence of drop can be verified with
the variant ¢, the height of the stack. The first component of the lexicograph-
ical variant is a set, the second a number. The chosen proof method frees us
from having to construct the lexicographical variant explicitly; or rather, the
construction is automated.

M4. We introduce a nested loop to compute the partitioning. In this refinement
step the outer loop is introduced, the inner loops in the next step. As this
refinement concerns inner nodes, the node refinement diagram becomes more
complicated than the edge refinement diagram. The reason for this is that node
refinement diagrams can potentially express more complex refinements. An edge
refinement replaces always one edge. Node refinements can replace several edges
in one go. However, the node refinement diagram contains all elements that are
involved in the proof. In this sense the edge refinement diagram is less complete.
We have to show that init establishes the concrete invariant I. The edge sort in
Fig. is redundant: neither event sort nor node E are changed, and I may
only be stronger than its abstract counterpart. Still, both diagrams represent
the same proof.

Note the difference of how loops are refined in node and edge refinement
diagrams. Nodes are uniquely identifiable in node refinement diagrams whereas
in edge refinement diagrams only edges need to be uniquely identifiable. An
edge refinement has start and final nodes that are connected to the start and
final node of the refined edge. If a loop is edge-refined, the concerned node is
replicated in the refined diagram. E.g., Fig. |6(b)| has two copies of node I. The
two copies do not denote the same node. If a loop is node-refined, the concerned
node is not replicated. Instead, the loop remains in the diagram either as a loop
or as a cycle involving several nodes.

(a) Node refinement of I (b) Edge refinement of part

Fig. 6: Fourth refinement

The node J specifies the loop invariant. It is established initially by event
entr, where entr = when t > 0 then ¢, L, R, 7 := b,m(t), n(t), (m(t)+n(t)) = 2.
At J all assertions of I hold plus the following:

QJ t>0Amt) <nt)ATem(t)..nt)A...
L>R+1=m(t) < LAR<n(t)

Similarly to the first refinement step these assertions are mostly determined
by the shape of the guard and action of the abstract event part of M1. This is
driven by the proof obligations for the refinement of part, where part = when L >
Rthenb,m,n,t :=c,m<{t+1— L}, n<a{t — R, t+1+— n(t)},t—i—lﬁHowever,
during the development, assertions were also propagated bottom up. In refine-
ment M5 the assertions that already hold at J in m4 are essential for refinement
proofs of the loop body. Note that the last three assertions at J would be dif-
ficult to guess in a top down manner. They were propagated upwards from the
refinement proofs of events swap and done of M5. The guard of event loop has
subsequently been chosen such that it preserves these assertions:

loop = any p I r when
L<RApePA...
I>r+1= (m(t) <IAr<n(t))
then
¢, L,R:=cop,l,r

The redundancy between loop and J is intentional; the assertions that hold at
J are established dynamically by choosing appropriate parameters p, [and r
nondeterministically. Often the construction is guided by invariant preservation
proofs. The same principle is already present in the B-Method [I]: it emphasises
assertions and requires statement of suitable events respecting the assertions.

M5. In this refinement the body of the inner loop is implemented. It demon-
strates how nested assertions are used in more complex steps of a refinement
proof. In refinements M6 and M7 we will show two more refinements of the
model that has now become quite complex. The degree of difficulty does not
increase as the model grows in complexity. This was the main motivation that
started this work on top of Event-B. We preserve the strengths of Event-B: the
emphasis on reasoning, formal proof, and incremental modelling [8]. The key to
incremental modelling in Event-B is the generation of fine grained proof obliga-
tions exploiting proof-oriented facts specified in formal models. Fig. shows
the node refinement where J is refined and two nested super nodes K,

QK L<RAu<v+lA...

and L, with QL ¢(u) > b(w), are introduced. So node N, with QN b(7w) > ¢(v),
contains all assertions of I, J, K and L. Following the nesting the structure
could be introduced step-wise but we find that the larger step that we chose is

5 With appropriate witnesses for the abstract parameters: f = 7 and so on.

10

(a) Node refinement of J

Fig. 7: Fifth refinement

not difficult to prove. Nothing would be gained by using additional refinement
steps. In our experience the liberty in choosing the granularity of refinement
steps makes it easier to produce the proof for a whole development. The mixture
of program verification and step-wise refinement techniques supports the user
in choosing appropriate abstractions. Supporting this mixture is not common
in verification or refinement methods. The events done, with done = when u >
v then L, R := u,v, and swap, with swap = when u < v then¢,L, R :=c< {u—
c(v),v — c(u)}, u+1,v—1, refine the abstract event loop as indicated by writing
the name of the abstract event name in brackets behind the concrete event
names.

Fig. shows the refinement as an edge refinement. It emphasises more how
we would read the body of a loop as a sequence of commands. The structure of the
inside of the loop is more obvious than in node refinement. In the corresponding
node refinement one has to look more closely to identify the relevant part. The

(b) Edge refinement of loop

Fig. 7: Fifth refinement

two events done and swap specify different values for the witnesses of the abstract
parameters (of event loop). For example, done specifies p = D < id and swap
specifies p = (D <id) <+ {u — v,v — u} giving a clue about how loop is
implemented. Witnesses are a versatile feature of Event-B being applicable to
verification techniques besides proof [J].

11

M6. In the sixth refinement the two nodes I and J are refined simultaneously
demonstrating how sub-nodes of the refined nodes are to be connected. This is a
data-refinement replacing the pointer to the top of the stack ¢ by a new pointer
s such that t = s+1, storing the top of the stack m(t) and n(¢) in dedicated
variables p and ¢, and finally, replacing the stack m and n by the “smaller”
stack | and o. In the edge refinement diagram (Fig. we have collected

(a) Node refinements of I and J (b) Edge refinements of drop and part

Fig. 8: Sixth refinement

two simultaneous edge refinements. The corresponding two simultaneous node
refinements are shown in Fig. |§(a)l In the edge refinement diagram we have to
draw an additional super node —the inner super node I— and connect it using
anonymous edges. This is necessary because of restrictions on the shape of edge
refinement diagrams that are imposed in order to be able to map such diagrams
to customary control structures.

M7. The last refinement step introduces a new variable h to replace b(7) in all
event guards. In other words we add h = b(w) to the nodes J, K, L and N. The
new event setp contains the assignment h := b(7). Note how new events in the
refinement diagrams are indicated by the nesting of the (super) nodes; compare
Fig. f and Fig. [0]in this respect.

Closing remarks. We can carry out a series of data refinements to remove “syn-
onyms” of variables. For instance, a, b and ¢ by a variable h. This does not affect
the structure of the diagrams. No further diagrams need to be drawn for these
refinements.

We think the diagrams are easy to understand and manipulate. With their
help, complex refinement steps using the Event-B refinement method are possi-
ble that would not be feasible in Event-B itself. Using multiple refinement steps

12

(a) Node refinement of J (b) Edge refinement of entr

Fig.9: Seventh refinement

in Event-B does not always solve the problem. This is particularly important be-
cause in Event-B the ordering of the refinement steps influences the shape of the
developed program. Using state machines its shape is specified and refinement
is only concerned with structuring a complex correctness proof.

5 Design of a controller

The edge refinement diagrams in Section [4] are simpler than the corresponding
node diagrams. The developed algorithmic structure is more discernible. Edge re-
finement was developed for this purpose and is therefore more specialised towards
algorithm development than node refinement. This specialisation is achieved by
imposing greater restrictions on the refinements that can be made. Lacking these
restrictions, node refinement allows more flexibility in refinements. Node refine-
ment is suited for the modelling and refinement of systems level models. It was
developed for this purpose. In this section, we demonstrate the greater general-
ity of node refinement by means of a model of a simple controller system which
has mechanisms for responding and recovering from faults. The controller could
not be developed using edge refinement. Although this example is simple and
somewhat manufactured, it is intuitive and sufficient to illustrate the greater
generality of node refinement. One can easily imagine that the model can be ex-
panded in later refinements with similar patterns that would be impossible with
edge refinement. Usually, there is a collection of informal requirements describ-
ing possible behaviours on which formal system modelling is based. Feedback
from the formal model can then be used to improve the requirements: pointing
to specification gaps and contradictions. However, for the present purpose we are
not concerned with discussing requirements and do not refer to them explicitly.
We also do not go into detail concerning the assertions and events that occur in
the model.

The controller model. The initial abstract model of the controller (see Fig.
has three states: the power is off “U”; the power is on “P”; the power is on but
the controlled is in a fault state “F”. An edge labelled pwr models the power

13

wr

fit
p
{rf_(r)
clr
Fig. 10: Abstract controller model

being switched on and while the power is switched on, faults may occur fit and
are subsequently cleared clr.

Firstly, the fault state “F” is refined to distinguish two sub-categories of fault
(see Fig. |11l(a))), ones that can be recovered from “R”, and ones that require a
reset “E”. This enables the edge fit to be refined by spitting it into two edges
uerr and rerr representing the two categories of fault. Similarly, clr is refined
into reset and recover originating from their respective fault categories. Recovery
may be unsuccessful resulting in a recoverable fault becoming transmuted into
a resettable one by edge rfail.

The powered state “P” is then refined to distinguish two sub-modes of op-
eration (see Fig. [11(b)). The control is switched off “X”, and the control is
switched on “O”. Edges on and off form a loop allowing power to be cycled.
This enables us to refine edges uerr, reset, rerr and recover so that recoverable
errors originate and recover to the powered sub-state, “O”, while unrecoverable
ones originate and reset to the unpowered sub-state, “X”.

The behaviour of the controller while being in one of the states P or F is
more general than the patterns arrived at by edge refinement. If we were to
implement a control program, we would introduce a dedicated variable to model
the current operational state of the controller. This would obfuscate the model
hiding the control structure in the program text. If we do not insist on program
structure, state machines can concisely and clearly capture the behaviour.

P) uerr

rerr (fit) R /
(a) Node refinement of F (b) Node refinement of P

Fig.11: Refinements of the controller model

The refinement of node F splits the incoming and outgoing edges into cases
that are revealed by the node refinement. This would not be possible using edge
refinement.

14

The refinement of node P introduces a cycle between the states X and
O. If this was introduced via edge refinement it would require a loop at P
in the abstraction. This would require prediction of later refinements in the
abstract model which would be detrimental to its objective. The aim of abstract
system modelling is to simplify the model in order to concentrate on important
properties. Abstract models could become unnecessarily complex if stricter rules
were imposed.

Allowing more general diagrams to be constructed supports forms of reason-
ing that would be difficult to achieve using the simpler algorithmic diagrams
enforced by edge refinement. For instance, we may want to argue whether edge
rfail is reasonable: is it reasonable for a supposedly recoverable error to result
in a reset of the controller. The explicit modelling of the control states makes
it possible to discuss such questions. This would not be possible if the control
state was encoded by a program variable.

A combined refinement method. Using node refinement we can deal with more
general architectural requirements. Edge refinement on the other hand provides
only algorithmic structures that can be safely mapped on to (sequential) pro-
grams. A combined method would have the strengths of both. One could, for
instance, develop the architecture of the controller using node refinement and
implement the code at the edges using edge refinement. We have seen in Sec-
tion [3] that the proof obligations of the methods could be easily mixed. We could
simply consider every edge refinement to be a stylised node refinement allowing
them to be mixed freely. Edge refinement can also be used to prove properties of
deadlock-freedom [7]. Node refinement does not support this. The main difficul-
ties are to achieve a clear refinement method and to avoid large complex proof
obligations. Our next aim is to investigate deadlock-freedom properties of node
refinement.

6 Conclusion

We have demonstrated the use of state machines for the formalisation of complex
models based on Event-B. We have discussed two approaches to refinement that
suggest themselves when modelling with state machines: node refinement and
edge refinement. We have defined the two notions of refinement (based on Event-
B refinement). Node and edge refinement have similar proof obligations. We have
argued that, for the development of programs, they can be seen as providing two
views of the same proof of correctness and refinement. However, node refinement
is more general. It has been conceived for system-level modelling and it is not so
obvious how to develop programs by this means alone. Edge refinement on the
other hand has been conceived for program development, but is too restrictive
to be used for system modelling. Combined use of both can address a large class
of systems using node refinement for architectural modelling aspects and edge
refinement for algorithmic aspects. We believe the two notions of refinement
could be unified. However, care has to be taken to preserve the strong support
of the two modelling aspects: architecture and algorithms. In this article we have

15

not discussed deadlock-freedom. For edge refinement it is obvious how properties
of deadlock-freedom can be proved. For node refinement it is less clear how this
can be done. We will still be looking for a method that is easy to apply. A unified
method could transfer the concept of deadlock-freedom as dealt with by edge
refinement to node refinement.

References

1.
2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J.-R. Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.

J.-R. Abrial. Modeling in Event-B: System and Software Engineering. CUP, 2010.
J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. STTT, 12(6):447—
466, 2010.

K. R. Apt, F. S. de Boer, and E.-R. Olderog. Verification of Sequential and Con-
current Programs. Springer, 2009.

R.-J. Back. Invariant based programming: basic approach and teaching experi-
ences. Formal Asp. Comput, 21(3):227-244, 20009.

A. S. Fathabadi and M. Butler. Applying Event-B Atomicity Decomposition to
a Multi Media Protocol. In F. S. de Boer, M. M. Bonsangue, S. Hallerstede, and
M. Leuschel, editors, FMCO, volume 6286 of LNCS, pages 89—104. Springer, 2009.
S. Hallerstede. Structured Event-B Models and Proofs. In M. Frappier, U. Gléasser,
S. Khurshid, R. Laleau, and S. Reeves, editors, ABZ, volume 5977 of LNCS, pages
273-286. Springer, 2010.

S. Hallerstede and M. Leuschel. Experiments in Program Verification using Event-
B. Formal Asp. Comput, 2011. to appear.

. S. Hallerstede, M. Leuschel, and D. Plagge. Refinement-Animation for Event-

B — Towards a Method of Validation. In M. Frappier, U. Glasser, S. Khurshid,
R. Laleau, and S. Reeves, editors, ABZ 2010, volume 5977 of LNCS, pages 287-301.
Springer, 2010.

A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice-Hall, 1990.
A. Knapp, S. Merz, and M. Wirsing. Refining Mobile UML State Machines. In
C. Rattray, S. Maharaj, and C. Shankland, editors, AMAST, volume 3116 of LNCS,
pages 274-288. Springer, 2004.

K. Lano and D. Clark. Semantics and Refinement of Behavior State Machines. In
J. Cordeiro and J. Filipe, editors, ICEIS 2008, pages 4249, 2008.

C. C. Morgan. Programming from Specifications: 2nd Edition. Prentice Hall, 1994.
M. Y. Said, M. J. Butler, and C. F. Snook. Language and tool support for class
and state machine refinement in UML-B. In A. Cavalcanti and D. Dams, editors,
FM, volume 5850 of LNCS, pages 579-595. Springer, 2009.

A. J. H. Simons. A theory of regression testing for behaviourally compatible object
types. Softw. Test, Verif. Reliab, 16(3):133-156, 2006.

C. Snook and M. Waldén. Refinement of statemachines using event B semantics.
In J. Julliand and O. Kouchnarenko, editors, B 2007, volume 4355 of LNCS, pages
171-185. Springer, 2007.

C. F. Snook and M. J. Butler. UML-B: Formal modeling and design aided by
UML. ACM Trans. Softw. Eng. Methodol, 15(1):92-122, 2006.

Colin Snook. FEzxploring the Barriers to Formal Specification. PhD thesis, Elec-
tronics and Computer Science, University of Southampton, 2002.

N. Wirth. Program development by stepwise refinement. CACM, 14(4):221-227,
April 1971.

16

Some Event-B specific symbols

aop denotes composition of a and b: © — y € aop<(Iz -z — 2 € pAz — y € a).
t < r denotes domain restriction of r by t: x m y€etdroretAax—yer.
t <9 r denotes domain subtraction of r by t: x —wyet<dreordtANr—yer.
s < r denotes relational override of s by r: s < r < (dom(r) < s)Ur.

17

	Refining Nodes and Edges of State Machines

