
Software Transactional Memory Validation – Time and Space
Considerations

Adam Welc Bratin Saha
Programming Systems Lab

Intel Corporation
Santa Clara, CA 95054

{adam.welc,bratin.saha}@intel.com

Abstract
With single thread performance hitting the power wall, hardware
architects have turned to chip-level multiprocessing to increase pro-
cessor performance. As a result, issues related to the construction
of scalable and reliable multi-threaded applications have become
increasingly important. One of the most pressing problems in con-
current programming has been synchronizing accesses to shared
data among multiple concurrent threads.

Traditionally, accesses to shared memory have been synchro-
nized using lock-based techniques resulting in scalability, compos-
ability and safety problems. Recently, transactional memory has
been shown to eliminate many problems associated with lock-based
synchronization, and transactional constructs have been added to
languages to facilitate programming with transactions. Therefore,
providing an efficient software transactional memory (STM) im-
plementation has been an important area of research. One of the
largest overheads in an STM implementation is incurred in the val-
idation procedure (that is, in ensuring correctness of transactional
read operations).

This paper presents novel solutions to reduce the validation
overhead in an STM. We first present a validation algorithm that
is linear in the in the number of read operations executed by a
transaction, and yet does not add any overhead to transactional
reads and writes. We then present an algorithm that uses bitmaps
to encode information about transactional operations and further
reduces both the time and space overheads related to validation.
We evaluate the effectiveness of both algorithms in the context of a
state-of-the-art STM implementation.

1. Introduction
With single thread performance hitting the power wall, hardware
architects have turned to chip-level multiprocessing (CMP) to in-
crease processor performance. All major processor vendors are ag-
gressively promoting CMPs in the mainstream computing market.
In a CMP environment, applications have to be concurrent to ex-
ploit the computing power of the hardware platform. As a result,
issues related to the construction of scalable and reliable multi-
threaded applications have become increasingly important. One of

[Copyright notice will appear here once ’preprint’ option is removed.]

the most pressing problems in concurrent programming has been
the mediation of accesses to shared memory by multiple concur-
rent threads of execution.

Today, programmers use lock-based synchronization to manage
concurrent accesses to shared memory. However, lock-based syn-
chronization leads to a number of software engineering problems as
well as scalability bottlenecks arising from over-synchronization,
which is often a result of programmers attempting to ensure cor-
rectness. Transactional memory [10, 5, 3, 4, 6] avoids many prob-
lems associated with lock-based synchronization by eliminating
deadlocks, providing safe composition, and enabling application
scalability through optimistic concurrency. Accordingly, there has
been a lot of recent interest in adding transactional constructs to
programming languages, and in providing high performance im-
plementations of transactional memory.

Transactional memory (TM) can be implemented both as a
hardware (HTM) [7, 9, 8], or as a software (STM) [11, 10, 5, 4]
system. For use as a programming construct, a TM system must
support transactions of unbounded size and duration, and allow
transactions to be integrated with a language environment. These
requirements are currently fulfilled only by software TM systems,
and it is reasonable to assume that any virtualized TM system
would include an STM implementation at its core. Thus, a high
performance STM is crucial for deploying transactional memory
as a programming mechanism.

An STM implementation instruments all loads and stores inside
a transactional code block to generate the meta-data that it needs
to guarantee atomicity and isolation [2] of the transactional code
block. In order to ensure good scalability, an STM implementation
must also allow optimistic read concurrency [10, 5, 12], wherein
the run-time system optimistically executes a transaction, and then
validates all the read operations before committing its results. Val-
idation constitutes one of the major costs of an STM implementa-
tion [10]. In this paper, we present a number of novel mechanisms
to reduce the STM validation cost, and thereby make the STM im-
plementation more efficient. We also evaluate the effectiveness of
the solutions on a number of standard transactional workloads.

This paper makes two novel contributions:

• We present and evaluate a validation algorithm that is linear
in the number of read operations executed by a transaction,
does not add overhead to STM read and write operations, and
does not suffer from false conflicts. Other solutions we are
aware of are either of higher complexity [10], impose additional
overhead on transactional memory access operations to reduce
validation overhead [5], or are imprecise and may lead to an
unspecified number of false conflicts [12].

1 2008/6/3

• We present and evaluate an algorithm that further reduces val-
idation overhead by using bitmaps to represent information
about transactional operations in a compressed form. Using
bitmaps reduces both the space and time overheads of valida-
tion. This enhancement is important since even a linear valida-
tion scheme can incur a substantial overhead for a long running
transaction. The STM presented by Welc et al [12] also uses
bitmaps for validation, but they use this as the sole validation
scheme. Therefore, to reduce the number of spurious aborts,
their algorithm uses very large maps which negates any space
savings, and can still lead to unpredictable performance degra-
dation.

The rest of the paper is organized as follows. Section 2 gives a
brief overview of the existing validation algorithms in STMs with
optimistic read concurrency and motivates the need for more effi-
cient solutions. Section 3 describes a novel optimized validation al-
gorithm linear in the number of reads executed by a transaction that
is both precise and imposes no additional overhead on transactional
data access operations. Section 4 presents a validation algorithm
that compresses information about shared memory operations exe-
cuted by a transaction into bitmaps. In section 5 we evaluate perfor-
mance of the presented algorithms. Finally, section 6 contains the
related work.

2. Overview
Our work is set in the context of an STM that implements opti-
mistic read concurrency using version numbers, and pessimistic
write concurrency using exclusive write locks [10, 5]. This type of
STM has been independently proven to achieve high run-time per-
formance [10, 5]. In this type of STM every access to a shared data
item is mediated using a transaction record (called STM Word by
Harris et al [5]). A transaction record may contain either a version
number or a lock pointer. A lock pointer points to a data structure
representing an exclusive lock and containing information about
the lock owner.

If a transaction record associated with a given data item contains
a version number, then other transactions are allowed to read this
data item. Otherwise, only the lock owner is allowed to access this
data item. Lock acquisition and release is controlled by the 2PL [2]
protocol – locks are acquired when the transaction is active and
released only upon transaction termination. Version numbers get
incremented by the writers to indicate modifications of data items.

Every reader records a version number associated with a data
item it is about to read in its local read set. A read set entry consists
of a pointer to the transaction record associated with the data item
being read and the recorded version number. A committing trans-
action validates its read operations by comparing the version num-
bers in its local read set with the current version numbers stored
in the corresponding transaction records in the main memory. If all
the version numbers match, all reads are considered valid and the
transaction can commit.

Every writer records a version number associated with a data
item it is about to write in its local write set. An entry in the
write set, like that of a read set entry, consists of a pointer to the
transaction record associated with the data item being written and
the recorded version number. Version numbers recorded in the write
set are used by the terminating transactions during the lock release
procedure to restore transaction records to their “unlocked” state.

We have described the STM data structures at an abstract level
to ease the presentation. We will dive into the details in the later
sections when we describe the algorithms.

txnDesc

txnRec

(a) McRT-STM

txnRec

wsEntry

writeSet

txnDesc

(b) Bartok-STM

Figure 1. Data item locked by a transaction

2.1 Motivation
Processing of the read set during validation is a potential source
of significant overhead. Ideally this overhead should be reduced
as much as possible while, at the same time, keeping the cost of
transactional data access operations low. Unfortunately, these two
requirements are somewhat contradictory, as we will demonstrate
through the analysis of solutions used by two highly efficient and
well documented STMs, one by Harris et al implemented in the
Bartok optimizing compiler [5] (from now on we will call it Bartok-
STM to emphasize a distinction from Harris’s previous STM imple-
mentation [3]) and the other, called McRT-STM, by Saha et al [10].
Both STMs use version numbers to validate correctness of read op-
erations and exclusive locks for ensuring correctness of write oper-
ations, as described previously.

In both STMs a transaction can read or write a data item that
has already been locked only if it already owns the lock. This
ownership test must be implemented efficiently since it is executed
for every transactional memory operation. The approach used in
McRT-STM is illustrated in Figure 1(a). The transaction record
(txnRec) associated with the locked data item points directly to the
lock owner’s transaction descriptor (txnDesc), which allows for
direct identification of the lock owner. In Bartok-STM, for reasons
described later in this section, the lock pointer points to an entry
in the lock owner’s write set. In order to facilitate the ownership
test, in Bartok-STM an entry in the write set contains (in addition
to a transaction record pointer and a version number) a pointer
to the lock owner’s transaction descriptor. As a result, in case of
Bartok-STM, identification of the lock owner involves two levels of
indirection instead of just one. The essence of the scheme used in
Bartok-STM is illustrated in Figure 1(b). Transaction record points
to an entry (wsEntry) in the lock owner’s write set (writeSet)1

whose middle slot contains a pointer to the lock owner’s transaction
descriptor. The remaining slots of the write set entry contain a back-
pointer to the transaction record (right-most slot) and a version
number (left-most slot) as described in Section 2. Additionally, in
both STM-s both the read set and the write set of a given transaction
are accessible via the transaction’s descriptor (this information has
been omitted from the figures for clarity).

The choice of the solution for the ownership test affects not only
the efficiency of the data access operations but also the efficiency of
the validation procedure. Consider a scenario where a transaction
reads a data item (recording the version number), then locks the
same data item and writes to it. The validation procedure must
then verify that no other transaction modified this item between
the read and the subsequent write operation. This is achieved by
comparing the version number recorded (upon read) in the read set

1 Only one entry in the write set is distinguished to improve clarity of the
figure.

2 2008/6/3

with a version number recorded by the same transaction (upon the
following write) in the write set.

In Bartok-STM the time to perform this comparison is constant.
The entry in the read set representing a locked data item points to
the transaction record associated with this item while, as illustrated
in Figure 1(b), the transaction record points to the lock owner’s
write set. Hence the version number recorded in the write set can
be quickly recovered. The validation algorithm is then linear in the
size of the read set. In McRT-STM the entry in the read set rep-
resenting a locked data item also points to the transaction record
associated with this item but the transaction record, as illustrated
in Figure 1(a), points to the transaction descriptor representing the
owner of the lock. The verification procedure needs in this case to
scan the lock owner’s write set (accessible through lock owner’s
transaction descriptor) to locate the version number for the appro-
priate data item. This results in an algorithm whose complexity is
O(M×N) where M is the size of the read set and N is the size of
the write set.

In summary, Bartok-STM features a fast validation procedure
at a cost of an additional level of indirection during the ownership
tests and an additional value that needs to be stored in every write
set entry, whereas McRT-STM implements a much slower valida-
tion procedure but avoids a second level of indirection when testing
lock ownership as well as additional write set space overhead. The
first major contribution of our current work is a novel algorithm
that combines the benefits of both algorithms described earlier in
this section – its complexity is linear in the size of the read set, a
single write set entry consists of only two slots and the additional
level of indirection during ownership tests is avoided as well. How-
ever, even such an algorithm can incur a significant overhead for
long running transactions, both in terms of validation time as well
as the space overhead of maintaining the read set. Therefore we
also present an algorithm that limits (and can potentially eliminate)
the need for maintaining and processing a transaction’s read set.

3. Optimized Linear Validation
We implemented the optimized validation algorithm in McRT-STM
and compared it with the original validation algorithm described in
Section 2. In order to maintain the low cost of the lock ownership
test, the new algorithm guarantees that it is sufficient for a transac-
tion accessing a data item to only inspect the contents of the trans-
action record to determine the lock ownership (no additional levels
of indirection are involved). At the same time, it avoids multiple
searches of the write set during validation. 2 The new algorithm
works by temporarily modifying the contents of transaction records
during the validation procedure to allow easy access to the version
numbers recorded (upon write) in the write set.

3.1 Algorithm overview
In the original validation algorithm, a transaction record could only
contain either a version number or a lock pointer (pointing to a
transaction descriptor) at any given time. These two cases were
distinguished by checking a designated low-order version bit of the
value stored in a transaction record. A transaction record contained
a version number if the bit was set, and contained a lock pointer
(indicating that the data item is locked) if the bit was cleared. We
took advantage of this property when developing the new optimized
validation algorithm.

In the new algorithm, when a data item is unlocked the trans-
action record associated with this data item contains the version
number and the version bit is set. When a data item is locked, how-

2 These searches were necessary in the original validation algorithm present
in McRT-STM to determine the validity of accesses to data items that have
been first read and then written by the same transaction.

bool VALIDATE(TxnDescriptor *txnDesc) {
// ************ PHASE 1 ************
FOREACH rsEntry IN txnDesc->readSet {
IF (*(rsEntry->txnRec) != rsEntry->version) {
// version numbers do not match
IF ((*(rsEntry->txnRec) & ~VALIDATE_MASK) == txnDesc) {
// mark write after read
*(rsEntry->txnRec) = txnDesc | VALIDATE_MASK;

}
ELSE RETURN FALSE; // validation failure

}}
// if no write after read has been performed
// then PHASE 2 and PHASE 3 can be skipped

// ************ PHASE 2 ************
FOREACH wsEntry IN txnDesc->writeSet {
IF (*(wsEntry->txnRec) & VALIDATE_MASK)
*(wsEntry->txnRec) = wsEntry | VALIDATE_MASK;

}
// ************ PHASE 3 ************
FOREACH rsEntry IN txnDesc->readSet {
IF ((*(rsEntry->txnRec) & ~VALIDATE_MASK) == txnDesc &&

POINTS_TO_WRITE_SET(*(rsEntry->txnRec)), txnDesc) {
// transaction record points to txnDesc’s write set;
// compare version numbers in both sets
IF ((*(rsEntry->txnRec))->version != rsEntry->version)
RETURN FALSE;

}}
RETURN TRUE;

}

Figure 2. Optimized linear validation procedure

ever, its transaction record can either contain a pointer to the lock
owner’s transaction descriptor (when the corresponding transaction
is active) or a pointer to an entry in the lock owner’s write set (when
lock owner’s transaction is being validated). In both these cases the
version bit is unset. Since the meaning of the version bit remains
the same when a transaction is active, the access operations on the
shared data do not have to change and, as a result, remain as ef-
ficient as in the original algorithm. Any data access operation of
a given transaction can proceed if the bit is unset since the item
is unlocked. If the bit is set, the operation of a given transaction
can proceed only if the contents of the transaction record points
to its own transaction descriptor. Otherwise, the transaction record
points to either another transaction’s descriptor, or to an entry in an-
other transaction’s write set. We would like to emphasize that, un-
like in the approach adopted by Bartok-STM, a transaction record
is only made to point to an entry in the write set for the duration
of the validation procedure, and then only if the transaction reads a
variable after writing into it. This is important since an optimizing
compiler can statically detect and eliminate many or even all write-
after-read situations. In such a case, our algorithm neither incurs
an overhead during transactional access operations, nor during the
validation procedure.

3.2 Validation Procedure
During transaction’s validation procedure we need to be able to
distinguish transaction records associated with data items that have
been both read and written, and are currently locked by the validat-
ing transaction. While the validation procedure is in progress, these
transaction records can only point either to the validating transac-
tion’s descriptor or to an entry in the validating transaction’s write
set. Since pointers are aligned we designate another low-order bit
(called validation bit) for this purpose.

The validation procedure consists of the following phases.
Phases 2 and 3 are optional and depend on the result of execut-
ing phase 1.

3 2008/6/3

1. Validate and Mark: For every entry in the read set of the
validating transaction inspect the contents of the transaction
record it points to. If the transaction record contains the same
version number as the one recorded in the read set, proceed
to the next read set entry (the read is valid). If the transaction
record contains the validating transaction’s descriptor (with the
validation bit set or unset) then the validating transaction both
read and wrote the same data item. Set the validation bit (if
not yet set) and proceed to the next read set entry. In all other
cases the validation procedure fails. We do not execute the
subsequent phases if the transaction did not have a write-after-
read situation, or the validation failed.

2. Redirect: For every entry in the write set of the validating trans-
action inspect the contents of the transaction record it points to.
If the validation bit of the value stored in the transaction record
is set, redirect the transaction record to point to the currently
inspected entry in the write set (keeping the validation bit set).

3. Verify: For every entry in the read set of the validating transac-
tion inspect the contents of the transaction record it points to.
If the validation bit of the value stored in the transaction record
is set and the transaction record contains a pointer to an en-
try in the validating transaction’s write set, compare the version
number stored in the read set with the version number stored in
the write set. If the values are equal, proceed to the next read
set entry; otherwise the validation procedure fails. Please note
that the write set entry in McRT-STM, unlike the write set entry
in Bartok-STM, consists of only two slots. Therefore, in case
a transaction record points to a write set entry of some lock
owner (not necessarily the one being validated), we need an
alternative solution for lock owner identification. 3 We take ad-
vantage of the fact that in McRT-STM write set is composed of
memory chunks aligned on a fixed-size boundary. This allows
us to store a pointer to the lock owner’s transaction descriptor
at a fixed offset from the base of each chunk and access it using
simple pointer-arithmetic operations.

The pseudo-code describing the new linear validation algorithm
is presented in Figure 6 with all three phases explicitly distin-
guished. The VALIDATE MASK constant represents a mask used to
mask out the validation bit. The POINTS TO WRITE SET procedure
summarizes actions (bit operations and the lock owner identifica-
tion test) required to determine if the value stored in the transaction
record points to an entry in the write set of the transaction executing
the validation procedure.

Please note that if the validation procedure is executed upon
transaction termination, the clean-up of transaction records can
be piggy-backed on the lock release procedure which has to be
executed regardless of the validation procedure’s result. Only if
validation is performed while the transaction is in progress (eg , for
periodic validation) the explicit cleanup (involving an additional
pass over the write set) is required. It is also important to observe
that even though the complexity of the algorithm is O((M×2)+N)
in the worst case (M is the size of the read set and N is the size
of the write set), the additional passes through the read set and
the write set are only necessary if the validating transaction read
and then subsequently wrote to some data items it has accessed. If
it is possible to detect these kinds of situations it is beneficial to
eagerly acquire a write lock at the point of read to guarantee that
the data item is not going to be modified by a different transaction
between the read and the write. If all such cases are detected, then
the complexity of the new validation algorithm is reduced to O(M).

3 In Bartok-STM a pointer to lock owner’s descriptor is stored directly in
the third slot of the write set.

A compiler analysis performing this task has been described by
Adl-Tabatabai et al [1] and Harris et al [5].

4. Bitmap-based Validation
Similarly to the optimized linear validation procedure, the bitmap-
based algorithm has been implemented in the context of McRT-
STM. The original validation procedure used in McRT-STM re-
quires processing of the entire read set (of the size equal to the
number of reads performed by the validating transaction) to detect
conflicts with respect to updates performed by other transactions.
A general idea behind the bitmap-based validation algorithm is to
coarsen the granularity of conflict detection by compressing infor-
mation recorded in the read set into a form of a bitmap, optimiz-
ing the validation procedure towards mostly-read-only transactions.
Bitmaps are used to detect conflicts only on the first attempt to com-
mit a transaction and, upon validation failure and transaction abort,
the original validation procedure is used on the following commit
attempts of the re-executed transaction. Unlike the optimized lin-
ear validation algorithm described in Section 3, the bitmap-based
algorithm requires modification of the code fragments implement-
ing transactional read and write operations, called read and write
barriers.

The bitmap-based algorithm assumes that every eligible trans-
action (as described below, bitmaps should not be used to detect
conflicts under certain circumstances) initially uses bitmaps to de-
tect conflicts and only upon failed validation and a resulting abort
uses the original validation procedure during the subsequent re-
execution. The write barriers execute both the code required to
support the original validation procedure and the code implement-
ing the algorithm using bitmaps. This is required because enough
information must be maintained at all times to facilitate conflict
detection with respect to other transactions that may be using dif-
ferent versions of the validation procedure at the same time. The
read barriers use a conditional to decide which version of the val-
idation procedure is currently used and to choose the appropriate
sequence of code to execute. The expected benefit is the reduction
of overheads related to both the time required to execute the read
barriers and the validation procedure itself (no need to either main-
tain or process a read set) at a cost of potentially increasing both
the number of aborts and the cost of the write barrier. A detailed
description of the bitmap-based algorithm is presented below.

4.1 Overview
We use two transaction-local bitmaps (local read map and local
write map) to record reads and writes performed by the transaction
to all shared data items. We currently use maps of the 64-bit size to
achieve high efficiency of operations used to manipulate bitmaps.
Every slot (bit) in the bitmap represents access to a single shared
data item. A slot in the map corresponding to the data item being
accessed is computed using the address of the data item. In case
the address of a data item accessed inside of a transaction using
the bitmap-based algorithm changes while this transaction is still
active (eg , as a result of a copying garbage collector moving objects
around), all currently active transactions using the same scheme
must be aborted.

A global write map is maintained to record updates performed
by all transactions executing concurrently. Information about all
updates performed by a successfully committed transaction (stored
in its local write map) is merged with the information currently
represented in the global write map (initially empty). Additionally,
a transactions counter is maintained to represent the number of
concurrently executing transactions. Merging of local and global
maps needs to happen only if the counter is greater than one.
Transactional reads are validated by computing an intersection of
the local read map that belongs to the committing transaction and

4 2008/6/3

void BEGIN(TxnDescriptor *txnDesc, int64 globalMap) {
IF (txnDesc->useBitmaps) {
WHILE(TRUE) {
int tCount = globalMap & COUNT_MASK;

IF (tCount == 0) // RESET MAP
IF (UPDATE_MAP_CAS(0, tCount+1)) BREAK;

ELSE IF (tCount < COUNT_MAX && // INCREMENT COUNT
(globalMap & MAP_MASK) == 0)

IF (UPDATE_MAP_CAS(globalMap, tCount+1)) BREAK;
ELSE { // DISABLE BITMAPS
txnDesc->useBitmaps = false;
ORIGINAL_BEGIN(txnDesc);
BREAK;

}}}
ELSE ORIGINAL_BEGIN(txnDesc);

}

Figure 3. Transaction begin

the global write map. If the intersection is empty, validation is
successful, otherwise it fails and the transaction is aborted. As
mentioned previously, in some situations all transactions using
bitmap-based scheme may have to be aborted. This can be easily
handled by setting all the bits in the global map to one.

Bitmaps should be used to detect conflicts only if the number
of concurrently executing transactions is relatively low (otherwise
there is a high chance of quickly filling up the global write map
which would lead to conflicts being detected often). This allows
us to set the maximum value of the transactions counter to a low
value (currently 32), and to implement it using the (5) lowest bits
of the global write map. Updates to the counter and the global write
map can then be performed atomically using a single 64-bit CAS
(atomic compare-and-swap) operation.

4.2 Transaction Begin
If at the start of a transaction the transactions counter is equal to
zero then the transaction clears the global write map, increments
the counter and proceeds. If the transactions counter is greater than
zero (another transaction is already executing) and either the global
write map is non-empty or the maximum value of the counter has
been reached, then the starting transaction uses the original valida-
tion procedure (a separate flag is used to maintain this information
– in such case only the original validation procedure is attempted
at commit time). In all other cases, no action is required and the
transaction is free to proceed.

Falling back to the precise validation procedure in case of non-
empty global write map is required to avoid a problem of never
clearing the map in case the number of concurrently executing
transactions is high (in particular, if a new transaction is often

void COMMIT(TxnDescriptor *txnDesc, int64 globalMap) {
IF (txnDesc->useBitmaps) {
int tCount = globalMap & COUNT_MASK;
int64 mapIntersect = txnDesc->readMap & globalMap;

// UPDATE MAP BOTH ON COMMIT AND ON ABORT
UPDATE_MAP_CAS(globalMap | txnDesc->writeMap, tCount 1);
IF (mapIntersect != 0) {
// USE ORIGINAL ALGORITHM ON RE-EXECUTION
txnDesc->useBitmaps = false;
ABORT();

}}
ELSE ORIGINAL_COMMIT(txnDesc);

}

Figure 4. Transaction commit

int64 TAG_MAP(int64 localMap, int *addr) {
int slot = (addr >> BITS_IGNORED) % MAP_SIZE;
int64 slotMask = FIRST_MAP_SLOT << slot;
RETURN localMap | slotMask;

}

int READ_BARRIER(TxnDescriptor *txnDesc,int *addr) {
IF (txnDesc->useBitmaps)
txnDesc->readMap = TAG_MAP(readMap, addr);

ELSE ORIGINAL_READ_BARRIER(txnDesc, addr);
RETURN *addr;

}

void WRITE_BARRIER(TxnDescriptor *txnDesc,
int *addr, int newValue) {

txnDesc->writeMap = TAG_MAP(writeMap, addr);
ORIGINAL_WRITE_BARRIER(txnDesc, addr);
*addr = newValue;

}

Figure 5. Read and write barriers

started before all the previously executed ones are committed). In
other words, we use bitmaps to detect conflicts only for transactions
that are started before the first update of the global write map.

The pseudo-code representing the transaction begin operation is
presented in Figure 3. The useBitmaps flag is used to determine if
bitmaps should be used at all for validation purposes. Procedure
UPDATE MAP CAS() is an abbreviation for an operation using a
single CAS to update both the contents of the map (passed as the
first parameter) and the counter (passed as the second parameter) –
it returns TRUE upon successful update and FALSE upon failure.
The COUNT MASK and MAP MASK constants are used to mask the
appropriate bits of the word representing the global map to extract
the transactions counter and the contents of the map, respectively.
The COUNT MAX constant represents the maximum counter value
(fitting into the specified number of bits).

4.3 Transaction Commit
In case bitmaps are used to detect conflicts (as indicated by the
appropriate flag), the committing transaction computes the inter-
section of its local read map and the global write map to validate
correctness of its read operations.

If the intersection is empty then the validation succeeds, oth-
erwise the committing transaction is aborted and re-executed. In
both cases, the committing transaction merges contents of its local
write map with the contents of the global write map and decrements
the transactions counter. The merging of write maps is required in
both cases since the updates performed by the committing trans-
action have already been reflected in the main memory and other
transactions need to be notified about the possibility of a conflict.
The pseudo-code representing transaction commit operation is pre-
sented in Figure 4. Note that upon failure of the procedure using
bitmaps the flag to disable optimized procedure is set and the trans-
action is aborted to be re-executed using the original algorithm.

4.4 Barriers
The read and write barriers, presented in Figure 5, have been mod-
ified to implement tagging of the local maps. The TAG MAP() pro-
cedure is shared between all the barriers. We found out experi-
mentally that in order to achieve the best distribution of values
in the map we should ignore a certain number of bits in the ad-
dress (represented by the BITS IGNORED constant) when comput-
ing the map slot number. The FIRST MAP SLOT constant represents
the first available slot number (determined by how many low order
bits are used to store the transactions count). Note that in the case
of the read barrier, it is either the code fragment supporting the

5 2008/6/3

% reads hash-table b-tree

10
30
50
70
90

1 CPU 16 CPUs
0.9991 0.9907
0.9920 0.9745
1.0006 0.9577
0.9975 0.9758
0.9943 0.9667

1 CPU 16 CPUs
1.0229 0.9545
1.0238 0.9048
1.0178 1.2029
1.0102 0.9501
0.9856 0.9624

Figure 6. Execution times

original procedure or the code fragment supporting algorithm us-
ing bitmaps that gets executed. In case of the write barrier the code
supporting both styles of validation must be executed.

5. Performance Evaluation
In this section we will present results of the performance evalua-
tion of both the new optimized linear validation algorithm and the
bitmap-based validation algorithm. Both solutions are implemented
in the context of McRT-STM and evaluated on the Intel XeonTM 2.2
GHz machine with 16 CPUs and 16 GB of RAM running Red Hat
Enterprise Linux Release 3 (with 2.4.21-28.ELsmp kernel). Both
new algorithms are being compared with the original validation al-
gorithm present in McRT-STM. The evaluation is based on mea-
suring execution times and other execution metrics (such as aborts)
of two transaction-enabled benchmarks implementing accesses to
common data structures: hash-table and b-tree.

5.1 Optimized Linear Validation
The first set of numbers verifies that in the common case the per-
formance of the new linear validation algorithm does not nega-
tively affect the overall performance of the system. We first exe-
cuted both benchmarks using one thread running on a single CPU
to model workloads that do not exhibit any contention. We also
executed both benchmarks using 16 threads running on 16 CPUs,
even though we did not expect the contention to have any effect on
the performance of the algorithm. In both uncontended and con-
tended cases we varied the percentage of reads (vs. the percentage
of writes) from 10% of reads to 90% of reads (the total number
of operations performed by all threads was 217). We summarize
the results obtained for both the hash-table benchmark and the b-
tree benchmarks in Table 6. The table reports execution times for
the new linear algorithm normalized with respect to the execution
times of the original algorithm.

The analysis of the numbers presented in Table 6 confirms that
in the common case the performance of both algorithms is compa-
rable. In the case of single-threaded execution the difference in per-
formance rarely exceeds 1%. We believe that the larger differences
observed during multi-threaded runs is due to the non-determinism

0 40000 80000 120000
Number of operations

10

100

1000

10000

100000

E
la

ps
ed

 ti
m

e
(m

s)

linear
non linear

Figure 7. Execution times – linear algorithm vs. non-linear algo-
rithm

hash-table b-tree
0

0.5

1

1.5

E
la

ps
ed

 ti
m

e
(n

or
m

al
iz

ed
)

noval (org)
full (new)
nocas (new)
nomod (new)
noval (new)
nobar

Figure 8. Overhead split – 1 thread, 1 CPU

in the results we obtained (which we were unable to fully eliminate
despite averaging over 25 runs).

Despite both algorithms performing similarly in the common
case, the performance of the original validation algorithm is ex-
pected to degrade quite dramatically, dropping exponentially as the
number of write-after-read occurrences grows. At the same time,
the execution time of the new validation algorithm is expected to
only grow linearly in the number of operations. In order to confirm
this hypothesis, we measured execution times of a microbenchmark
that pulls every entry from a given pre-initialized data structure
(hash-table) and then both reads and writes a value stored in that en-
try. We vary the number of entries (and thus operations performed)
from 213 to 217 and plot the execution times (total execution time of
the micro-benchmark in microseconds using a logarithmic scale) in
Figure 7. As we can observe, our hypothesis indeed holds – perfor-
mance of the new algorithm remains linear while the performance
of the original algorithm rapidly degrades as the number of write-
after-read operations increases.

5.2 Bitmap-based Validation
The first set of numbers represents an “ideal” case for the bitmap-
based validation procedure – both benchmarks were executed
within a single thread on a single physical CPU. As a result no
aborts could ever occur. Additionally we measured impact of dif-
ferent implementation components on the overall performance.
Figure 8 describes execution times for both benchmarks, differ-
entiating between separate components (represented by different
bars). All execution times are normalized with respect to the “base-
line” case, that is execution times for a version of the system that
uses the original validation procedure only.

The first bar is an exception – it represents execution time for
the configuration using the original validation procedure where the
verification step (part of the validation procedure performed either
at commit time or during periodic validation) has been omitted.
In other words, it constitutes our ideal target in terms of expected
performance – our major goal is to reduce overheads related to per-
forming the verification step. This bar represents one of two ma-
jor components contributing to the overheads related to support-
ing the original (and in fact any other) validation procedure – the
other one is related to work performed during data accesses (in the
barriers). The last bar represents execution time where in addition
to omitting the verification step, both read and write barriers have

6 2008/6/3

10 30 50 70 90
Reads (%)

0

1

2

3

4

5

E
la

ps
ed

 ti
m

e
(n

or
m

al
iz

ed
)

1 thread
2 threads
4 threads
8 threads
16 threads

(a) execution times

10 30 50 70 90
Reads (%)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000

A
bo

rt
s

1 thread
2 threads
4 threads
8 threads
16 threads

(b) original aborts

10 30 50 70 90
Reads (%)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000

A
bo

rt
s

1 thread
2 threads
4 threads
8 threads
16 threads

(c) bitmap-based aborts

Figure 9. Hash-table benchmark

10 30 50 70 90
Reads (%)

0

1

2

3

4

5

E
la

ps
ed

 ti
m

e
(n

or
m

al
iz

ed
)

1 thread
2 threads
4 threads
8 threads
16 threads

(a) execution times

10 30 50 70 90
Reads (%)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000

A
bo

rt
s

1 thread
2 threads
4 threads
8 threads
16 threads

(b) original aborts

10 30 50 70 90
Reads (%)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000

A
bo

rt
s

1 thread
2 threads
4 threads
8 threads
16 threads

(c) bitmap-based aborts

Figure 10. B-tree benchmark

also been removed (and all the data access operations turned into
“regular” loads and stores). The difference between these two bars
represents the cost of the barriers. Please note, that the execution
time described by the last bar represents both algorithms (original
and bitmap-based) – by omitting the verification step as well as the
barriers these versions of the system have been effectively unified.

The second bar represents a fully functional system supporting
the bitmap-based validation procedure (the remaining bars, even
though correctly executing their respective workloads in the single-
threaded case could behave incorrectly in presence of multiple con-
current threads). The third bar represents a version of the algo-
rithm where the CAS operations used to update the global map and
the transactions counter have been replaced by regular writes. The
fourth bar represents a version of the algorithm where the modulo
division operation used to compute the appropriate slot in the map
has been replaced (in addition to removing CAS operations) with
a bit-wise AND operation extracting the n lowest bits of the ad-
dress. Using the n lowest bits for slot computation is unlikely to
provide a good distribution of slots in the map – in case of real-life
workloads it might be difficult to accept. The fifth bar represents a
version of the algorithm where the configuration represented by the
previous (fourth) bar has been further modified to completely omit
the verification step of the bitmap-based procedure (similarly to the
verification step for the original procedure being removed in case
of the first bar). The sixth (and last) bar has already been described.

The first conclusion that can be drawn from the analysis of Fig-
ure 8 is that we can expect high performance gains from optimizing
the validation step only in the case of the hash-table benchmark, as
indicated by the size of the first bar. It is a direct result of both a
large number of locations read by every transaction executed in this

benchmark (orders of magnitude more than for the b-tree bench-
mark) and periodic validations performed by transactions for all
locations they have read.

The first bar, as mentioned before, represents optimization po-
tential. The difference between the height of the first bar and the
height of the fifth bar represents the difference in the barrier cost
between the original scheme and the optimized scheme. As we can
see the cost of the barriers in the bitmap-based validation procedure
is larger than for the original even in the case when modulo division
has been replaced by a bit-wise AND. As a result, when the opti-
mization potential is small (as is the case of the b-tree benchmark)
no performance improvement is observed.

The second set of numbers attempts to answer the question of
how both the bitmap-based validation procedure behaves under
contention. Figure 9(a) and Figure 10(a) plot execution times for
the hash-table benchmark and the b-tree benchmark, respectively.
The graphs reflect execution times for the bitmap-based scheme
normalized with respect to execution times using the original vali-
dation procedure under varying levels of contention: 1–16 threads
running on 1–16 CPUs respectively, and percentage of reads (vs.
the percentage of writes) varying from 10% of reads to 90% of
reads. Let us first analyze performance of the hash-table bench-
mark (Figure 9(a)). The bitmap-based procedure outperforms the
original algorithm for configurations running up to 8 threads on 8
CPUs, but starts performing worse than the original algorithm at
the highest level of contention (when 16 threads on 16 CPUs are
being run). As we can observe, the increase in the number of aborts
for the configurations using the bitmap-based validation procedure
(plotted in Figure 9(c) seems to have relatively small impact on
the overall performance. The performance of the bitmap-based al-

7 2008/6/3

gorithm is better than that of the original one for all but the most
contended configuration despite the number of aborts being quite
dramatically increased with respect to the numbers for the original
validation procedure (plotted in Figure 9(b). We believe that the
explanation for this behavior lies in periodic validations of all the
data read by transactions executed in this benchmark. The cost of
periodic validation is very low when using the bitmap-based ver-
sion of the procedure (a transaction intersects the maps and either
proceeds or aborts) whereas in the case of the original algorithm
traversal of the entire read set is required. As a result, the cost of
a (failed) transactional execution is potentially much higher in the
case of the original algorithm.

The analysis of the execution times for the b-tree benchmark is
much simpler. The bitmap-based procedure is unable to outperform
the original algorithm (with the exception of execution anomalies
– explanation is presented below) as indicated on Figure 10(a).
Also, the increase in the number of aborts has the expected result
on performance. Aborts for both types of algorithms are plotted
on Figure 10(b) (original validation procedure) and Figure 10(c)
(bitmap-based validation procedure) with the number of aborts for
the original algorithm being extremely small.

When running the benchmarks, similarly to the experiments we
performed for the new optimized linear algorithm, we observed a
degree of variability between different runs of the same benchmark
(observed over 25 runs of every configuration) and a significant
amount of jitter. This effect is much more visible in the case of
the b-tree benchmark whose running time is short – we believe
that benchmark runs where the bitmap-based scheme performed
better than the original one are a direct result of this behavior.
Therefore, we repeated our measurement for the b-tree benchmark
with the number of iterations increased by the factor of four to
increase the execution times. Unfortunately the variability has not
been eliminated but the overall conclusion remains the same – no
performance benefit can be expected from running any of the b-tree
benchmark configurations when using the bitmap-based validation
procedure.

One of the conclusions that can be drawn from the analysis of
these results is that adding any additional overheads to the read and
write barriers should be avoided when implementing similar solu-
tions. The increased barrier cost dwarfed any potential performance
improvement of the verification step for the b-tree benchmark. A
more general conclusion is that while the bitmap-based validation
procedure has potential to improve the performance over the orig-
inal algorithm, it is not suitable for a general purpose system in
its current form as it performs well only under selected workloads
(large number of reads, potentially in conjunction with frequent pe-
riodic validations) and may degrade performance when used as the
primary validation procedure. At the same time, the approach pre-
sented could prove itself useful in case the validation procedure
must be invoked much more frequently (eg , at every data access
operation, in the extreme case). In such case, the additional over-
heads described above could appear to be more tolerable.

6. Related Work
A linear validation algorithm has been proposed by Harris et al [5]
and implemented in the context of their STM system. However,
in their solution transaction records associated with locked data
items always (throughout the entire lifetime of the lock owner)
point to the appropriate entry in the lock owner’s write set. As a
result, and unlike in our own linear algorithm, the ownership tests
performed during transactional memory access operations require
an additional level of indirection.

Bitmaps have been previously used to support validation algo-
rithm by Welc et al [12]. In their system, however, the validation
procedure using bitmaps is the primary one. As a result, in order

to achieve a reasonable precision of the validation procedure, they
must use large bitmaps (16,000 slots) which may have negative im-
pact on both the memory footprint as well as on the time it takes to
execute the validation procedure. Additionally, imprecision result-
ing from the (exclusive) use of bitmaps for validation may result
in repeated transaction aborts, whereas in our system, a transaction
can be aborted only once as a result of using information about
reads in a compressed form (subsequent re-executions use the orig-
inal validation algorithm).

References
[1] ADL-TABATABAI, A.-R., LEWIS, B. T., MENON, V., MURPHY,

B. R., SAHA, B., AND SHPEISMAN, T. Compiler and runtime
support for efficient software transactional memory. In PLDI 2006.

[2] GRAY, J., AND REUTER, A. Transaction Processing: Concepts and
Techniques. Data Management Systems. Morgan Kaufmann, 1993.

[3] HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications
(Anaheim, California, Nov.). ACM SIGPLAN Notices 38, 11 (Nov.
2003), pp. 388–402.

[4] HARRIS, T., MARLOW, S., PEYTON-JONES, S., AND HERLIHY, M.
Composable memory transactions. In PPoPP 2005.

[5] HARRIS, T., PLESKO, M., SHINNAR, A., AND TARDITI, D.
Optimizing memory transactions. In PLDI 2006.

[6] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER, III,
W. N. Software transactional memory for dynamic-sized data
structures. In PODC 2003.

[7] HERLIHY, M., AND MOSS, J. E. B. Transactional memory:
Architectural support for lock-free data structures. In Proceedings of
the International Symposium on Computer Architecture (San Diego,
California, May). 1993, pp. 289–300.

[8] MARTÍNEZ, J. F., AND TORRELLAS, J. Speculative synchronization:
Applying thread-level speculation to explicitly parallel applications.
In ASPLOS 2003.

[9] RAJWAR, R., AND GOODMAN, J. R. Transactional lock-free
execution of lock-based programs. In Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (San Jose, California, Oct.). ACM
SIGPLAN Notices 37, 10 (Oct. 2002), pp. 5–17.

[10] SAHA, B., ADL-TABATABAI, A.-R., HUDSON, R. L., MINH, C. C.,
AND HERTZBERG, B. A high performance software transactional
memory system for a multi-core runtime. In PPoPP 2006.

[11] SHAVIT, N., AND TOUITOU, D. Software transactional memory. In
PODC 1995.

[12] WELC, A., HOSKING, A. L., AND JAGANNATHAN, S. Transparently
reconciling transactions with locking for Java synchronization. In
ECOOP 2007.

8 2008/6/3

