
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 19, 2024

Smartphones Get Emotional: Mind Reading Images and Reconstructing the Neural
Sources

Petersen, Michael Kai; Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg; Hansen, Lars Kai

Published in:
Affective Computing and Intelligent Interaction

Link to article, DOI:
10.1007/978-3-642-24571-8_72

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Petersen, M. K., Stahlhut, C., Stopczynski, A., Larsen, J. E., & Hansen, L. K. (2011). Smartphones Get
Emotional: Mind Reading Images and Reconstructing the Neural Sources. In S. D ́Mello (Ed.), Affective
Computing and Intelligent Interaction: 4th International Conference, ACII 2011 Memphis, TN, USA, October 9-
12, 2011 Proceedings, Part II (Vol. 2, pp. 578-587). Springer. https://doi.org/10.1007/978-3-642-24571-8_72

https://doi.org/10.1007/978-3-642-24571-8_72
https://orbit.dtu.dk/en/publications/d1a60b8d-1a18-4641-8e18-3f53fea2f951
https://doi.org/10.1007/978-3-642-24571-8_72


Smartphones get emotional: mind reading
images and reconstructing the neural sources

Michael Kai Petersen, Carsten Stahlhut, Arkadiusz Stopczynski,
Jakob Eg Larsen, and Lars Kai Hansen

DTU Informatics, Cognitive Systems
Technical University of Denmark, Building 321, DK-2800 Kgs. Lyngby, Denmark

{mkp,cs,arks,jel,lkh}@imm.dtu.dk

Abstract. Combining a 14 channel neuroheadset with a smartphone to
capture and process brain imaging data, we demonstrate the ability to
distinguish among emotional responses reflected in different scalp poten-
tials when viewing pleasant and unpleasant pictures compared to neutral
content. Clustering independent components across subjects we are able
to remove artifacts and identify common sources of synchronous brain ac-
tivity, consistent with earlier findings based on conventional EEG equip-
ment. Applying a Bayesian approach to reconstruct the neural sources
not only facilitates differentiation of emotional responses but may also
provide an intuitive interface for interacting with a 3D rendered model of
brain activity. Integrating a wireless EEG set with a smartphone thus of-
fers completely new opportunities for modeling the mental state of users
as well as providing a basis for novel bio-feedback applications.
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reconstruction

1 Motivation

Consciousness and emotion are not separable. Cognitively speaking our feelings
can be thought of as labels that we consciously assign to the emotional responses
triggered by what we perceive [1]. While we often think of affective terms as de-
scribing widely different states, these can be represented as related components
in a circumplex model framed by the two psychological primitives: valence and
arousal [2]. Related to viewing affective pictures, earlier neuroimaging studies
have established that emotional content trigger not only autonomic responses of
increased heart rate and electrodermal skin conductance, but also distinct brain
potentials characterizing pleasant or unpleasant feelings compared to neutral
imagery [3]. These ERP responses covary with both autonomic arousal and self
report [4], and have been validated by affective user ratings in the IAPS set of
affective pictures, using the psychological dimensions of valence and arousal to
define how pleasant or intense the emotional content is perceived as being [5].
Previous brain imaging studies of emotional responses when viewing affective
pictures [4] have identified distinct differences in the ERP amplitudes elicited
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by pleasant and unpleasant compared to neutral images. An early component
emerge most pronounced for pleasant content at 150-200ms termed early poste-
rior negativity EPN, triggering a relative negative shift over temporal occipital
areas and a positive potential over central sites [6]. Followed by yet another
ERP component; a late positive potential LPP at 300-500ms, characterized by
an enhanced posterior positivity over central parietal sites for affective com-
pared to neutral content, with left hemisphere enhanced for pleasant pictures
while activation appeared right lateralized for unpleasant images [3].

Only recently affordable wireless EEG headsets, initially designed as cogni-
tive game interfaces have become available, and subsequently been applied as
brain machine interfaces to directly manipulate robotic arms [7], drive a car
[8] or mentally select images using the P300 oddball paradigm to call contacts
by mentally selecting their image from the phonebook of an iPhone [9]. Scott
Makeig et al. [10] have summarized the many benefits of brain monitoring under
naturalistic conditions, emphasizing the need for going beyond brain imaging
paradigms gauging how a few bits of information move through the brain when
tapping a finger, and widen the focus to map out how we actively perceive our
surroundings in a mobile context reflected in embodied cognition and real life
emotional responses. However the obvious question remains whether the limited
number of electrodes and the quality of consumer priced EEG sets make it fea-
sible to capture brain imaging data in noisy environments. We therefore decided
to combine a wireless neuroheadset with a smartphone for presenting media,
gauge the emotional responses by capturing the EEG data and subsequently
process and visualize the reconstructed patterns of brain activity on the device.
And in the following sections outline the mobile EEG system design, experi-
mental setup, results based on ICA analysis and source reconstruction, which
are discussed in relation to earlier neuroimaging findings obtained in laboratory
settings using conventional EEG equipment.

2 Methods

2.1 Mobile EEG system

The Neuroheadset transmits the EEG and control data to a receiver module
with a standard USB connector, originally intended for a Windows PC running
the Emotiv research edition SDK. We instead connect the receiver module di-
rectly to the USB port on a Nokia N900 smartphone, running Maemo 5. The
current version is designed as a client-server architecture so that computation-
ally expensive data analysis can be performed on a remote server and results
are transmitted back to the phone for presentation. For synchronizing the stim-
uli with the captured EEG data, we timestamp the beginning and end of the
recording when the first and last packets arrive. Meaning, the theoretical 128
Hz sample rate turns out to be 126-127 Hz when averaged over several min-
utes of recording. The timestamps saved during the experiments indicate that a
resolution of 10 msec is achieved with the current Python implementation.
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Fig. 1. The wireless 14 channel neuroheadset transmits the brain imaging data via
a receiver connected directly to the USB port on a Nokia N900 smartphone, using
components and custom-made software in order to transfer the received EEG data to
a server for further processing. The present implementation allows interaction with
a reconstructed 3D model of brain activity by mapping touch display movements to
rotation in one dimension.

2.2 Experimental setup

Eight male volunteers from the Technical University of Denmark, between the
ages of 26 and 53 (mean age 32,75 years) participated in the experiment. Repli-
cating the setup for identifying neural correlates of emotional responses triggered
by affective pictures, originally performed using a high density 129 electrode ar-
ray [3], we in the present study applied a simplified approach based on a portable
wireless Emotiv Research Edition 14 channel neuroheadset (http://emotiv.com)
to capture the signal from Ag/AgCl electrodes positioned at AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 according to the international 10-20
system. Channels were recorded at a sampling rate of 128Hz. using the electrodes
P3/P4 as CMS reference and DRL feedback respectively. Based on earlier stud-
ies showing that late emotional responses to affective pictures remain unaffected
when varying the size of images [11], the participants viewed a randomized se-
quence of 60 IAPS images presented on the 3.5” display (800 x 480 screen resolu-
tion) of N900 Nokia smartphones rather than on a standard monitor. Combining
earlier experimental designs for eliciting emotional responses when viewing af-
fective pictures, we selected 3 x 20 images from the user rated international
affective picture system IAPS [5] identical to the subset used in [3] representing
categories of pleasant (erotic and family photos) unpleasant (mutilated bodies,
snakes and spiders) and neutral images (simple objects as well non-expressive
portraits of people). Taking into consideration findings establishing that the ERP
neural correlates of affective content in images can be distinguished even when
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the exposure of target pictures are limited to 120ms [6], we opted for adopting
the experimental picture viewing paradigm outlined in [12], where a random-
ized sequence of images from the 3 x 20 IAPS picture categories are presented
with 0.5 second prestimulus consisting of a white fixation cross on black back-
ground, before a 1 second visual stimulus presentation of a picture followed by
a subsequent 1 second poststimulus black screen.

2.3 ICA data analysis

While the rows of the matrix of EEG data initially consist of voltage differ-
ences measured over time between each electrode and the reference channel,
they come to represent temporally independent events that are spatially filtered
from the channel data by applying ICA independent component analysis [13].
Even though neither the location of electrodes or aspects of volume conductance
in the brain are part of the equation, the ICA decomposition of the original data
matrix often results in independent components resembling scalp projections of
brain dipoles, as they reflect synchronous brain activity of local field potentials
projected through volume conduction throughout the scalp [14]. However part
of the recorded potentials are induced by eye movement, muscle activity and
noise and we followed the approach in [15] to cluser ICA components retrieved
from each subject to remove the artifacts and isolate the components represent-
ing information sources based on the EEGLAB plug-in (v9.0.4.4) for Matlab
(R2010b). Initially by reducing the dimensionality of the feature space to N=10
by applying PCA principal component analysis [16], which as a pre-clustering
function computes a vector for each component to define normalized distances
in a subspace representing the largest covariances within scalp maps and power
spectra. Subsequently, we applied a Kmeans algorithm choosing K=10 to clus-
ter similar ICA components and separate outliers that remain more than three
standard deviations removed from any cluster centroids. After clustering the 8 x
14 ICA components generated from the continuous EEG trial data of each sub-
ject, we after visual inspection of averaged scalp topographies and power spectra
manually removed 5 of the 10 clusters, containing spatially localized components
like eye artifacts or independent components resembling muscle activity charac-
terized by high power spectra at high frequencies.

2.4 Source reconstruction

The inverse problem of estimating the distribution of underlying sources from
a scalp map is severely ill-posed with multiple solutions, as the electrodes are
placed at a distance and therefore sum the volume conducted brain activities
from cortical areas throughout the scalp [15].We note that apart from provid-
ing a relevant neurofeedback signal it has been argued that a sparse 3D rep-
resentation may in fact also improve decoding [17]. The forward propagation
is linear and written in terms of a matrix A, relating the measured electrode
signals Y = AX + E to the sought source signals X where E is a noise term
[18]. The forward model depends on sensor positions based on a head model of
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the spatial distribution of tissue and conductivity values. Assuming the noise
to be time independent Gaussian distributed, the observation model becomes
p(yt|xt, ΣE) = N(yt|Axt, ΣE) where ΣE is the noise spatial covariance matrix.
We here apply a Bayesian formulation of the widely used minimum norm (MN)
method for solving the inverse problem [19]. The MN method allows for fast
computation of the inverse solution. In a MN setting a multivariate Gaussian
prior for the sources with zero mean and covariance α−1INd

is assumed. More-
over, it is assumed that the forward propagation model is fixed and known. With
Bayes rule the posterior distribution is maximized by

Σy = (α−1AAT + β−1INc)−1 (1)

X̂ = α−1ATΣyY (2)

where the hyper parameters, α and β are estimated online using a Bayesian EM
approach.

3 Results

a b

d c

Fig. 2. Mobile EEG event related potentials ERP averaged across eight subjects at
300-500ms after stimuli in the 8-12 Hz frequency band, captured by a 14 channel wire-
less neuroheadset when viewing affective images on the 3.5” display of a smartphone
depicting: a) pleasant - erotic couples b) unpleasant - mutilated bodies c) neutral peo-
ple and d) household objects. Compared to earlier neuroimaging findings based on the
same paradigm but using high density 129 electrode EEG equipment in a laboratory
setting [3] [6] we obtain similar results indicating: overall increased posterior activation
for a) pleasant and b) unpleasant compared to c) neutral people and d) objects, as well
as increased activation in parietal cortex for a) pleasant versus b) unpleasant content.
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a b

d c

Fig. 3. Activation at 172ms after picture onset in the 8-12Hz frequency band may rep-
resent the 150-200ms early posterior negativity EPN previously observed [3] [6] based
on reconstruction of sources generated from scalp maps averaged across eight subjects
viewing: a) pleasant b) unpleasant c) neutral people and d) objects. Consistent with
earlier neuroimaging findings, the reconstructed sources reflect increased activity in the
150-200ms time window for a) pleasant versus b) unpleasant, whereas the differences
between pleasant a) versus c) and d) neutral content appear less significant.

a b

d c

Fig. 4. Activation at 422ms after picture onset in the 8-12Hz frequency band may
represent the 300-500ms late posterior positivity LPP previously observed [3] [6] based
on reconstruction of sources generated from scalp maps averaged across eight subjects
viewing: a) pleasant b) unpleasant c) neutral people and d) objects. Consistent with
earlier neuroimaging findings, the reconstructed sources reflect increased activity and
polarity reversals in the 300-500ms time window for a) pleasant versus b) unpleasant,
and increased activity for affective versus c) and d) neutral content.
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a b c d e

Fig. 5. Clusters of scalp maps and associated power spectra generated from continuous
mobile EEG trial data from eight subjects, by applying a kmeans algorithm to 8 x 14
temporally independent ICA independent components represented in a 10 dimensional
subspace reduced by PCA principal component analysis. While the clustered ICA com-
ponents do not represent absolute scalp map polarities as such, they indicate common
sources of synchronous brain activity in the 8-12 Hz frequency band, consistent with
activities in central, temporal and parietal cortex previously observed to differentiate
responses when viewing affective pictures compared to neutral content [3] [6].

4 Discussion

Combining a 14 channel neuroheadset with a smartphone for capture and pro-
cessing of brain imaging data, our findings indicate we can distinguish among
emotional responses reflected in different scalp potentials when viewing pleasant
and unpleasant pictures and thereby replicate results previously obtained using
conventional high density 129 electrode EEG equipment [3] [6]. Analyzing the
event related potentials ERP averaged across eight subjects at 300-500ms after
stimuli in the 8-12 Hz frequency band when viewing affective images (Fig.2), we
find overall increased posterior activation for pleasant and unpleasant pictures
compared to neutral people and objects, as well as increased activation in pari-
etal cortex for pleasant versus unpleasant content. Illustrating how varying emo-
tional intensity in the 300-500ms time window after presentation of emotional
content draws attention and defines a selective processing making it possible to
distinguish among the feelings triggered when consuming media in a real life
setting.

Even though the neuroheadset has only a limited number of channels and no
central electrodes, its inclusion of positions F7/F8, P7/P8 and O1/O2 are likely
essential for the obtained results, as these electrodes have erlier been shown to
contribute significantly to the differentiation between affective and neutral pic-
tures using conventional EEG equipment [3]. Raising the question as to whether
the electrode positions can be considered similar, as the form factor of the neu-
roheadset will provide a slightly different fit for each subject depending on the
shape of the head in contrast to traditional EEG caps. However, even when
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electrodes are accurately placed the recorded potentials may still vary due to
individual differences in cortical surface and volume conduction. We therefore
clustered the 8 x 14 ICA components generated from continuous EEG trial data
in order to identify common patterns of brain activity across the eight subjects.
Among the clusters retained after artifact removal (Fig.5), 39 ICA components
clustered in b) and d) were shared by all eight subjects, the 18 ICA compo-
nents within clusters a) and e) by five subjects, while c) was related to 7 ICA
components found in three subjects. Indicating an ability to consistently cap-
ture common patterns of brain activity across subjects even when taking into
account the less accurate positioning and limited number of electrodes. While
the clustered ICA components do not represent absolute scalp map polarities as
such, they indicate common sources of synchronous brain activity in the 8-12 Hz
frequency band, consistent with activities in central, temporal and parietal cor-
tex previously observed to differentiate responses when viewing affective pictures
compared to neutral content [3] [6].

Going beyond analysis of averaged ERPs and clustering of ICA components,
we took a Bayesian approach to learn the parameters for applying the mini-
mum norm (MN) method and thus reconstruct the underlying sources from the
recorded scalp potentials. Initially exploring the 150-200ms time window an acti-
vation at 172ms after picture onset in the 8-12Hz frequency band may represent
the early posterior negativity EPN previously observed [3] [6] here based on re-
construction of sources generated from scalp maps averaged across eight subjects
viewing: a) pleasant b) unpleasant c) neutral people and d) objects. Consistent
with earlier neuroimaging findings, the reconstructed sources reflect increased
activity in the 150-200ms time window for pleasant versus unpleasant, whereas
the differences between pleasant versus neutral content appear less significant.
This early component thought to reflect direction of attentional resources has
earlier been found to be more significant for pleasant relative to neutral con-
tent, and source reconstruction may thus potentially provide additional features
for differentiating among positive and negative content. Within the 300-500ms
time window we found a maximal activation at 422ms after picture onset which
based on the reconstructed sources may represent the late posterior positivity
LPP previously observed using a conventional EEG setup [3] [6]. It has been sug-
gested that the LPP component reflects increased allocation of neural resources
for processing emotionally salient relative to neutral content, which here appear
activated in the left parietal cortex for pleasant versus unpleasant, and increased
activity for affective versus neutral content. Applying a Bayesian formulation to
reconstruct the underlying neural sources may thus provide additional informa-
tion that not only adds to the differentiation of emotional responses captured in
a mobile EEG setting, but may also provide an intuitive interface for interact-
ing with a 3D rendered model of brain activity as a basis for developing novel
bio-feedback applications. (Fig.1).

The early and late components are not limited to differentiating among the
stark emotional contrasts characterizing images selected from the IAPS collec-
tion [5]. Whether we read a word with affective connotations, come across some-
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thing similar in an image or recognize from the facial expression that somebody
looks sad, the electrophysical patterns reflecting the connections among neural
populations in the brain seem to suggest that the underlying emotional pro-
cesses might be the same [20]. Reflecting that we are constantly attracted to or
avoiding sensations related to traces in memories capturing pleasure and pain of
past experiences, that as feelings are conceptualized as bodily states integral to
establishing our sense of self [21]. Using fMRI imaging in experiments to trace
which parts of the brain are involved when people read emotional words, the
results indicate that activation in two distinct neural networks are linearly cor-
related with the values of valence or arousal [22]. Overall the valence network
linking prefrontal areas and the amygdala are activated in a reciprocal manner
whenever the emotional balance shifts from positive to negative, suggesting a
feedback loop that moderate our feelings in order for them not to grow out of
bounds. Whereas the amount of arousal in words are positively correlated with
increased neural activity in a circuit involving the cingulate cortices and the
hippocampus linked to prefrontal areas that might again provide an inhibiting
effect on arousal. Meaning that the our responses to the emotional content we
come across in images or words as measured in the IAPS [5] and ANEW [23]
user rated values framed by the dimensions of valence and arousal, might liter-
ally correspond to actual neural processes in the brain pertaining to two distinct
networks. The ability to continuously capture these patterns by integrating wire-
less EEG sets with smartphones for runtime processing of brain imaging data
may offer completely new opportunities for modeling the mental state of users in
real life scenarios as well as providing a basis for novel bio-feedback applications.
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