Skip to main content

Reconfigurable Hardware Computing for Accelerating Protein Folding Simulations Using the Harmony Search Algorithm and the 3D-HP-Side Chain Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7017))

Abstract

Proteins are essentials to life and they have countless biological functions. They are synthesized in the ribosome of cells following a template given by the messenger RNA (mRNA). During the synthesis, the protein folds into an unique three-dimensional structure, known as native conformation. This process is called protein folding. Several diseases are believed to be result of the accumulation of ill-formed proteins.Therefore, understanding the folding process can lead to important medical advancements and development of new drugs.

This work is partially supported by the Brazilian National Research Council – CNPq, under grant no. 305669/2010-9 to H.S.Lopes and CAPES-DS scholarships to C.M.V. Benítez and M.H. Scalabrin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(96), 223–230 (1973)

    Article  Google Scholar 

  2. Benítez, C.M.V., Lopes, H.S.: Hierarchical parallel genetic algorithm applied to the three-dimensional HP side-chain protein folding problem. In: Proc. of the IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 2669–2676 (2010)

    Google Scholar 

  3. Berger, B., Leighton, F.T.: Protein folding in the hydrophobic-hydrophilic HP model is NP-complete. Journal of Computational Biology 5(1), 27–40 (1998)

    Article  Google Scholar 

  4. Dandass, Y.S., Burgess, S.C., Lawrence, M., Bridges, S.M.: Accelerating string set matching in FPGA hardware for bioinformatics research. BMC Bioinformatics 9(197) (2008)

    Google Scholar 

  5. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., et al.: Principles of protein folding - a perspective from simple exact models. Protein Science 4(4), 561–602 (1995)

    Article  Google Scholar 

  6. Geem, Z.W., Kim, J.-H., Loganathan, G.V.: A new heuristic optimization algorithm: Harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  7. Armstrong Junior, N.B., Lopes, H.S., Lima, C.R.E.: Preliminary steps towards protein folding prediction using reconfigurable computing. In: Proc. 3rd Int. Conf. on Reconfigurable Computing and FPGAs, pp. 92–98 (2006)

    Google Scholar 

  8. Li, M.S., Klimov, D.K., Thirumalai, D.: Folding in lattice models with side chains. Computer Physics Communications 147(1), 625–628 (2002)

    Article  MATH  Google Scholar 

  9. Lopes, H.S.: Evolutionary algorithms for the protein folding problem: A review and current trends. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.-E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. SCI, vol. 151, pp. 297–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Maruo, M.H., Lopes, H.S., Delgado, M.R.B.: Self-adapting evolutionary parameters: Encoding aspects for combinatorial optimization problems. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 154–165. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Ramdas, T., Egan, G.: A survey of FPGAs for acceleration of high performance computing and their application to computational molecular biology. In: Proc. of the IEEE TENCON, pp. 1–6 (2005)

    Google Scholar 

  12. Sung, W.-T.: Efficiency enhancement of protein folding for complete molecular simulation via hardware computing. In: Proc. 9th IEEE Int. Conf. on Bioinformatics and Bioengineering, pp. 307–312 (2009)

    Google Scholar 

  13. Xia, F., Dou, Y., Lei, G., Tan, Y.: FPGA accelerator for protein secondary structure prediction based on the GOR algorithm. BMC Bioinformatics 12, S5 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benítez, C.M.V., Scalabrin, M., Lopes, H.S., Lima, C.R.E. (2011). Reconfigurable Hardware Computing for Accelerating Protein Folding Simulations Using the Harmony Search Algorithm and the 3D-HP-Side Chain Model. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2011. Lecture Notes in Computer Science, vol 7017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24669-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24669-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24668-5

  • Online ISBN: 978-3-642-24669-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics