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Abstract. Verification of component-based systems still suffers from limitations
such as state space explosion since a large number of different components may
interact in an heterogeneous environment. Those limitations entail the need for
complementary verification methods such as runtime verification based on dy-
namic analysis and prone to scalability. In this paper, we integrate runtime ver-
ification into the BIP (Behavior, Interaction, and Priority) framework. BIP is a
powerful component-based framework for the construction of heterogeneous sys-
tems. Our method augments BIP systems with monitors checking a user-provided
specification. This method has been implemented in RV-BIP, a prototype tool that
we used to validate the whole approach on a robotic application.

1 Introduction
A component-based approach consists in building complex systems by composing com-
ponents (building blocks). This confers numerous advantages (e.g., productivity, in-
cremental construction, compositionality) that allow to deal with complexity in the
construction phase. Component-based systems (CBS) are desirable because they al-
low reuse of sub-systems as well as their incremental modification without requiring
global changes. Their development requires methods and tools supporting a concept of
architecture which characterizes the coordination between components. An architecture
structures a system and involves components and relationships between the externally
visible properties of those components. The global behavior of a system can, in princi-
ple, be inferred from the behavior of its components and its architecture. Component-
based design is based on the separation between coordination and computation. Systems
are built from units processing sequential code insulated from concurrent execution is-
sues. The isolation of coordination mechanisms allows a global treatment and analysis
on coordination constraints between components even if local computations on compo-
nents are not visible (i.e., components are “black boxes”).
BIP (Behavior Interaction Priority). BIP is a general framework supporting rigorous
design. It uses a dedicated language and an associated toolset supporting the design
flow. The BIP language allows building complex systems by coordinating the behavior
of a set of atomic components. Behavior is described with Labelled Transition Systems
(LTS) extended with data and functions written in C. The description of coordination
between components is layered. The first layer describes the interactions between com-
ponents. The second layer describes dynamic priorities between the interactions and is
used also to express scheduling policies. The combination of interactions and priorities
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characterizes the overall architecture of a system. It confers BIP strong expressiveness
that cannot be matched by other existing formalism dedicated to CBS [1]. Moreover,
BIP has a rigorous operational semantics: the behavior of a composite component is
formally described as the composition of the behaviors of its atomic components. This
allows a direct relation between the underlying semantic model and its implementation.
Runtime-verification (RV) [2–4] is an effective technique to ensure, at runtime, that a
system meets a desirable behavior. It can be used in numerous application domains, and
more particularly when integrating together unreliable software components. In RV, a
run of the system under scrutiny is analyzed incrementally using a decision procedure:
a monitor. This monitor may be generated from a user-provided high level specifica-
tion (e.g., a temporal formula, an automaton). This monitor aims to detect violation or
satisfaction w.r.t. the given specification. Generally, it is a state machine processing an
execution sequence (step by step) of the monitored program, and producing a sequence
of verdicts (truth-values taken from a truth-domain) indicating specification fulfillment
or violation. Recently [4] a new framework has been introduced for runtime verifica-
tion. This expressive framework, leveraged by a finite-trace semantics and an expressive
truth-domain, allows to monitor all specifications expressing a linear temporal behavior.
The proposed approach (informal overview). We introduce a complementary validation
technique for CBS in general and BIP systems in particular. We leverage the BIP frame-
work by integrating a component-based version of the runtime verification framework
introduced in [4]. Given a specification, our method uniformly integrates a monitor as
an additional component in a BIP system that is able to runtime check the satisfaction
or violation of the specification. The whole method is implemented in a prototype tool,
RV-BIP, that automatically instrument BIP systems with monitors. Thanks to the code
generator of BIP, the generated self-monitoring system can be directly translated into
an actual C module embedded in the global system whose behavior is checked at run-
time against the specification. The whole approach has been evaluated on a real robotic
application and our experiments validate the relevance of our method.
Paper Organization. The paper is structured as follows. In Section 2 we give a minimal
introduction to the BIP framework. Section 3 defines an abstract RV framework for CBS
described in BIP. Section 4 shows how the abstract RV framework is implemented for
BIP systems. Section 5 describes RV-BIP, a prototype implementation of our method,
used to evaluate our method on a robot application. Section 6 is dedicated to related
work. Finally, Section 7 raises some concluding remarks and open perspectives.
Notations. In this paper, we use the following notations. For two domains of elements
E and F , we note [E → F ] (resp. [E ⇁ F ]) the set of functions (resp. partial functions)
fromE to F . When elements ofE depends on the elements of F , we note {e ∈ E}f∈F ′ ,
where F ′ ⊆ F , for {e ∈ E | f ∈ F ′} or {e}f∈F ′ when clear from context.

2 BIP - Behavior Interaction Priority
In this section we recall the necessary concepts of the BIP framework [5]. BIP is a
component-based framework for constructing systems by superposing three layers of
modeling: Behavior, Interaction, and Priority. The behavior layer consists of a set of
atomic components represented by transition systems. The interaction layer models the
collaboration between components. Interactions are described using sets of ports and
connectors between them [6]. The priority layer is used to enforce scheduling policies
applied to the interaction layer, given by a strict partial order on interactions.
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2.1 Component-based Construction

BIP offers primitives and constructs for modeling and composing complex behaviors
from atomic components. Atomic components are Labeled Transition Systems (LTS)
extended with C functions and data. Transitions are labeled with sets of communica-
tion ports. Composite components are obtained from atomic components by specifying
connectors and priorities.

Atomic Components. An atomic component is endowed with a set of local variables
X taking values in a domain Data . Atomic components synchronize and exchange data
with other components through the notion of port.

Definition 1 (Port). A port p[X ′], where X ′ ⊆ X , is defined by a port identifier p and
some data variables in a set X ′ (referred as the support set).

Definition 2 (Atomic component). An atomic componentB is defined as a tuple (P,L,
T,X, {gτ}τ∈T , {fτ}τ∈T ), where:

– (P,L, T ) is an LTS over a set of ports P . L is a set of control locations and T ⊆
L× P × L is a set of transitions.

– X is a set of variables.
– For each transition τ ∈ T :
• gτ is a Boolean condition over X: the guard of τ ,
• fτ ∈ {x := fx(X) | x ∈ X}∗: the computation step of τ , a list of statements.

For τ = (l, p, l′) ∈ T a transition of the internal LTS, l (resp. l′) is referred as the
source (resp. destination) location and p is a port through which an interaction with
another component can take place. Moreover, a transition τ = (l, p, l′) ∈ T in the
internal LTS involves a transition in the atomic component of the form (l, p, gτ , fτ , l

′)
which can be executed only if the guard gτ evaluates to true, and fτ is a computation
step: a set of assignments to local variables in X . In the rest of this article, we use the
dot notation to denote the elements of atomic components, e.g., B.P denotes the set of
ports of an atomic component B.
Example 1 (Atomic component). The figure below shows an example of atomic com-
ponent with two ports p1, p2, a variable x, and two control locations l1, l2.

print(x)

l1

l2

x

x := rand()

p1

p2

p2

p1

At location l1, the transition labelled by the port p1 is possible
(the guard evaluates to true by default). When an interaction
through p1 takes place, a random value is assigned to the vari-
able x through x := rand(). From the control location l2, the
transition labelled by the port p2 is possible, the variable x is not
modified, the value of x is printed and exported through p2.

Semantics of Atomic Components. The semantics of an atomic component is an LTS
over configurations and ports, formally defined as follows:

Definition 3 (Semantics of Atomic Components). The semantics of the atomic com-
ponent (P,L, T,X, {gτ}τ∈T , {fτ}τ∈T ) is an LTS (P,Q, T0) s.t.

– Q = L× [X → Data],
– T0 = {((l, v), p, (l′, v′)) ∈ Q× P ×Q | ∃τ = (l, p, l′) ∈ T : gτ (v) ∧ v′ = fτ (v)}.
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A configuration is a pair (l, v) ∈ Q where l ∈ L is a control location, and v ∈ [X →
Data] is a valuation of the variables in X . The evolution of configurations (l1, v)

p(vp)→
(l2, v

′), where vp is a valuation of variables attached to port p, is possible if there exists
a transition (l1, p[xp], gτ , fτ , l2), s.t. gτ (v) = true. As a result, the valuation v of
variables is modified to v′ = fτ (v[xp ← vp]).

Creating composite components. Assuming some available atomic components B1,
. . . , Bn, we show how to connect {Bi}i∈I with I ⊆ [1, n] using connectors.

A connector γ is used to specify possible interactions, i.e., the sets of ports that
have to be jointly executed. Two types of ports (synchron, trigger) are defined, in order
to specify the feasible interactions of a connector. A trigger port is active: it can initiate
an interaction without synchronizing with other ports. It is graphically represented by
a triangle. A synchron port is passive: it needs synchronization with other ports for
initiating an interaction. It is graphically represented by a circle. A feasible interaction
of a connector is a subset of its ports s.t. either it contains some trigger, or it is maximal.

u u u u
s r1 r2 r3

N u u u
s r1 r2 r3

Rendezvous Broadcast

The figure on the left shows two connectors: Ren-
dezvous (only the maximal interaction sr1r2r3r4 is
possible), Broadcast (all the interactions containing
the trigger port s are possible).

Formally, a connector is defined as follows:

Definition 4 (Connector). A connector γ is a tuple (Pγ , t, G, F ), where:
– Pγ = {pi[xi] | pi ∈ Bi.P}i∈I s.t. ∀i ∈ I : Pγ ∩Bi.P = {pi},
– t : Pγ → {true, false} s.t. t(p) = true if p is trigger (and false if synchron),
– G is a Boolean expression over the set of variables ∪i∈I xi (the guard),
– F is an update function defined over the set of variables ∪i∈I xi.

Pγ is the set of connected ports called the support set of γ. The ports in Pγ are tagged
with function t indicating whether they are trigger or synchron. Moreover, for each
i ∈ I , xi is a set of variables associated to the port pi.

A communication between the atomic components of {Bi}i∈I through a connector
(Pγ , G, F ) is defined using the notion of interaction:

Definition 5 (Interaction). A set of ports a = {pj}j∈J ⊆ Pγ for some J ⊆ I is an
interaction of γ if one of the following conditions holds: (1) there exists j ∈ J s.t. pj is
trigger; (2) for all j ∈ J , pj is synchron and {pj}j∈J = Pγ .

An interaction a has a guard and two functions Ga, Fa, respectively obtained by pro-
jectingG and F on the variables of the ports involved in a. We denote by I(γ) the set of
interactions of γ. Synchronization through an interaction involves two steps. First, the
guard Ga is evaluated, then the update function Fa is applied. If there are several possi-
ble interactions inside a connector, we choose the interaction involving the maximum3

number of ports. One can also add priorities to reduce non-determinism whenever sev-
eral interactions are enabled. Then, the interaction with the highest priority is chosen.

Definition 6 (Composite Component). A composite component is defined from a set
of available atomic components and a set of connectors. The connection of the {Bi}i∈I
using the set Γ of connectors is denoted Γ ({Bi}i∈I).

3 If there are several maximal interactions, the choice between them is at random.
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Note that a composite component obtained by composition of a set of atomic compo-
nents can be composed with other components in a hierarchical and incremental fashion
using the same operational semantics.

Definition 7 (Semantics of Composite Components). A state q of a composite com-
ponent C = Γ (B1, . . . , Bn), where Γ connects the Bi’s for i ∈ I , is an n-tuple
q = (q1, . . . , qn) where qi = (li, vi) is a state of Bi. Thus, the semantics of C is
precisely defined as a transition system (Q,A,−→), where:

– Q = B1.Q× . . .×Bn.Q,
– A = ∪γ∈Γ {a ∈ I(γ)} is the set of all possible interactions,
– −→ is the least set of transitions satisfying the following rule:

∃γ ∈ Γ : γ = (Pγ , G, F ) ∃a ∈ I(γ) Ga(v(X))

∀i ∈ I : qi
pi(vi)−→ i q

′
i ∧ vi = Fai(v(X)) ∀i 6∈ I : qi = q′i

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

where a = {pi}i∈I , X is the set of variables attached to the ports of a, v is the
global valuation of variables, and Fai is the partial function derived from F re-
stricted to the variable associated to pi.

The meaning of the above rule is the following: if there exists an interaction a s.t. all its
ports are enabled in the current state and its guard (Ga(v(X))) evaluates to true, then
we can fire the interaction. When a is fired, not involved components stay in the same
state, and, involved components evolve according to the interaction.

Notice that several distinct interactions can be enabled at the same time, thus intro-
ducing non-determinism in the product behavior, possibly restricted using priorities.

Definition 8 (Priority). Let C = (Q,A,−→) be the behavior of the composite com-
ponent Γ (B1, . . . , Bn). A priority model π is a strict partial order on the set of interac-
tions A. Given a priority model π, we abbreviate (a, a′) ∈ π to a ≺ a′. The component
π(C) is defined by the behavior (Q,A,−→π), where−→π is the least set of transitions
satisfying the following rule:

q
a−→ q′ @a′ ∈ A,@q′′ ∈ Q : a ≺ a′ ∧ q a′−→ q′′

q
a−→π q

′

An interaction is enabled in π(C) only if it is enabled inC, and, it is maximal according
to π among the active interactions in C.

Finally, we consider systems defined as a parallel composition of components to-
gether with an initial state.

Definition 9 (System). A system S is a pair (B, Init) where B is a component and
Init is the initial state of B.

3 An RV Framework for Component-Based Systems

We adapt classical RV frameworks dedicated to monitoring of sequential monolithic
programs to CBS in general, and, to BIP systems in particular. We consider a composite
component C = Γ (B1, . . . , Bn) and a priority model π, where the runtime semantics
of π(C) is an LTS (Q,A,−→π) as introduced in Definitions 7 and 8.
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3.1 Specifications for component-based systems (CBS)

Considered specifications of CBS are state-based specifications expressing some de-
sired behavior. We do not assume any particular specification formalism except that we
require it expresses a subset of the possible linear behaviors of CBS. In order to make
our approach as general as possible, we only describe the events of the possible speci-
fication language. We also assume the existence of a monitor synthesis algorithm from
this specification formalism (see Section 3.2). For this purpose, the existing solutions
(e.g., [7]) provided by the research efforts in RV can be easily adapted.

We follow a classical approach where events are built over a set of atomic proposi-
tions Prop. Intuitively, an atomic proposition is a Boolean expression over the states of
the components (e.g., “in the component B1, the variable x should be positive if in the
component B2 the variable y is negative”). More formally, an event of π(C) is defined
as a state formula over the atomic propositions expressed on components involved in
π(C). The set of events is defined with the following grammar:

Σ(π(C)) : Atom ∨ Atom | Atom ∧ Atom | Atom⇒ Atom | ¬ Atom
Atom : component.var == val | component.var ≥ val

| component.loc == a location | component.port == a port
component.var : ∪i∈[1,n]Bi.X

val : v ∈ Data
a location : s ∈ ∪i∈[1,n]Bi.L

a port : p ∈ ∪i∈[1,n]Bi.P

Let us note Prop(e) the set of atomic propositions used in an event e ∈ π(C). For
ap ∈ Prop(e) we define used(ap) as the set of pairs made of a component and variables
that are used to define ap:

used(ap) = match (ap) with
component.var == val→ (component,var)
component.var ≥ val→ (component,var)
component.loc == a location→ (component,loc)
component.port == a port→ (component,port)

3.2 Verification Monitors [4]

A monitor is a procedure consuming events fed by a BIP system and producing an
appraisal on the sequence of events read so far. We follow a general approach consider-
ing verification monitors as deterministic finite-state machines producing a truth-value
(a verdict) in an expressive 4-valued truth-domain B4

def
= {⊥,⊥c,>c,>}, introduced

in [3] and used in [4]. B4 consists of the possible evaluations of a sequence of events
and its possible futures relatively to the specification used to generate the monitor:

– The truth-value >c (resp. ⊥c) denotes “currently true” (resp. “currently false”) and
expresses the satisfaction (resp. violation) of the specification “if the system execu-
tion stops here”.

– The truth-value > (resp. ⊥) is a definitive verdict denoting the satisfaction (resp.
violation) of the specification: the monitor can be stopped.

We define the notion of monitor for a specification defined relatively to a set of events
Σ expressed on a composite component.
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Definition 10 (Monitor). A monitor A is a tuple (ΘA, θAinit, Σ,−→A,B4, verA). The
finite set ΘA denotes the control states and θAinit ∈ ΘA is the initial state. The complete
function−→A: ΘA×Σ → ΘA is the transition function. In the following we abbreviate
−→A (θ, a) = θ′ by θ a−→A θ′. The function verA : ΘA → B4 is an output function,
producing verdicts (i.e., truth-values) in B4 from control states.

Such monitors are independent from any specification formalism used to generate them
and are able to check any specification expressing a linear temporal specification [4].
Intuitively, runtime verification of a specification with such monitors works as follows.
An execution sequence is processed in a lock-step manner. On each received event, the
monitor produces an appraisal on the sequence read so far. For a formal presentation
of the semantics of the monitor and a formal definition of sequence checking, we refer
to [4]. In the remainder, we consider a monitor A = (ΘA, θAinit, Σ,−→A,B4, verA).

3.3 Runs and traces of BIP systems
Runs of BIP systems. Each state q ∈ Q in the LTS of a component can be seen as an
environment mapping variables used in the specification over an alphabet Σ to values.

Definition 11 (Environments in a component). The set of possible environments in
π(C) is Env

def
= ∪i∈[1,n]

(
{statei → Qi} ∪ [Bi.X → Data]

)
. The environment defined

by a state q = (q1, . . . , qn), where qi = (li, vi) for each i ∈ [1, n], is [[q]] ∈ Env s.t.
[[q]]

def
= ∪i∈[1,n](∪xi∈Bi.var{x 7→ vi(x)} ∪ ∪i∈[1,n]{statei 7→ li}.

After an interaction bringing the component in a state q, an event e is fired if the state-
formula associated to e holds, noted q � e , i.e., when e evaluates to true in [[q]], i.e.,
[[q]](e) = true. Let us note that, after reaching a state of the LTS corresponding to the
runtime behaviors of a BIP component, it is always possible to determine whether an
event is fired or not, i.e., whether the corresponding state-formula holds or not.

We present the notion of run of a composite component and how it is monitored.

Definition 12 (Run of a composite component). A run of lengthm of a system (π(C),
Init) is the sequence of environments [[q0]] · [[q1]] · · · [[qm]] s.t.: q0 = Init , and, ∀i ∈
[0,m− 1] : qi ∈ Q ∧ ∃ai ∈ A : qi

ai−→π q
i+1.

Definition 13 (Monitoring a run of a system). The verdict [[A]](q0 · q1 · · · qm) stated
by A for a run [[q0]] · [[q1]] · · · [[qm]] is verA(θm) where ∀i ∈ [0,m− 1] : θi

e−→A θi+1

where e is the unique event enabled in θi s.t. qi+1 |= e.

Building a trace from a run. As one of the challenges in RV is to lower the perfor-
mance impact on the target program, we should take care of minimizing the informa-
tion sent to the monitor. Making the monitor processing directly the run of the target
program directly is not a reasonable solution because it would yield prohibiting over-
head. Our proposal is to send a relevant abstraction of the run to the monitor that we
call a trace. Intuitively, given a run, the obtained trace is its minimal abstraction (infor-
mation wise) that permits to evaluate the specification as if the run was not abstracted.
Given Spec(Σ), a specification defined over a vocabulary of events Σ, we design an
abstraction function ↓Σα building this minimal abstraction. We thus define a notion of
informativeness of environments built from states. Intuitively, an environment ρ1 is less

7



informative than an environment ρ2 if it has less variables defined, i.e., ρ1 v ρ2 if
Dom(ρ1) ⊆ Dom(ρ2) and ∀x ∈ Dom(ρ1) : ρ1(x) = ρ2(x). When monitoring a
CBS our aim will be to dynamically build the least informative environment so that the
monitoring activity of the system amounts to monitoring with the global state.

Definition 14 (Abstraction function). The abstraction function ↓Σα : Q → Env is the
least function s.t.: ∀q ∈ Q : ↓Σα (q) = ρ and ρ is s.t.: ∀x ∈ Dom([[q]]) :

ρ(x) =

{
[[q]](x) if ∃e ∈ Σ,∃ap ∈ Prop(e) : used(ap) = (Bi, x), with x ∈ Bi.X;
undef otherwise.

Property 1 (Abstraction preserves event evaluation). The previous abstraction function
adheres to the two following principles:

– soundness: ∀e ∈ Σ,∀q ∈ Q : ↓Σα (q) � e ⇔ q � e ,
– completeness: ∀e ∈ Σ,∀q ∈ Q : ↓Σα (q) � e∨ ↓Σα (q) 2 e .

Soundness states that the concrete and abstracted evaluations are the same. Complete-
ness states that evaluation of all specification events remains possible: abstraction does
not erase the needed information from the environment.

Definition 15 (Trace of a composite component). The trace defined from a run [[q0]] ·
[[q1]] · · · [[qm]] through an abstraction function ↓Σα is the sequence of environments de-
fined as ↓Σα (q0) · ↓Σα (q1) · · · ↓Σα (qm).

The notion of trace evaluation by a monitor directly follows from the notion of run eval-
uation. Moreover, the following theorem, which is a direct consequence of Property 1,
states that, for runtime verification, there is no difference regarding property evaluation
to process the trace instead of the run.

Theorem 1 (Trace evaluation vs run evaluation by a monitor). ForA defined on Σ,
the abstraction function ↓Σα , and a run [[q0]] · [[q1]] · · · [[qm]], we have:

[[A]]
(
[[q0]] · [[q1]] · · · [[qm]]

)
= [[A]]

(
↓Σα (q0) · ↓Σα (q1) · · · ↓Σα (qm)

)
In the next section, we will instrument BIP systems in such a way that, given a specifi-
cation, the minimal abstraction function (information-wise) is dynamically generated.

4 Verifying the Runtime Behavior of BIP Systems

This section presents how we instrument and integrate an abstract monitor A = (ΘA,
θAinit, Σ,−→A,B4, verA) into a BIP system made of a composite component C =
Γ (B1, . . . , Bn) and priority rules π. The work-flow is as follows (see Fig. 1):

1. From the input abstract monitor we extract the list of components and their corre-
sponding variables used by the monitor (Section 4.1).

2. For each component and its corresponding variables extracted from the monitor we
instrument the selected components so as to observe them (Section 4.2).

3. From the monitor we generate the corresponding atomic component. Then, we add
the generated component (a monitor in BIP) to the input composite component
(Section 4.3).

4. Finally, we add the new connections between the instrumented atomic components
and the monitor in BIP (Section 4.4).
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To Monitor
Variables

Atomic
Transformation

Abstract

Monitor

γ1 > γ3, γ4

γ3 γ4

γ1 pm γ2

pm pintern
pmpmγ2 > γ3, γ4

Fig. 1. Overview of the work-flow

4.1 Extraction of needed information

The first step is to retrieve from the monitor the set of components and their correspond-
ing variables that should be monitored. For each selected component, transitions are in-
strumented to observe the just needed set of variables. For a specification expressed over
Σ(π(Γ (B1, . . . , Bn))) and its monitor, comp(Σ ) is the subset of ∪i∈[1,n]{Bi} corre-
sponding to the set of components that should be monitored. We also define occur(Σ)
to be the subset of {Bi.loc | i ∈ [1, n]} ∪ {Bi.port | i ∈ [1, n]} ∪ ∪i∈[1,n]Bi.X de-
noting the set of variables used in the specification. Then from occur(Σ), we sort the
variables according to the component Bi (where Bi ∈ comp(Σ )) they are related to:
c v() = [1, n] → {Bi.loc}i∈[1,n] ∪ {Bi.port}i∈[1,n] ∪ ∪i∈[1,n]Bi.X s.t. c v(i) is the
set of variables related to component Bi.

4.2 Instrumentation of atomic component

For a composite component Γ (B1, . . . , Bn), we transform each atomic component Bi,
i ∈ [1, n], so that it is able to interact with the monitor, if necessary.

Definition 16 (Instrumenting atomic components). GivenB = (P,L, T,X, {gτ}τ∈T ,
{fτ}τ∈T ) s.t. B = Bi ∈ {B1, . . . , Bn}, we define a new atomic component

Bm =

{
B if B /∈ comp(Σ )
(Pm, Lm, Tm, Xm, {gτ}τ∈Tm , {fτ}τ∈Tm) otherwise

where, (Pm, Lm, Tm, Xm, {gτ}τ∈Tm , {fτ}τ∈Tm) is defined as follows:
– Xm = X ∪ {loc | Bi .loc ∈ c v(i)} ∪ {port | Bi .port ∈ c v(i)};
– Pm = P ∪ {pm[c v(i)]},
– Lm = L ∪ {lτ}τ∈inst(T), where inst(T ) is defined as follows:

inst(T ) =

{
T if {Bi.loc, Bi.port} ∩ c v(i) 6= ∅
{τ ∈ T | c v(i) ∩ var(fτ ) 6= ∅} otherwise

– Tm = T \ inst(T ) ∪ {in(τ) | τ ∈ inst(T )} ∪ {out(τ) | τ ∈ inst(T )}, where,
• in(τ) = (l, p, fin(τ), gτ , lτ ), where

fin(τ) =


fτ if Bi.loc /∈ c v(i) ∧Bi.port /∈ c v(i)
fτ ; [loc := “l”] if Bi.loc ∈ c v(i) ∧Bi.port /∈ c v(i)
fτ ; [port := “p”] if Bi.loc /∈ c v(i) ∧Bi.port ∈ c v(i)
fτ ; [loc := “l”; port := “p”] if Bi.loc ∈ c v(i) ∧Bi.port ∈ c v(i)

• out(τ) = (lτ , p
m, fout(τ), true, l

′), where fout(τ) = [].
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done

locdone
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loc:="l0"

loc:="l0"
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done:=0; port:="p1"
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done:=1
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lτ1

pm l2
l0

p1

p2

pm
l1

p1

p2

p1
l1

l2

lτ0
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Fig. 2. Instrumentation of an atomic component

We note Bm = Instrum(B). In Xm, loc and port are variables containing a loca-
tion name and a port name respectively. In Pm, pm designates the port created for
interacting with the monitor. Moreover, inst(T ) is the set of transitions that should
be instrumented: we instrument atomic components whose variables are needed by the
monitor. Tm designates the transitions in the instrumented atomic component. We in-
strument the transitions in the corresponding atomic component that are modifying a
variable involved with the monitor. If the state or the port of an atomic component is
needed, all transitions are instrumented. For each transition τ ∈ inst(T ) that should be
instrumented we add a new transition to interact with the monitor. Transitions are also
instrumented by adding new statements to save the state and the port name, if necessary.

Example 2 (Instrumentation of an atomic component). Figure 2 illustrates the instru-
mentation of the atomic component depicted on the left-hand side into the instrumented
component on the right-hand side. For instance, supposing that the state should be
monitored, from the transition τ0 = (l0, p1, fτ0 , true, l1) with fτ0 = [done := 0],
we create a new state lτ0 and the transitions in(τ0) = (l0, p1, fin, true, lτ0) with
fin = [done := 0; loc := “l0”; port := “p1”], and out(τ0) = (lτ0 , p1, [], true, l1).

4.3 Creating an atomic component from a monitor

From an abstract monitor (cf. Definition 10) given as an XML file, we construct the
corresponding atomic component in BIP that interacts with the instrumented atomic
components and produces verdicts following the behavior of the original monitor.

Definition 17 (Building monitors in BIP). From a monitorA = (ΘA, θAinit, Σ,−→A,
B4, verA), we define the corresponding atomic componentMA = (P,L, T,X, {gτ}τ∈T ,
{fτ}τ∈T ) as an atomic component implementing its behavior:

– P = {pm[X], pintern[]},
– L = ΘA ∪ {qmi}qi∈ΘA ,
– T = T1 ∪ T2, where

– T1 = {(qi, pm, [], true, qmi) | qi ∈ ΘA},
– T2 = {(qmi, pintern, a, print(verA(q′i)), q

′
i) | qi

a−→A q′i∧(qi, pM , qmi) ∈ T1},
– X = occur(Σ).

We note MA = BuildMon(A) and call MA a BIP monitor. T1 denotes the set of
transitions interacting with the composite component. T2 is the set of transitions used
to display verdicts following the behavior of the original monitorA. The set of variables
of the monitor is the set of variables used in the specification (as in Section 4.1).

Example 3 (Transforming an abstract monitor into a BIP monitor). Fig. 3 illustrates the
transformation of Definition 17. The atomic component in Figure 3(a) is transformed
into the BIP monitor in Figure 3(b).
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<VerificationMonitor>

<State id="s1" initial="true">

<Transition event="e1" nextState="s1" output="currently true"/>

<Transition event="not e1" nextState="s2" output="false"/>

</State>

<State id="s2">

<Transition event="true" nextState="s2" output="false"/>

</State>

</VerificationMonitor>

(a) Abstract Monitor

print("currently true"); print("false");

print(”false”);

pm

comp1 port

pm

[e1]

pintern

pintern

[not e1]
pintern

[true]

pintern

s1 sm1 s2 sm2pm

(b) BIP Monitor
Fig. 3. Transforming an abstract monitor into a BIP Monitor.

4.4 Connections
The next step of our transformation is to define the connectors between the transformed
components Bm and the BIP monitor MA.

Definition 18 (Connections). Given A and π(Γ (B1, . . . , Bn)), the monitored com-
posite component is πm(Γm(Bm1 , . . . , B

m
n ,M

A)), where:
– Bmi = Instrum(Bi), for i ∈ [1, n], (see Definition 16);
– MA = BuildMon(A), (see Definition 17);
– Γm = γ ∪ {γ1 = (Pγ1 , true, Fγ1), γ2 = (MA.pintern, true, ∅)}, where,
– Pγ1 = {Bi.pm[Xm

i ]}Bi∈comp(Σ)} ∪ {MA.pm}, where all ports are synchron;
– Fγ1 , the update function, is the identity data transfer from the variables in the ports

of the interacting componentsBi (i ∈ 51, n]) to the corresponding variables in the
monitor port;

– the type of the port MA.pintern in the connector γ2 is synchron (one and only one
interaction is defined by this connector: γ2, see Definition 5);

– πm = π ∪ {a ≺ a′ | a ∈ ∪γ∈ΓI(γ) ∧ a′ ∈ I(γ1) ∪ I(γ2)}.
The interactions defined by γ1 and γ2 have more priority than those defined by Γ (il-
lustrated in Fig. 1). It ensures that, after execution of an interaction by the involved
components, the monitor produces verdict before involving other interactions.

4.5 Summary and discussion
We propose a 4-stage approach to introduce runtime verification for CBS. Our method
directly integrates an abstract monitor in a CBS. Thanks to the BIP framework, moni-
toring of a specification can be taken into account at design stage. Moreover, the actual
system, automatically generated from the augmented BIP model, is runtime-checked.

The correctness proof is omitted due to the lack of space, and, relies on the follow-
ing informal arguments. Our transformations do not modify the data nor the behavior
induced by the initial interactions. No deadlock is introduced because the synthesized
BIP monitor is always ready to receive events from the instrumented components. Fi-
nally, the priorities introduced when connecting the instrumented components to the
BIP monitor (Section 4.4) guarantee that the monitor always receives fresh data, i.e.,
the latest system state.

5 Implementation and Evaluation
5.1 RV-BIP: A tool for Runtime Verification of BIP systems

RV-BIP is a Java implementation (∼ 2500 LOC) of the transformations described in
Section 4, and, is part of the BIP distribution. RV-BIP takes as input a BIP system and
an abstract monitor (an XML file) and then outputs a new BIP system whose behavior
is monitored. It uses the following modules (see Fig. 1):
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error error
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Fig. 4. Two services involving the ordering specification

– Extraction: this module extracts the components and the corresponding variables
used in the monitor. It takes as input an abstract monitor and then outputs a list of
components with their corresponding variables,

– Atomic Transformation: this module instruments the atomic components selected
from the extraction module. It takes as input the output of the Extraction module
and a BIP file containing the original BIP system,

– Building Monitor: this module takes as input an abstract monitor and then outputs
the corresponding atomic component,

– Connections: this module constructs the new composite component whose behav-
ior is monitored. It takes as input the output from the Atomic Transformation and
Building Monitor modules and then outputs a new composite component.

5.2 Case study: a robotic application

We experimented RV-BIP on a robotic application modeled in BIP: Dala robot [8, 9].
The Dala robot is a large and realistic interactive system. It is an infinite system (in
terms of states and transitions) that cannot be model-checked.

The functional level of the Dala robot consists of a set of modules. A module is
composed of a set of services corresponding to different tasks and a set of posters where
the produced data is stored and exchanged between different modules. In this section,
due to the lack of space, we present a simplified model of the modules with only the
services related to two properties among those we runtime checked.

Execution order: Figure 4 shows a simplified model of Dala. It consists of 3 com-
ponents: ProxyInterface, InitService and SetSpeedService. ProxyInterface communi-
cates with the control layer using the mailbox by executing the transition check. Init-
Service is responsible for the initialization of the module and SetSpeedService performs
the main task of the module. According to the received request, Proxy triggers either
InitService or SetSpeedService. Each service has a status variable done: value 1 means
that the corresponding task has been successfully executed. A service can be triggered
through the port trigger, then it executes its task by taking the transition start and fi-
nally it returns to the initial location by the transition finish when the task is done. The
execution order of some services are important. In this module, InitService initializes
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Table 1. Formalization of the requirements for the Dala robot
ϕ1: (e1)

∗ , where,

e1: (SetSpeedService.port==“trigger”∧ProxyInterface.port==“exec”)⇒(InitService.done==1)

ϕ3: (e1)
∗, where,

e1: (Reader.port==“read”∧ poster.port==“read”∧Clock.port==“getTime”)

⇒(Clock.time−poster.wrtime≤2)

ϕ2: (e1e2)∗ , where, ϕ4: (e1(ε+e2+e2e2)e3)
∗, where,

e1: InitService.port==“finish” e1: Writer.port==“write”

e2: SetSpeedService.port==“trigger” e2: Clock.port==“tick”

e3: Reader.read==“read”

the robot and should be successfully executed before SetSpeedService sets the speed
parameter of the robot. This requirement is formalized as “ϕ1 and ϕ2”, see Table 1.

Data freshness: In Dala, the modules communicate by a set of posters. Data gen-
erated by a module is written in a poster that can be accessed by another module. The
behavior of the robot might depend on this data, therefore it is necessary that the data
is up to date: the data read by a service of a module (called Reader ) must be fresh
enough compared to the moment it has been written (by a service called Writer ). If t1
and t2 respectively are the moments of reading and writing actions, then the difference
between t1 and t2 must be less than a specific duration δ, i.e., |t2 − t1| ≤ δ. This re-
quirement is formalized as “ϕ3 and ϕ4”, see Table. 1. In the model, the time counter is
implemented by a component Clock , and the tick transition occurs every second.
Experiments: Table 2 reports results on checking the ordering and freshness properties
of the Dala robot. Ordering violated and Ordering guaranteed correspond to the model
presented in Fig. 4: the first one might have the violation of the ordering specification
whereas the second one always guarantees it. Each consists of an InitService, a Set-
SpeedService and ten other services (corresponding to different tasks). It is similar for
Data freshness violated and Data freshness guaranteed: the first might have the viola-
tion of the freshness specification whereas the second always guarantees it. We consider
two modules: the first has a service responsible for writing data and five other services;
the second has a service responsible for reading data produced by the first module and
also five other services. In Table 2, time-no-monitor indicates the execution time with-
out monitoring; specification is the monitored specification; the optimized column re-
ports the execution time and the overhead obtained with the monitor that interacts only
with the two components involved in the specification; and the not-optimized column
reports the execution time and the overhead obtained with a monitor that observes all
components of the system (even the ones that are not involved in the specification).

The results substantiate our claim that if we monitor only components involved in
the specification, using the abstraction technique defined in Section 3 and implemented
in Section 4, the overhead is reduced significantly.

6 Related Work
Static verification of component-based system. With the growing demand of scalabil-
ity and complexity for systems, verification techniques should be used to determine
whether a designed system meets its requirements. Static formal verification [10–12]
is based on mathematical techniques to prove or disprove the correctness of a design
w.r.t. a given formal specification. It searches for input patterns which lead to violations
of the desired properties and prove the correctness when such violations do not exist.
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Table 2. Results of monitoring the requirements Execution order and Data freshness
time-no-monitor specification optimized not-optimized

time (s) ovhd (%) time (s) ovhd (%)

Ordering violated 1.896 ϕ1 2.045 7.8 9.163 383
ϕ2 1.953 3 9.192 384

Ordering guaranteed 1.836 ϕ1 1.984 8.0 8.9 384
ϕ2 1.889 2.8 8.896 384

Data freshness violated 1.638 ϕ3 1.684 2,8 4.337 164
ϕ4 1.682 2,6 3.773 130

Data freshness guaranteed 1.634 ϕ3 1.678 2,6 4.383 168
ϕ4 1.690 3,4 3.782 131

Existing formal verification methods for component-based systems are based on either
static analysis or on model-checking [13–15].

Approaches based on static analysis consist in computing specific invariants in order
to abstract the state space. Though this kind of approaches is less sensitive to state
explosion, it still suffers from some limitations. First these techniques are rather limited
in terms of the properties they can check: they are mostly limited to safety properties and
thus some interesting behavioral properties remains out of the scope of these techniques.
Moreover, since these approaches rely on abstraction and over approximation of the
state space, they yield several false positives.

Behavioral approaches such as model-checking are based on an exhaustive explo-
ration of the state space of the model obtained from the operational semantics of the
specification language. For large systems, this exploration leads to a very large number
of states (the well-known state explosion problem). Despite recent advances in model-
checking, the state-explosion problem is far from being solved and refrain the use of
these methods in component-based systems where the state space tends to become huge
due to the number of possible configurations and interactions between components. On
the other hand, techniques based on compositional verification [16–18] (less sensitive
to state explosion) are not applicable when the behavior of some parts of the system is
unknown - as it can be the case in BIP when using external C functions.

A compositional verification method based on invariants for checking safety proper-
ties in component-based systems is provided in [19, 20]. Although the method has been
successfully applied to large-scale and complex systems, the use of invariants can deal
only with safety properties and might produce many false positive counter examples.

Another compositional approach is design-by-contract [21, 22] that considers a prop-
erty provided by a component as a contract between this component and its environ-
ment. For instance [23] provides a method that searches an implementation model that
satisfies a given contract. Although the experimental results are promising, it is not al-
ways possible to find an implementation model that satisfies a given property. Moreover,
the composition of contracts in concurrent systems can be very expensive.
Dynamic verification of component-based systems. Specification and verification of
the behavior of CBS have received some research endeavor. A first series of approaches
specify the behavior of components in terms of pre and post-conditions (e.g., with JML)
or assertions (e.g., using Eiffel). More recently and closer to our work is the LIME
specification language [24] that allows runtime monitoring of temporal properties for
component interfaces. Components are seen as black boxes and LIME specifications
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describe how components should interact with an external application by describing a
desired behavior on the calls and returns over the interface.
Comparison with our approach. The limitations of static validation techniques lead us
to investigate the use of runtime verification as an alternative and complementary tech-
nique to validate CBS. Compared to previous dynamic techniques, our approach offer
several advantages. First, it uses the latest advances in runtime verification using an ex-
pressive 4-valued truth-domain allowing our monitor to be generated using any monitor
synthesis framework. Note also that the proposed RV framework only uses informa-
tion about the events used in the specification. The monitors presented in this paper are
bounded to regular properties, however, the expressiveness of the BIP language confers
our monitors a potential to be Turing-complete. Moreover, our approach is not limited
to monitoring component interfaces. It is often the case that components come with
an abstract behavioral model, i.e., components are gray boxes instead of black boxes.
Our monitoring framework supports both kinds of approaches. Furthermore, the spec-
ifications considered for BIP systems use locations spanning over several components
allowing the specification of global behaviors of the system in composition.

7 Conclusion and Future Work
This paper introduces runtime verification as a complementary validation technique for
component-based systems written in the BIP framework. Our technique is based on a
general and expressive runtime verification framework. It dynamically builds a minimal
abstraction of the current runtime state of the system so as to lower the performance im-
pact. By generating monitors directly as BIP components, we are able to generate actual
monitored C programs. Our approach has been implemented in RV-BIP that smoothly
integrate in the existing BIP tool-set. Finally, experimental evaluations on a robotic
application substantiate our claims and the feasibility of our approach.

Several research perspectives can be considered. A first direction is to combine the
recent advances in RV that use static analysis (see e.g., [25]). In RV, using static analy-
sis techniques may reduce the overhead induced by a monitor by disabling unnecessary
runtime checks. Also related to overhead reduction, a dynamic instrumentation tech-
nique, enabling the monitor to remove connectors when they are not needed anymore,
would reduce the overhead even more. Another possible direction is to extend the pro-
posed framework for runtime enforcement [26]. Runtime enforcement is an extension
of RV aiming at circumventing property violation and provides better confidence in sys-
tem behaviors. A more practical direction is to connect RV-BIP to the various existing
monitor synthesis tools available within the RV community.
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