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Abstract. Chip Multiprocessors (CMPs) mainly base their performance
gains on exploiting thread-level parallelism. Consequently, powerful mem-
ory systems are needed to support an increasing number of concur-
rent threads. Conventional CMP memory systems do not account for
thread interference which can result in reduced overall system perfor-
mance. Therefore, conventional high bandwidth Miss Handling Archi-
tectures (MHAS) are not well suited to CMPs because they can create
severe memory bus congestion. However, high miss bandwidth is desir-
able when sufficient bus bandwidth is available. This paper presents a
novel, CMP-specific technique called the Adaptive Miss Handling Ar-
chitecture (AMHA). If the memory bus is congested, AMHA improves
performance by dynamically reducing the maximum allowed number of
concurrent L1 cache misses of a processor core if this creates a significant
speedup for the other processors. Compared to a 16-wide conventional
MHA, AMHA improves performance by 12% on average for one of the
workload collections used in this work.

1 Introduction

Chip multiprocessors (CMPs) are now in widespread use and all major pro-
cessor vendors currently sell CMPs. CMPs alleviate three important problems
associated with modern superscalar microprocessors: diminishing returns from
techniques that exploit instruction level parallelism (ILP), high power consump-
tion and large design complexity. However, much of the internal structures in
these multi-core processors are reused from single-core designs, and it is unclear
if reusing these well-known solutions is the best way to design a CMP.

The performance gap between the processor and main memory has been
growing since the early 80s [1]. Caches efficiently circumvent this problem be-
cause most programs exhibit spatial and temporal locality. However, adding
more processors on one chip increases the demand for data from memory. Fur-
thermore, latency hiding techniques will become more important and these tend
to increase bandwidth demand [2].
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A straightforward way of providing more bandwidth is to increase the clock
frequency and width of the memory bus. Unfortunately, the number of pins on a
chip is subject to economic as well as technological constraints and is expected
to grow at a slow rate in the future [3]. In addition, the off-chip clock frequency
is limited by the electronic characteristics of the circuit board. The effect of
these trends is that off-chip bandwidth is a scarce resource that future CMPs
must use efficiently. If the combined bandwidth demand exceeds the off-chip
bandwidth capacity, the result is memory bus congestion which increases the
average latency of all memory accesses. If the out-of-order processor core logic
is not able to fully hide this latency, the result is a reduced instruction commit
rate and lower performance.

It is critical for performance that the processor cores are able to continue pro-
cessing at the same time as a long-latency operation like a memory or L2 cache
access is in progress. Consequently, the caches should be able to service requests
while misses are processed further down in the memory hierarchy. Caches with
this ability are known as non-blocking or lockup-free and were first introduced
by Kroft [5].

Within the cache, the Miss Handling Architecture (MHA) is responsible for
keeping track of the outstanding misses. Figure 1 shows an MHA for a cache
with multiple banks [4]. The main hardware structure within an MHA is called a
Miss Information/Status Holding Register (MSHR). This structure contains the
information necessary to successfully return the requested data when the miss
completes. If an additional request for a cache block arrives, the information
regarding this new request is stored but no request is sent to the next memory
hierarchy level. In other words, multiple requests for the same cache block are
combined into a single memory access.

In this work, we investigate the performance impact of non-blocking caches
in shared-cache CMPs and introduce a novel Miss Handling Architecture called
Adaptive MHA (AMHA). AMHA is based on the observation that the available
miss bandwidth should be adjusted according to the utilization of the memory
bus at runtime. Memory bus congestion can significantly increase the average
memory access latency and result in increased lock-up time in the on-chip caches.
If the processor core is not able to hide this increased latency, it directly affects
its performance. Memory bus congestion reduces the performance of some pro-



grams more than others since the ability to hide the memory latency varies
between programs. AMHA exploits this property by reducing the available miss
bandwidth for the latency insensitive threads. Since these programs are good
at hiding latency, the reduction in miss bandwidth only slightly reduces their
performance. However, the memory latency experienced by the congestion sensi-
tive programs is reduced which results in a large performance improvement. For
our Amplified Congestion Probability Workload collection, AMHA improves the
single program oriented Harmonic Mean of Speedups (HMoS) metric by 12% on
average.

The paper has the following outline: First, we discuss previous work in Sec-
tion 2 before we introduce our multiprogrammed workload collections and dis-
cuss system performance metrics in Section 3. Then, our new AMHA technique
is presented in Section 4. Section 5 describes our experimental methodology,
and Section 6 discusses the results from our evaluation of both conventional
and adaptive MHAs. Finally, Section 7 discusses future technology trends and
possible extensions of AMHA before Section 8 concludes the paper.

2 Related Work

2.1 Miss Handling Architecture Background

A generic Miss Status/Information Holding Register (MSHR) file is shown in
Figure 2. This structure consists of n MSHRs which contain space to store the
cache block address of the miss, some target information and a valid bit. The
cache can handle as many misses to different cache block addresses as there
are MSHRs without blocking. Each MSHR has its own comparator and the
MSHR file can be described as a small fully associative cache. For each miss, the
information required for the cache to answer the processor’s request is stored
in the Target Information field. However, the exact Target Information content
of an MSHR is implementation dependent. The Valid (V) bit is set when the
MSHR is in use, and the cache must block when all valid bits are set. A blocked
cache cannot service any requests.

Another MHA design option regards the number of misses to the same cache
block address that can be handled without blocking. We refer to this aspect of
the MHA implementation as target storage, and this determines the structure of
the Target Information field in Figure 2. Kroft used implicit target storage in
the original non-blocking cache proposal [5]. Here, storage is dedicated to each
processor word in a cache block. Consequently, additional misses to a given cache
block can be handled as long as they go to a different processor word. The main
advantage of this target storage scheme is its low hardware overhead.

Farkas and Jouppi [6] proposed explicitly addressed MSHRs which improves
on the implicit scheme by making it possible for any miss to use any target stor-
age location. Consequently, it is possible to handle multiple misses to the same
processor word. We refer to the number of misses to the same cache block that
can be handled without blocking as the number of targets. This improvement



increases hardware cost as the offset of the requested processor word within the
cache block must be stored explicitly. In this paper, we use explicitly addressed
MSHRs because they provide low lock-up time for a reasonable hardware cost.

Tuck et al. [4] extended the explicitly addressed MSHR scheme to write-
back caches. If the miss is a write, it is helpful to buffer the data until the miss
completes which adds to the hardware overhead of the scheme. To reduce this
overhead, Tuck et al. evaluated MSHRs where only a subset of the target entries
has a write buffer. In addition, they extended the implicitly addressed MSHR
scheme by adding a write buffer and a write mask which simplify data forwarding
for reads and reduce the area cost. The target storage implementations of Tuck
et al. can all be used in our AMHA scheme to provide a more fine-grained
area/performance trade-off. In this paper, we opt for the simple option of having
a write buffer available to all target storage locations as this is likely to give the
best performance.

In addition, Tuck et al. proposed the Hierarchical MHA [4]. This MHA pro-
vides a large amount of Memory Level Parallelism (MLP) and is primarily aimed
at processors that provide very high numbers of in-flight instructions. In a CMP,
providing too much MLP can create congestion in shared resources which may
result in reduced performance.

Farkas and Jouppi [6] proposed the inverted MSHR, organization which can
support as many outstanding requests as there are destinations in the machine.
Furthermore, Franklin and Sohi [7] observed that a cache line that is waiting to
be filled can be used to store MSHR information. These MHAs are extremes of
the area/performance trade-off and we choose to focus on less extreme MHAs.
In addition, researchers have looked into which number of MSHRs gives the best
performance for conventional architectures |7,8].

2.2 Related Work on Bus Scheduling, Shared Caches and Feedback

Mutlu and Moscibroda [9], Nesbit et al. [10] and Rafique et al. [11] are examples
of recent work that use the memory bus scheduler to improve Quality of Service
(QoS). These works differ from AMHA in that they issue memory requests in a
thread-fair manner while AMHA dynamically changes the bandwidth demand
to utilize the shared bus efficiently. Furthermore, memory controller scheduling
techniques that improve DRAM throughput are complementary to AMHA (e.g.
[12,13]).

Other researchers have focused on techniques that use shared cache par-
titioning to increase performance (e.g. [14,15]). These techniques optimize for
the same goal as AMHA, but are complementary since AMHA’s only impact
on cache partitioning is due to a reduced cache access frequency for the most
frequent bus user.

Recently, a large number of researchers have focused on providing shared
cache QoS. Some schemes enforce QoS primarily in hardware (e.g. [16]) while
others make the OS scheduler cooperate with hardware resource monitoring and
control to achieve QoS (e.g. [17]). It is difficult to compare these techniques to
AMHA as improving performance is not their primary aim.



Table 1. Randomly Generated Multiprogrammed Workloads (RW)

ID Benchmarks |[ID Benchmarks |ID Benchmarks [ID Benchmarks |ID Benchmarks

1 perlbmk, 9 vortexl, apsi, |17 perlbmk, 25 facerec, parser, |33 gzip, galgel,
ammp, parser, fma3d, parser, applu, applu, gap lucas, equake
mgrid sixtrack apsi

2  mcf, gee, lucas, |10 ammp, bzip, 18 perlbmk, gzip, |26 mcf, ammp, 34 facerec,
twolf parser, equake mgrid, mgrid apsi, twolf facerec, gcec,

apsi

3 facerec, mesa, |11 twolf, eon, 19 mcf, gee, apsi, |27 swim, ammp, |35 swim, mcf,
eon, eon applu, vpr sixtrack sixtrack, applu mesa, sixtrack
4  ammp, 12 swim, galgel, 20 ammp, gcc, 28 swim, fma3d, |36 mesa, bzip,

vortexl, galgel, mgrid, crafty art, mesa parser, art sixtrack,
equake equake

5 gcc, apsi, 13 twolf, galgel, 21 perlbmk, apsi, (29 twolf, gcc, 37 mcf, gcc,
galgel, crafty fma3d, vpr lucas, equake apsi, vortexl vortexl, gap

6 facerec, art,

bzip, bzip,

22 mcf, crafty,

30

gzip, apsi,

38

facerec, mcf,

applu, equake equake, vpr vpr, vpr mgrid, equake parser, lucas

7  gcc, parser, 15 swim, galgel, |23 gzip, mesa, 31 mgrid, eon, 39 twolf, mesa,
applu, gap crafty, vpr mgrid, equake equake, vpr eon, eon

8 swim, twolf, 16 mecf, mesa, 24 facerec, fma3d, |32 facerec, twolf, |40 mecf, apsi, apsi,
mesa, gap mesa, wupwise applu, lucas gap, wupwise equake

Unpredictable interactions between processors may result in performance
degradation in multiprocessor systems. Feedback control schemes can be used
to alleviate such bottlenecks if the reduction is due to inadequate knowledge
of the state of shared structures. For instance, Scott and Sohi [18] used feed-
back to avoid tree saturation in multistage networks. Thottethodi et al. [19]
used source throttling to avoid network saturation and controlled their policy
by a feedback-based adaptive mechanism. In addition, Martin et al. [20] used
feedback to adaptively choose between a directory-based and a snooping-based
cache coherence protocol. AMHA further extends the use of feedback control
by using memory bus and performance measurements to guide miss bandwidth
allocations.

3 Multiprogrammed Workload Selection and
Performance Metrics

To thouroughly evaluate Miss Handling Architectures in a CMP context, we
create 40 multiprogrammed workloads consisting of 4 SPEC CPU2000 bench-
marks [21] as shown in Table 1. We picked benchmarks at random from the
full SPEC CPU2000 benchmark suite, and each processor core is dedicated to
one benchmark. The only requirement given to the random selection process
was that each SPEC benchmark had to be represented in at least one workload.
We refer to these workloads as Random Workloads (RW). To avoid unrealistic
interference when more than a single instance of a benchmark is part of a work-
load, the benchmarks are fast-forwarded a different number of clock cycles if the
same benchmark is run on more than one core. If there is only one instance of
a benchmark in a workload, it is fast-forwarded for 1 billion clock cycles. The



Table 2. Amplified Congestion Probability Workloads (ACPW)
ID Benchmarks |[ID Benchmarks |ID Benchmarks [ID Benchmarks |ID Benchmarks
1 mcf, apsi, 9 galgel, apsi, 17 wupwise, 25 gzip, mesa, 33 wupwise, apsi,
applu, art, gcc vortexl1, apsi, apsi, gcc art, gap
wupwise gap
2 gzip, mcf, art, [10 mcf, mesa, 18 mcf, mesa, 26 galgel, apsi, 34 art, apsi,
gap vortexl, vortexl, gcc art, gcc mgrid, gap
wupwise
3 gzip, mesa, 11 facerec, mcf, 19 mcf, galgel, 27 facerec, 35 swim, mesa,
galgel, applu gcee, sixtrack vortexl, applu vortexl, art, mgrid,
gap wupwise
4  gzip, galgel, 12 gzip, mcf, 20 mesa, applu, 28 vortexl, mef, |36 facerec, mcf,
mesa, sixtrack mesa, applu sixtrack, gap mesa, applu art, sixtrack
5 facerec, galgel, |13 galgel, apsi, 21 swim, mesa, 29 swim, gcc, 37 facerec, gzip,
mgrid, vortexl applu, sixtrack art, sixtrack vortexl, gap gce, gap
6 gzip, mcf, 14 swim, vortexl, |22 swim, mcf, 30 swim, gzip, 38 facerec, mcf,
mesa, art apsi, art gee, wupwise galgel, art gce, sixtrack
7 swim, apsi, 15 swim, gzip, 23 mesa, apsi, 31 swim, gzip, 39 facerec, swim,
sixtrack, applu mesa, applu vortexl, galgel, vortexl, gzip
sixtrack wupwise
8 facerec, swim, |16 vortexl, galgel,|24 art, galgel, 32 gzip, mcf, 40 facerec, mcf,
art, sixtrack mesa, sixtrack mgrid, gap mesa, wupwise mgrid, sixtrack
Table 3. System Performance Metrics
Metric Formula
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System Throughput (STP) [23] Zil TPgbaseTme

second time a benchmark appears in the workload, we increase the number of
fast-forward clock cycles for this instance to 1.02 billion. Then, measurements
are collected for 100 million clock cycles.

To investigate the performance of AMHA in the situation it is designed for,
we create 40 additional workloads where this situation is more likely than in
the randomly generated workload. Here, we randomly select two workloads from
the 7 SPEC2000 benchmarks that has an average memory queue latency of
more than 1000 processor clock cycles when running alone in the CMP. In our
simulations, these benchmarks (mcf, gap, apsi, facerec, galgel, mesa and swim)
have average queue latencies of between 1116 and 3724 clock cycles. The two
remaining benchmarks are randomly chosen from the 8 benchmarks that have
an average memory queue latency of between 100 and 1000 clock cycles (i.e.
wupwise, vortexl, siztrack, gce, art, gzip, mgrid, applu). We also require that
a benchmark is only used once in one workload. We refer to these workloads
as Amplified Congestion Probability Workloads (ACPW) and they are shown in
Table 2.
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Eyerman and Eeckhout [24] recently showed that the System Throughput
(STP) and Harmonic Mean of Speedups (HMoS) metrics are able to represent
workload performance at the system level. The STP metric is a system-oriented
performance metric, and the HMoS metric is a user-oriented performance metric.
Both metrics require a performance baseline where all programs receive equal
access to shared resources. In this work, we give each process exactly a % share of
the shared cache and at least a % share of the available memory bus bandwidth
where P is the number of processors. To divide memory bandwidth fairly between
threads, we use Rafique et al.’s Network Fair Queueing technique [11] with a
starvation prevention threshold of 1. Consequently, access to the memory bus
is allocated in a round-robin fashion if all processors have at least one waiting
request. The formulae used to compute the HMoS and STP metrics are shown
in Table 3. The HMoS metric was originally proposed by Luo et al. [22] and the
STP metric is the same as the weighted speedup metric originally proposed by
Snavely and Tullsen [23].

4 The Adaptive Miss Handling Architecture (AMHA)

4.1 Motivation

Our Adaptive MHA technique is based on the observation that it is possible to
drastically improve the performance of certain programs by carefully distributing
miss bandwidth between threads when the memory bus is congested. This differs
from earlier research on MHAs where the aim has been to provide as much miss
bandwidth as possible in an area-efficient manner. Unfortunately, our results
show that following this strategy can create severe congestion in the memory
bus which heavily reduces the performance of some benchmarks while hardly
affecting others. Figure 3 shows the performance of a conventional MHA in a
4-core CMP plotted relative to the throughput with a blocking cache. To reduce
the search space, we only modify the number of MSHRs in the L1 data cache.



The 1024 MSHR architecture is very expensive and is used to estimate the
performance of a very large MHA.

Figure 3 shows that a large conventional MHA is able to provide high through-
put as measured by the STP metric. Furthermore, throughput increases with
more MSHRs up to 8 MSHRs for the RW collection and up to 16 MSHRs with
the ACPW collection. The reason for this difference is that there are more mem-
ory intensive benchmarks in the ACPW collection which perform better when
more miss parallelism is available. Consequently, we can conclude that through-
put is improved by adding more MSHRs up to 16.

The trend with the HMoS metric in Figure 3 is very different. Here, the best
values are achieved with 2 or 4 MSHRs while adding 16 or more MSHRs reduces
the HMoS value below that of a blocking cache for both workload collections.
The reason for this trend is that memory bus congestion does not affect all
programs equally. For a memory intensive program, an increase in latency due
to congestion will not create a large performance degradation. The reason is that
these programs already spend a lot of their time waiting for memory. However,
less memory intensive programs can hide the most of the access latency and
make good progress as long as the memory latencies are reasonably low. When
the memory bus is congested, the memory latencies become to large to be hidden
which result in a considerable performance degradation. By carefully reallocating
the available miss bandwidth, AMHA improves the performance of these latency
sensitive benchmarks by reducing the available miss parallelism of the latency
insensitive ones.

Figure 3 also offers some insights into why choosing a small number of MSHRs
to avoid congestion results in a considerable throughput loss. When both met-
rics are taken into account, the MHA with 4 MSHRs seems like the best choice.
However, this results in an average throughput loss of 9% for the RW collection
and 16% for the ACPW collection. In other words, simply reducing the likely-
hood of congestion carries with it a significant throughput cost and an adaptive
approach is needed.

4.2 AMHA Implementation

AMHA exploits the observation that throughput can be improved by adapting
the available miss parallelism to the current memory bus utilization. Figure 4
shows a 4-core CMP which uses AMHA. Implementing AMHA requires only
small changes to the existing CMP design. First, an Adaptive MHA Engine is
added which monitors the memory bus traffic. At regular intervals, the AMHA
Engine uses run time measurements to modify the number of available MSHRs in
the L1 data cache of each core. Furthermore, the MHASs of the L1 data caches are
modified such that the number of available MSHRs can be changed at runtime.

The AMHA Engine Figure 5 shows the internals of the AMHA Engine. It con-
sists of a control unit and a set of registers called Performance Registers. These
registers are used to measure the performance impact of an AMHA decision on
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all threads. In addition, the AMHA Engine stores the average bus utilization
during the last sample. Here, the memory controller increments a counter each
time it schedules a memory operation. The value of this counter is proportional
to the actual bus utilization because each memory request occupies the data
bus for a fixed number of cycles and the time between each AMHA evaluation
is constant. For clarity, we will refer to this quantity as bus utilization even if
AMHA uses the counter value internally. Lastly, the AMHA Engine uses a bit
vector called the blacklist and a set of registers called performance samples. The
blacklist is used to mark configurations that should not be tested again, and
the performance samples are used to store the performance measurements for
certain MHA configurations.

The performance registers store the number of committed instructions in the
current and previous MHA samples. Since the number of clock cycles between
each AMHA decision is constant, this quantity is proportional to IPC. These
values are collected from performance counters inside each processor core when
the current MHA is evaluated. By comparing these values, it is possible to es-
timate the performance impact of a given AMHA decision. This is necessary
because it is difficult to determine the consequences of an MHA change from
locally measurable variables like average queueing delays or bus utilization. The
reason is that the performance with a given MHA is a result of a complex trade-
off between an application’s ability to hide memory latencies and its congestion
sensitivity.

Evaluating the Current MHA Every 500000 clock cycles, the current MHA
is evaluated using the information stored in the Performance Registers. This
evaluation is carried out by the control unit and follows the pseudocode outlined
in Algorithm 1. We refer to the time between each evaluation as one MHA
sample.

To adapt to phase changes, AMHA returns all data caches to their maximum
number of MSHRs at regular intervals. We refer to the time between two such



Algorithm 1 Adaptive MHA Main Algorithm

1: procedure EvaLuarTEMHA

2: if RunCount == PERIODSIZE then

3: Reset all MHAS to their original configuration, set phase = 1 and useAMHA = true

4: return

5: end if

6: if First time in a period and no congestion then

7 Disable AMHA in this period (useAMHA = false)

8: end if

9: Retrieve the current number of committed instruction from the performance counters

10: if phase == 1 and useAMHA then > Search Phase 1
11: if Symmetric MHAs remaining then

12: Reduce the MSHRs of all L1 data caches to the nearest power of 2

13: else

14: Choose the best performing symmetric MHA and enter Phase 2

15: end if

16: else if phase == 2 and useAMHA then > Search Phase 2
17: if Performance improvement of last AMHA decision not acceptable and useAMHA then
18: Roll back previous decision and add processor to the blacklist

19: end if

20: Find the processor with the largest MHA performance impact that is not blacklisted
21: if Processor found then

22: Reduce or increase the number of MSHR to the nearest power of 2

23: else

24: All processors are blacklisted, keep current configuration for the rest of this period
25: end if

26: end if

27: Increment RunCount

28: Move current committed instructions to previous committed instructions

29: end procedure

resets as an AMHA period. After a reset, we run all data caches with their
maximum number of MSHRs in one sample to gather performance statistics. If
the bus utilization is lower than a configurable threshold in this sample, AMHA
decides that the memory bus is not congested and turns itself off in this AMHA
period. We refer to this threshold as the Congestion Threshold. The AMHA
search procedure has a small performance impact, so we want to be reasonably
certain that it is possible to find a better MHA for it to be invoked.

AMHA has now established that the memory bus is most likely congested,
and it starts to search for an MHA with better performance. This search con-
sists of two phases. In the first phase, AMHA looks for the best performing
symmetric MHA. A symmetric MHA has the same number of MSHRs in all L1
data caches. Here, AMHA starts with the largest possible MHA and then tries
all symmetric MHAs where the number of MSHRs is a power of two. At the
end of each sample, AMHA stores the performance with this MHA in a Per-
formance Samples register and tries the next symmetric MHA. When AMHA
has tried all symmetric MHASs, the Performance Samples registers are analyzed
and the best performing MHA is chosen. Since the performance measurements
might not be representable for the whole period, we require that a smaller MHA
must outperform the largest MHA by a certain percentage called the Acceptance
Threshold. For each symmetric configuration, we also store the number of com-
mitted instructions for each processor. This information is used in search phase
2.



In search phase 2, AMHA attempts to improve performance by searching for
an asymmetric MHA. Here, we adjust the MHA of one processor each time the
MHA is evaluated. Since a new MHA might have been chosen in phase 1, the bus
may or may not be congested. Therefore, we need to choose between increasing
or decreasing the number of MSHRs in this phase. If the bus utilization is larger
than the Congestion Threshold, AMHA assumes that the bus is congested and
decreases the number of MSHRs to the nearest power of two. If not, the number
of MSHRs is increased to the nearest power of two. At the end of the sample, the
performance impact is computed and the MHA is either kept or rolled back. If
the MHA is not accepted, the processor is blacklisted and phase 2 finishes when
all processors have been added to the blacklist. To maximize the performance
benefit, we start with the processor where the symmetric MHA had the largest
performance impact and process them in descending order.

We use a heuristic to accept or reject an MHA change in search phase 2. If
the last operation was a decrease, we sum the speedups of all processors that
did not have their MSHRs reduced and compare this to the degradation expe-
rienced by the reduced processor. If the difference between the sum of speedups
and the degradation is larger than the configurable Acceptance Threshold, the
new MHA is kept. For simplicity, we use the same acceptance threshold in both
search phases. If the memory bus is severely congested, reducing the number of
MSHRs of a processor can actually increase its performance. In this case, we set
the degradation to 0. In addition, we reject any performance degradations of pro-
cessors that have not had its number of MSHRs reduced as measurement errors.
If the last operation increased the number of MSHRs, we sum the performance
degradations of the other processors and weigh this against the performance im-
provement of the processor that got its number of MSHRs increased. Again, the
difference must be larger than the Acceptance Threshold to keep the new MHA.

For each AMHA evaluation, we need to carry out P divisions in phase 1
and P divisions in phase two where P is the number of processors. The reason
is that AMHA’s decisions are based on relative performance improvements or
degradations and not the number of committed instructions. Since there are no
hard limits to when the AMHA decision needs to be ready, it can be feasible to
use a single division unit for this purpose. For simplicity, we assume that the
AMHA Engine analysis can be carried out within 1 clock cycle in this work.
Since we need relatively large samples for the performance measurements to
be accurate, it is unlikely that this assumption will influence the results. We
leave investigating area-efficient AMHA Engine implementations and refining
the experiments with accurate timings as further work.

MHA Reconfiguration An MHA which includes the features needed to sup-
port AMHA is shown in Figure 6. This MHA is changed slightly compared to
the generic MHA in Figure 2. The main difference is the addition of a Usable (U)
bit to each MSHR. If this is set, the MSHR can be used to store miss data. By
manipulating these bits, it is possible to change the number of available MSHRs
at runtime. The maximum number of MSHRs is determined by the number of
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Fig. 6. The New MHA Implementation

physical registers and decided at implementation time. As in the conventional
MSHR file, the Valid (V) bit is set if the MSHR contains valid miss data.

The other addition needed to support AMHA is Mask Control. This control
unit manipulates the values of the U bits subject to the commands given by the
AMHA Engine. For instance, if the AMHA Engine decides that the number of
MSHRs in cache A should be reduced, cache A’s Mask Control sets the U bits
for some MSHRs to 0. In the current implementation, the number of available
MSHRs is increased or decreased to the nearest power of two.

When the number of MSHRs is decreased, it is possible that some registers
that contain valid miss data are taken out of use. Consequently, these registers
must be searched when a response is received from the next memory hierarchy
level. However, the cache should block immediately to reflect the decision of the
AMHA FEngine. This problem is solved by taking both the V and U bits into
account on a cache miss and for the blocking decision. Furthermore, all registers
that contain valid data (i.e. have their V bit set) are searched when a response
is received.

We have chosen to restrict the adaptivity to the number of available MSHRs,
but it is also possible to change the amount of target storage available. In other
words, it is possible to manipulate the number of simultaneous misses to the
same cache block that can be handled without blocking. This will increase the
implementation complexity of AMHA considerably. Furthermore, it is only a
different way to reduce the number of requests injected into the memory system.
The reason is that the cache is blocked for a shorter amount of time with more
targets which indirectly increases the bandwidth demand. For these reasons,
AMHA keeps the amount of target storage per MSHR, constant.

AMHA only requires slightly more area than a conventional MHA with the
same maximum number of MSHRs as each MSHR only needs to be extended
with one additional bit. Furthermore, the AMHA Engine needs a few registers
and logic to compute and compare application speedups. In addition, the control
functions in both the AMHA Engine and the reconfigurable MHAs require a
small amount of logic.

5 Experimental Setup

We use the system call emulation mode of the cycle-accurate M5 simulator [25] to
evaluate the conventional MHAs and AMHA. The processor architecture param-



Table 4. Processor Core Parameters

Table 5. Memory System Parameters

Parameter

Value

Level 1 Data Cache

64 KB 8-way set
associative, 64B
blocks, 3 cycles

latency

Level 1 Instruction
Cache

64 KB 8-way set
associative, 64B
blocks, 16 MSHRs, 8
targets per MSHR, 1
cycle latency

Parameter Value
Clock frequency 4 GHz
Reorder Buffer 128 entries
Store Buffer 32 entries

Instruction Queue

64 instructions

Instruction Fetch
Queue

32 entries

Level 2 Unified Shared
Cache

4 MB 8-way set
associative, 64B
blocks, 14 cycles
latency, 16 MSHRs
per bank, 8 targets
per MSHR, 4 banks

Load/Store Queue

32 instructions

Issue Width

8 instructions/cycle

Functional Units

4 Integer ALUs, 2
Integer
Multipy/Divide, 4 FP
ALUs, 2 FP
Multiply/Divide

L1 to L2
Interconnection
Network

Crossbar topology, 8
cycles latency, 64B
wide transmission
channel

Branch Predictor

Hybrid, 2048 local
history registers,
2-way 2048 entry BTB

Memory Bus and
DRAM

DDR2-800, 4-4-4-12
timing, 64 entry read
queue, 64 entry write
queue, 1 KB pages, 8
banks, FR-FCFS
scheduling [13], closed
page policy

eters for the simulated 4-core CMP are shown in Table 4, and Table 5 contains
the baseline memory system parameters. We have extended M5 with an AMHA
implementation, a crossbar interconnect and a detailed DDR2-800 memory bus
and SDRAM model [26]. The DDR2-800 memory bus is a split transaction bus
which accurately models overlapping of requests to different banks, burst mode
transfer as well as activation and precharging of memory pages. When a mem-
ory page has been activated, subsequent requests are serviced at a much lower
latency (page hit). We refer the reader to Cuppu et al. [27] for more details on
modern memory bus interfaces. The DDR2 memory controller uses Rixner et
al.’s First Ready - First Come First Served (FR-FCFS) scheduling policy [13]
and reorders memory requests to achieve higher page hit rates.

6 Results

6.1 Conventional MHA Performance in CMPs

In Section 4.1, we established that increasing the number of MSHRs improves
throughput but reduces HMoS performance. However, the cause of this trend
was not explained in detail. In this section, we shed some light on this issue
by thoroughly analyzing the performance of the RW12 workload. This workload
consists of the benchmarks swim, mgrid, crafty and galgel which are respon-
sible for 53%, 39%, 5% and 3% of the memory bus requests with 16 MSHRs,
respectively.
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Fig.7. MHA Performance with RW12

Figure 7(a) shows the speedups relative to the equal allocation baseline plot-
ted relative to the benchmark’s speedup with a blocking cache configuration.
In addition, the figure shows the performance trend for the system performance
metrics HMoS and STP. The only benchmark that experiences a performance
improvement with every increase in MHA size is galgel. For the other bench-
marks, memory bus congestion causes more complex performance trends.

For crafty, performance is reduced substantially when the number of MSHRs
is increased to 2. Performance is further reduced until the MHA contains 8
MSHRs before it stabilizes. Figure 7(b) shows the average memory bus queue
latency as a function of the number of MSHRs. By comparing the performance
trend of crafty with the average queue latency, we can see that for every increase
in average queue latency there is a decrease in crafty’s performance. Since the
HMoS metric is dominated by the program with the lowest performance, the
HMoS metric has its highest value with the 1 MSHR MHA. However, the STP
metric hides this effect and reports a throughput improvement with every in-
crease in MHA size.

When galgel is provided with more MSHRs, its ability to hide the memory
latencies improves enough to remove the effects of bus congestion which result
in a net performance improvement. Swim needs a lager number of MSHRs to
experience a performance improvement, but otherwise the performance trend is
similar to that of galgel. The 2 and 4 MSHR MHASs both result in a performance
reduction for swim because they provide to little miss parallelism to hide the
long memory latencies. However, adding more MSHRs improve swim’s ability
to hide the memory latency and result in a performance improvement. Changes
in MHA size has a small performance impact on mgrid, and the performance
difference between its best and worst MHA is only 6%.

Our study of workload RW12 has identified three properties that an adap-
tive MHA should be aware of. Firstly, programs with fewer memory requests are
more sensitive to MHA size than memory intensive programs. Consequently, the
MHA size of the memory intensive programs can be reduced to speed up the con-
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gestion sensitive programs without creating an unnecessarily large throughput
degradation. Secondly, the impact of bus congestion on program performance is
application dependent. Therefore, we can only rely on memory bus measurements
to detect congestion while performance measurements are needed to determine
the effects of an MHA change. Finally, the performance impact on an application
from a change in MHA size depends on the relationship between the program’s
ability to hide memory latencies and the combined load the workload puts on
the memory bus.

6.2 The Performance Impact of the Number of Targets per MSHR

Figure 8 shows the results from varying the number of outstanding misses to the
same cache block address that can be handled without blocking (i.e. the number
of targets). We investigated the performance impact of varying this parameter
for L1 caches with 2, 4, 8 and 16 L1 data cache MSHRs, but only report the
results for the 16 MSHR case because the performance trends are very similar.
The main difference is that the performance impact of adding more targets is
larger with more MSHRs. If there is one target per MSHR, the cache has to
block on the first miss, and this is equivalent to a blocking cache.

For both workload collections, throughput is maximized with 8 targets per
MSHR. The reason is that this creates a good compromise between latency
tolerance and memory bus congestion. Unfortunately, the area cost of adding 8
targets is high. Consequently, the MHA with 4 targets is probably a better choice
given the small performance benefit of increasing the number of targets beyond
4. The performance impact from adding more targets is larger for the ACPW
collection because its workloads contain a larger number of memory intensive
benchmarks by design. In other words, a greater number of benchmarks are
memory intensive enough to benefit from increased miss parallelism. On the
HMoS metric, adding more targets only slightly affects performance. Although
the performance with 4 targets is the worst out of the examined target counts, the
large increase in throughput and reasonable hardware cost makes a compelling
argument for choosing this number of targets.
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6.3 Adaptive MHA Performance

In this section, we report the results from our evaluation of the Adaptive MHA.
For the experiments in this section, AMHA has a maximum of 16 MSHRs avail-
able in the L1 data cache. Therefore, the area overhead of this configuration is
comparable to the conventional MHA with 16 MSHRs. AMHA only changes the
number of available MSHRs in the L1 data cache for each core, and we keep the
number of MSHRs in the L1 instruction caches constant at 16 for all conventional
and adaptive configurations. The number of targets is 4 in all MSHRs.

AMHA aims at improving the performance of the applications that are vic-
tims of memory bus bandwidth overuse by other programs. Consequently, we
expect an improvement on the HMoS metric with a reasonable reduction in
system throughput. Figure 9 shows AMHA'’s average performance compared to
various conventional MHAs. For the RW collection, the performance impact by
running AMHA is small on average, since AMHA only has a significant per-
formance impact on 4 workloads. This is necessary for AMHA to give stable
performance because reducing the number of available MSHRs can drastically
reduce performance if the memory bus is not sufficiently congested. RW35 is the
workload where AMHA has the largest impact with an HMoS improvement of
193% compared to a 16 MSHR MHA. If we only consider the 4 workloads where
AMHA has a HMoS impact of more than 5% (both improvement and degrada-
tion), the result is an average HMoS improvement by 72% and a 3% average
improvement in throughput. Consequently, we can conclude that with randomly
generated workloads, AMHA has a large performance impact when it is needed
and effectively turns itself off when it is not.

In the ACPW collection, the impact of AMHA is much larger since memory
bus congestion is more likely for these workloads. Figure 10 shows the perfor-
mance of AMHA relative to that of a conventional 16 MSHR MHA for the
workloads where AMHA has a larger HMoS impact (both improvement and
degradation) of more than 10%. Again, AMHA has a large HMoS impact when
it is needed and improves HMoS by 52% on average and as much as 324%. In
some cases AMHA also improve STP, but the common case is a small STP degra-
dation. Since AMHA reduces the miss bandwidth of the memory bus intensive
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programs, it is likely that their performance is reduced which is shown in our
measurements as a throughput reduction.

For ACPW36 (facerec, mcf, art and siztrack), AMHA reduces both HMoS
and STP. Here, bus utilization is low enough for AMHA to be turned off in
most periods. However, there are two periods of bus congestion where AMHA’s
performance measurements indicate a large speed-up by significantly reducing
siztrack’s number of MSHRs. Although this is correct when the measurements
are taken, AMHA keeps this configuration also after the brief period of conges-
tion has passed. Consequently, the available miss parallelism is reduced more
than necessary which results in a performance degradation on both metrics.

6.4 Choosing AMHA Implementation Constants

Up to now, we have used an AMHA implementation with a period of 30, a con-
gestion threshold of 40% and an acceptance threshold of 10%. These values have
been determined through extensive simulation of possible AMHA implementa-
tions. Figure 11(a) shows the performance impact of varying the AMHA period
setting. Here, the value must be chosen such that the cost of searching for a good



MHA is amortized over a sufficiently long period as well as that a new search
is carried our before the findings from the last search becomes obsolete. Fig-
ure 11(b) shows the parameter space for the congestion threshold setting which
adjusts the bus utilization necessary to conduct an MHA search. Here, STP
is maximized with a high threshold value and HMoS is maximized with a low
threshold value. Since we in this work aim at increasing HMoS while tolerating a
small STP reduction, the middle value of 40% is a good choice. However, choos-
ing 45% as the threshold is appropriate if a more throughput friendly AMHA is
desired.

Finally, AMHA also needs an acceptance threshold which determines how
large the difference between the performance benefit and performance cost of a
sample MHA must be for the sample MHA to be used for the remainder of the
AMHA period. Here, we investigated values in the 2% to 10% range and found
that 10% gave the best results. For the RW collection this parameter had nearly
no impact while for the ACPW collection both HMoS and STP was maximized
by choosing 10%. In general, the acceptance threshold must be large enough to
filter out reduction operations that are not justified and small enough to carry
out the MHA reductions when they are needed.

7 Discussion

AMHA works well for the CMP architecture used in this paper. However, it is
important that it will also work well in future CMP architectures. Since AMHA
improves performance when there is congestion in the memory bus, the per-
formance gains are closely tied to the amount of congestion. The width of the
memory bus and the clock frequency are both subject to technological constraints
[3]. Consequently, it is unlikely that bus bandwidth can be improved sufficiently
to match the expected increase in the number of processing cores [28]. Unless a
revolutionary new memory interface solution is discovered, off-chip bandwidth
is likely to become an even more constrained resource in the future [29]. Conse-
quently, techniques like AMHA will become more important.

Currently, AMHA does not support multithreaded applications or processor
cores with SMT. To support multithreaded applications, we need to treat multi-
ple processor cores as a single entity when allocating miss bandwidth. This can
be accomplished by letting the operating system provide some simplified process
IDs as discussed by Zaho et al. [30] and communicate this to the Adaptive MHA
Engine. Furthermore, some logic must be added to keep instructions committed
in busy wait loops out of AMHA’s performance measurements. Introducing SMT
further complicates matters as each core now supports more than one hardware
thread. Here, we need to further extend the MHA to allocate a different number
of L1 MSHRs to each hardware thread. We leave the exact implementation and
evaluation of such extensions as further work.

By targeting the victims of memory bus congestion and improving their per-
formance, one might argue that AMHA is a fairness technique. However, AMHA
only target unfairness in one situation, namely when the memory bus is severely



congested. Furthermore, AMHA makes no guarantees of how much miss band-
width each processor is given. Therefore, it is better to view AMHA as a simple
performance optimization that can be applied when certain conditions are met.

8 Conclusion

When designing Miss Handling Architectures (MHASs), the aim has been to sup-
port as many outstanding misses as possible in an area efficient manner. Un-
fortunately, applying this strategy to a CMP will not realize its performance
potential. The reason is that allowing too much miss parallelism creates conges-
tion in the off-chip memory bus.

The first contribution of this paper is a thorough investigation of conven-
tional MHA performance in a CMP. The main result of this investigation was
that a majority of applications need large miss parallelism. However, this must
be provided in a way that avoids memory bus congestion. Our Adaptive MHA
(AMHA) scheme serves this purpose and is the second contribution in this paper.
AMHA increases CMP performance by dynamically adapting the allowed num-
ber of outstanding misses in the private L1 data caches to the current memory
bus utilization.
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