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Abstract. An important challenge in building automatic affective state
recognition systems is establishing the ground truth. When the ground-
truth is not available, observers are often used to label training and test-
ing sets. Unfortunately, inter-rater reliability between observers tends to
vary from fair to moderate when dealing with naturalistic expressions.
Nevertheless, the most common approach used is to label each expression
with the most frequent label assigned by the observers to that expres-
sion. In this paper, we propose a general pattern recognition framework
that takes into account the variability between observers for automatic
affect recognition. This leads to what we term a multi-score learning
problem in which a single expression is associated with multiple values
representing the scores of each available emotion label. We also propose
several performance measurements and pattern recognition methods for
this framework, and report the experimental results obtained when test-
ing and comparing these methods on two affective posture datasets.
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1 Introduction

With the emergence of the affective computing field [17], various studies have
been carried out to create systems that can recognize the affective states of their
users by analyzing their vocal, facial [15] [23], and body expressions [9] and
even their physiological changes [11]. An important challenge in building such
automatic affective state recognition systems is establishing the ground truth,
i.e., to label the training and testing sets necessary to build such systems. When
the ground truth is not available, researchers recur to the use of perceptual
studies where observers are asked to name the affective state conveyed by an
expression (e.g., a body expression) and then use the most frequent label to
label that expression. This approach assumes that a ground truth exists and
that the automatic recognition system should behave as the majority of the
observers.



As the field distances itself from acted datasets and begins to focus more
on naturalistic expressions, unfortunately the subtlety of naturalistic expres-
sions tends to lower the inter-rater reliability to fair or moderate levels [3]. This
is particularly true for affective body expressions. For example, Kleinsmith et
al. [9] used a random repeated sub-sampling method to assign ground truth la-
bels to naturalistic postures according to groups of näıve observers. The results
showed an average level of agreement of 67% between observers. This low level
of agreement has also been observed for acted body expressions. Camurri et
al. [2] examined the level to which groups of observers recognized the emotion
portrayed in dance motions performed by professional dancers. The dancers’
labels were considered the ground truth. 32 non-expert observers were asked
to evaluate both the dance expression and its intensity and an average of 56%
correct recognition was achieved. Another example is provided by Paterson et
al.’s study [16] in which they also examined how well an actor’s affective state
may be recognized by a group of observers. Actors were motion captured while
performing drinking and knocking motions according to 10 affective states. Hu-
man observers viewed the motions and judged the emotion displayed in a forced
choice experimental design. The results showed that the overall recognition rate
across the 10 emotions was a mere 30%.

Given the variability observed in these perception tasks (for both acted and
non-acted datasets), it becomes important to take this variability into consider-
ation. This problem has been addressed in more general terms by the machine
learning community. Chittaranjan et al. [4] proposed to incorporate the annota-
tor’s knowledge into a machine learning framework for detecting psychological
traits using multimodal data. They used the knowledge provided by the annota-
tors, the annotations themselves and their confidences in the form of weights to
estimate final class labels and then used these to train classifiers. Using this ap-
proach, the resulting classifiers outperformed classifiers that were trained using
the most frequent label approach.

A different approach is taken by Fürnkranz and Hüllermeier [7]. They pro-
posed to learn preferences rather than a set ground truth. In this case each
sample is associated with a set of labels and their preferred value. A supervised
learning of a ranking function is used to learn the complete ranking of all labels
instead of only predicting the most likely label. The results show that even if
the aim is only to predict the most preferred label, the learning process gains
from taking into account the full ranking information. As the authors acknowl-
edge, the problem with their approach is that it requires a large training dataset.
Nicolaou et al. [14] treated the same problem as a regression task of predicting
multi-dimensional output vectors given a specific set of input features. They
proposed a novel output-associative relevance vector machine (RVM) regression
framework that augments the traditional RVM regression by being able to learn
non-linear input and output dependencies.

In line with these last two works, we propose a general framework for a
pattern recognition problem that considers category labeling differences between
observers which is described in the following section.



2 Multi-score Learning and Its Measurements

The scenario considered here is a pattern recognition problem in which there
are multiple scores on the categories for a single sample. We call this problem
multi-score learning. It should be noted that such a problem is different from
typical machine learning problems with multiple outputs, such as multi-class
learning, multi-label learning and multi-output learning. It is also different from
typical regression models. Here, we describe multi-score learning with a detailed
formulation of the problem, measurements and possible learning methods.

Let X ⊂ Rd denote the d dimensional feature space of samples. Every sam-
ple x ∈ X has a multiple score vector y over C categories. All of these score
vectors create a C dimensional score space {y ∈ Y }. Because the scores have
a maximum value, without losing generalization, we can assume that all the
scores are within the interval [0, 1], e.g. Y ⊂ [0, 1]C . For a training dataset{

(xi,yi), i = 1, 2, · · · , N
}

, in which xi = (xi1, x
i
2, · · · , xid) is a d dimensional fea-

ture vector and yi = (yi1, y
i
2, · · · , yiC) is its score, the machine learning task here

is to find a function h(x) : X → Y to predict the scores

ŷ = h(x) = (ŷ1, ŷ2, · · · , ŷC), ŷj ∈ [0, 1] (1)
for a given sample x = (x1, x2, · · · , xd).

In order to measure the performance of possible methods for multi-score
learning, we define five measurements to compute the similarity between the true

and predicted scores for all testing samples
{

(yi, ŷi), i = 1, 2, · · · ,M
}

. These

measurements give a full comparison between the true and predicted scores by
considering their distance, similarity, ranking order and multi-class, multi-label
classification performances.

Root Mean Square Error. Root Mean Square Error (RMSE) is a frequently-
used measure of the differences between the values predicted by a model and
the values actually observed from the object being modeled or estimated. The
average RMSE over all the testing samples is computed as

RMSE =
1

M

M∑
i=1

√√√√ 1

C

C∑
j=1

(yij − ŷij)2 (2)

Cosine Similarity. Cosine Similarity is a measure of similarity between two
vectors by measuring the cosine of the angle between them. The result of the
Cosine function is equal to 1 when the angle is 0, and less than 1 when the angle
is of any other value.

cos(θ) =
〈y, ŷ〉
‖y‖2 ‖ŷ‖2

=

√∑C
j=1 yj ŷj√∑C

j=1 y
2
j

√∑C
j=1 ŷ

2
j

(3)

The average cosine similarity (ACS) on the testing dataset is computed as

ACS =
1

M

M∑
i=1

〈
yi, ŷi

〉
‖yi‖2

∥∥∥ŷi
∥∥∥
2

(4)



Top Match Rate. Top match rate (TMR) evaluates how many times the top-
ranked label is not the same as the top label of the sample. It is the same as the
recognition error for multi-class classification.

TMR =
1

M

M∑
i=1

1{
argmax
1≤j≤C

yi
j=argmax

1≤j≤C
ŷi
j

} (5)

where 1A is a function on condition A.

1A =

{
1, A is true
0, A is false

(6)

Ranking Loss. The order of the predicted scores among C categories might be
more important as it gives a relative comparison between these categories. The
ranking loss (RL) measure considered here is based on an information retrieval
application[19]. RL evaluates the average fraction of label pairs that are reverse
ordered for the sample [24]. Assume that for sample xi, its real score yi can be
represented in order as (yil1 ≥ yil2 ≥ · · · ≥ yilC ) and a predicted score ŷi. With
this inderstanding, the average RL function can be defined as

ARL =
1

M

M∑
i=1

∑C
j=1

∑C
k=j+1 1{

ŷi
lj
<ŷi

lk

}
C × (C − 1)/2

(7)

Average Precision. In order to compare the overall recognition rate for mul-
tiple categories, average precision (AP) can be also considered. It is an im-
portant measurement for the average recognition rate for a multi-label clas-
sification problem. The problem is transferred into a multi-label classification
task by thresholding(≥ δ) the true label into value “1” and “0”. i.e. new labels

yi ∈ {0, 1}C . AP measures the average fraction of labels ranked above a partic-
ular label l which has an actual value of “1” (e.g. yi

l = 1). The performance is
perfect when the value is 1.

AP =
1

M

M∑
i=1

1∑C
l=1 1{yi

l=1}

C∑
l=1
yi
l=1

∑C
k=1 1{ŷi

k≥ŷi
l ,y

i
k=1}∑C

k=1 1{ŷi
k≥ŷi

l}
(8)

3 Learning Methods for Multi-score Learning

There are many classification or regression methods that could be adapted to
perform multi-score learning. The most popular methods are considered and
applied here.

3.1 K-Nearest Neighbour

K-Nearest Neighbour (KNN) is a lazy learning method for classifying objects
based on the closest training examples in the feature space. For sample x, its
predicted label ŷ = (ŷ1, ŷ2, · · · , ŷC) can be computed as the average of the labels
in its K neighbors N(x) ⊂ {1, 2, · · · , N} in the N training samples. i.e.

ŷj = 1
K

∑K
k=1 y

ik
j , j = 1, 2, · · · , C, ik ∈ N(x) (9)



3.2 Regression

If we assume the dependent variables are independent from each other, we can
use the general linear model (GLM), support vector regression (SVR) or partial
least squares (PLS) methods.

General Linear Model. GLM [12] is a statistical linear model that has mul-
tivariate measurements y. The feature vector x is usually assumed to follow a
multivariate normal distribution. The components of y are assumed to be in-
dependent from each other. GLM is solved independently by solving a normal
regression problem for each component .

Support Vector Regression. The SVR algorithm [6] is very similar to the
support vector machine (SVM) algorithm, however it treats the data as a re-
gression problem. The model produced by SVR depends only on a subset of
the training data, because the cost function for building the model ignores any
training data close to the model prediction.

Partial Least Squares. PLS regression is a statistical method that bears some
relation to principal components regression. Instead of finding hyperplanes of
maximum variance between the response and independent variables, it finds a
linear regression model by projecting the predicted variables and the observable
variables to a new space. Because both the X and Y spaces are projected to new
spaces, PLS methods are known as bilinear factor models. Detailed information
on the implementation of these methods can be found in [5] and [18].

3.3 Artificial Neural Networks

Artificial neural networks can be applied for multi-score learning without the as-
sumption of independence between dependence variables. Two of these networks
are introduced below.

Radial Basis Neural Network. A radial basis neural network (RBNN) [13]
typically has three layers: an input layer, a hidden layer with a non-linear radial
basis activation function and a linear output layer. The neurons in the hidden
layer contain Gaussian transfer functions whose outputs are inversely propor-
tional to the distance from the center of the neuron.

General Regression Neural Networks. A general regression neural network
(GRNN) is a probabilistic neural network proposed by Donald F. Specht [21] in
1991. It needs only a fraction of the training samples that a back-propagation
neural network needs [21]. The use of a probabilistic neural network is especially
advantageous due to its ability to converge to the underlying function of the data
with only a few training samples available. The additional knowledge needed to
fit the data in a satisfying way is relatively small and can be achieved without
additional input by the user.



3.4 Multi-task Learning

Multi-task learning (MTL) [1] is a method for learning sparse representations
shared across multiple tasks. It is based on a novel non-convex regularizer which
controls the number of learned features common across the tasks. The algo-
rithm has a simple interpretation: it alternately performs a supervised and an
unsupervised step. In the supervised step it learns task-specific functions, and
in the unsupervised step it learns common-across-tasks sparse representations
for these functions. MTL can be applied to multi-score learning by considering
every component in y as a single task.

4 Multi-score Learning on Affective Posture: Results

Two posture datasets3 were used to test our approach. Both datasets were col-
lected using motion capture systems. Examples of postures from the two datasets
can be seen in Figure 1. The first set contains 108 acted postures and each pos-
ture is described by a 24-dimensional feature vector. This vector describes the
configuration of the posture in terms of distances between body joints and an-
gles between body segments. Details on the data collection are provided in [10].
The second dataset contains 103 non-acted postures collected in a whole-body
computer game scenario. For each posture, a 41-dimensional feature vector de-
scribing 3D rotational information for each body joint was extracted. Details on
this dataset are provided in [9].

Each posture in both databases was labeled using non-expert observers and
forced-choice surveys. For the acted dataset, 70 observers from 3 different cul-
tures were asked to rate each posture in terms of 4 emotion labels (anger, fear,
happiness and sadness). For the non-acted database, 8 observers made a series
of 5 evaluations on the entire set of postures according to 4 affective state labels
(concentrated, frustrated, triumphant and defeated). The results of the posture
evaluation surveys for both the acted and non-acted datasets are shown in Fig-
ure 1. Each posture is represented by a pie chart showing the frequency of use of
each label which was computed as the average over the number of observers who
assigned that label to that posture. For details on the labeling process see [10]
and [9] respectively. The agreement level for the acted dataset reached an aver-
age observer agreement of 85% (Cohen’s kappa ranged between 0.75-0.84, i.e.,
substantial to almost perfect) [8]. The results for the non-acted dataset reached
an average observer agreement of 67% (Cohen’s kappa ranged between 0.30 to
0.62, i.e., fair to moderate), significantly lower than the acted dataset. For details
on the relevance of the posture features see [10][9][20].

For each posture, its feature vector and pie chart were used for training
the recognition system. In the testing, only the features vectors were input to
the system and a pie-like label was produced for each posture representing the
probability of each affective state. All the methods mentioned in Section 3 were

3 Available at: http://www.ucl.ac.uk/uclic/people/n berthouze/research.



used to test both the acted and non-acted posture datasets. A 10-fold cross-
validation method and normalization were used to keep ŷ ∈ [0, 1]C . K = 5 for
KNN and δ = 0.25 for AP were chosen for both datasets. The average values for
5 different performance measurements obtained by each method are shown in
Table 1. In this Table, a “↓” indicates that smaller values correspond to higher
performances, whereas a “↑” indicates that higher values correspond to higher
performances. The best performances are shown in bold.

(i) Postures datasets
(ii) The frequencies for the affective state labels for the acted posture dataset

(iii) The frequencies for the affective state labels for the non-acted posture dataset

Fig. 1. (i) Postures examples. (ii) and (iii) represent the survey results for the two
posture datasets. Each pie chart corresponds to the frequency of use for each affective
state label for each posture image according to the observers. The pie charts are grouped
according to the most frequent label indicated below each group.

Among these five measurements, TMR(Top Match Rate) can be used for
comparison with the top-label approach (i.e., most frequent label approach).
Therefore, we also computed the performances of the KNN and SVM methods
based on the top-label approach. For the non-acted dataset, the top-label ap-
proach for KNN and SVM reached 67.9% and 58.8% corect recognition rates,
respectively. 59% was reported in [9] using a back propagation method. In Ta-
ble 1, using the multi-score learning approach, TMR reached 70.2% with KNN
and 69.5% with SVR, showing a clear improvement over the top-label approach
and the human-observer agreement level (67%) if considered as a baseline. For
the acted database, the top-label approach reached 63.9% and 54.1% with the
KNN and SVM methods respectively. In comparison, TMR reached 67% with
GRNN for multi-score learning. The results for the top-label approach using
a multi-layer perception obtained higher recognition rates with performances
between 63% and 77% for each separate culture group of observers [8].

Table 1. Performances for the 7 learning methods and the 5 evaluation measurements
on both the acted (top) and non-acted (bottom) posture datasets

Acted Postures KNN GLM SVR PLS RBN GRNN MTL

Root Mean Square Error (↓) 0.165 0.197 0.189 0.193 0.215 0.161 0.205
Cosine Similarity (↑) 0.862 0.814 0.836 0.822 0.771 0.852 0.807
Top Match Rate (↑) 0.635 0.601 0.595 0.602 0.522 0.674 0.619

Ranking Loss (↓) 0.164 0.239 0.223 0.244 0.287 0.141 0.269
Average Precision (↑) 0.761 0.687 0.717 0.699 0.663 0.756 0.683

Non-acted Postures KNN GLM SVR PLS RBN GRNN MTL

Root Mean Square Error (↓) 0.141 0.161 0.140 0.140 0.145 0.143 0.139
Cosine Similarity (↑) 0.885 0.850 0.892 0.884 0.876 0.880 0.888
Top Match Rate (↑) 0.702 0.612 0.695 0.672 0.669 0.687 0.682

Ranking Loss (↓) 0.176 0.210 0.177 0.195 0.216 0.152 0.165
Average Precision (↑) 0.679 0.695 0.690 0.693 0.734 0.726 0.669

The other 4 measurements shown in Table 1 provide information on the
performances of each method over the distributions of all the affective states



for all postures. For example, AP reached 76% correct recognition which is very
close to the top-label approach performance (77%). AP of 76% means that the
model can correctly predict 76% of top labels (i.e., the labels that have over
25% agreement between observers) for each posture regardless of whether the
posture has only one, or more than one label with high observer agreement. In
general, these measurements aim to provide a more complete description of the
performance of each method. This framework allows for a more comprehensive
evaluation of the methods and their properties with respect to the needs of the
modeling problem.

5 Conclusions

Multi-score learning is a very common problem in affective computing appli-
cations. Agreement between observers is often not very high especially when
dealing with naturalistic subtle expressions. This paper provides a framework
for multi-score learning problems that take into account the variability between
observers. The output scores provide more comprehensive information than sin-
gle labels.

Overall, the performances of the various methods were very good and com-
parable to, if not higher than, the human observers’ agreement levels and the
top-label approach performances for both the acted and non-acted datasets.
Furthermore, even when using TMR only, the results show better performance
than the top-label approach for the non-acted posture dataset where the agree-
ment between observers is quite low. Multi-score learning uses the complete label
information instead of the majority agreed label to make the prediction more
accurate and reliable. For TMR, multi-score learning uses a regression method
to perform the classification task in which more detailed label information was
used. From a learning method perspective, it can be seen that GRNN reliably
obtained good performance on both datasets. The reason is that they not only
provide non-linear regressions for each score, but also deal with the possible
correlations between different categories.

The approach proposed here is also very general and modality independent.
Therefore, it would be interesting to test the same approach for other modalities
as well as with a fusion of modalities in cases where they may appear to disagree
in the type of emotions they convey (e.g., a facial expression incongruent with its
body expression). In this case, instead of the observers agreement, the problem
of ground truth becomes one of the agreement between modalities. Furthermore,
it would be interesting to investigate the benefits of each method with respect
to the type of modality and the level of agreement that the data represent [22].
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