
Jeremy Morse, Lucas Cordeiro,

Bernd Fischer, Denis Nicole

Context-Bounded Model Checking of

LTL Properties for ANSI-C Software

Model Checking C

Model checking:

• normally applied to formal state transition systems

• checks safety and temporal properties

Sofware model checking:

• models are abstractions, not necessarily precise

• no guarantee that model and software agree

BUT: C is difficult to model check:

• weakly typed ⇒ conversion increase model complexity

• pointers ⇒ indirections increase model complexity

• infinite state

• parts deliberately undefined, implementation- or host-specific

⇒ need to handle useful or common interpretations

ESBMC

SMT-based bounded model checker for C, based on CBMC:

• symbolically executes C into SSA, produces QF formulae

• unrolls loops up to a maximum bound

• assertion failure iff corresponding formula is satisfiable

– safety properties (array bounds, pointer dereferences,

overflows,...)

– user-specified properties

Multi-threaded programs:

• produces one SSA program for each possible thread

interleaving

• interleaves only at “visible” instructions

• optional context bound

 Goal: support LTL formulas in properties

LTL – Linear Temporal Logic

Supported operators:

• U: p holds until q holds p U q

• F: p will hold eventually in the future F p

• G: p always holds in the future G p

• X is not well defined for C

– no notion of “next”

• C expressions used as atoms in LTL:

 {keyInput == 1} -> F {displayKeyUp}

({keyInput != 0} | {intr}) -> G{numInputs > 0}

 “event”: change of global variable used in LTL formula

Büchi Automata (BA)

• non-deterministic FSM over propositional expressions

• inputs infinite length traces

• acceptance == trace passes through an accepting state

 infinitely often

• can convert from LTL to an equivalent BA

– use ltl2ba, modified to produce C

p -> Fq !(p -> Fq)

Using BAs to check the program

• Theory: check product of model and never claim for

accepting state

• SPIN: execute never claim in lockstep with model

• ESBMC:

– technically difficult to alternate between normal program

and never claim program

– instead: run never claim program as a monitor thread

concurrently with other program thread(s)

⇒ no distinction between monitor thread and other threads

Ensuring soundness of monitor thread

Monitor thread will miss events:

• interleavings will exist where events are skipped

(monitor thread scheduled out of sync)

⇒ can cause false violations of the property being verified

⇒ monitor thread must be run immediately after events

Solution:

• ESBMC maintains (global) current count of events

• monitor checks it processes events one at a time

(using assume statements)

⇒ causes ESBMC to discard interleavings where monitor

does not act on relevant state changes

bool cexpr_0; // “pressed”

bool cexpr_1; // “charge > min”

typedef enum {T0_init, accept_S2 } ltl2ba_state;

ltl2ba_state state = T0_init;

unsigned int visited_states[2];

unsigned int trans_seen;

extern unsigned int trans_count;

void ltl2ba_fsm(bool state_stats) {

 unsigned int choice;

 while(1) {

 choice = nondet_uint();

 /* Force a context switch */

 yield();

 atomic_begin();

 assume(trans_count <= trans_seen + 1);

 trans_seen = trans_count;

State transition

and “event”

counter setup

nondeterminism

reject unsafe

interleavings

only interleave

whole block

Example monitor thread

Example monitor thread

 switch(state) {
 case T0_init:
 if(choice == 0) {
 assume((1));
 state = T0_init;
 } else if (choice == 1) {
 assume((!cexpr_1 && cexpr_0));
 state = accept_S2;
 } else assume(0);
 break;
 case accept_S2:
 if(choice == 0) {
 assume((!cexpr_1));
 state = accept_S2;
 } else assume(0);
 break;
 }
 atomic_end();
 }
}

automata transitions

representing the

formula !(p → Fq)

Infinite traces and BMC?

BMC forces program execution to eventually end

– but BA are defined over infinite traces...

Solution:

• follow SPINs stuttering acceptance approach:

pretend final state extends infinitely

• re-run monitor thread after program termination,

with enough loop iterations to pass through each state twice

• if an accepting state is visited at least twice while stuttering,

BA accepts extended trace

– LTL property violation found

Experiments

• checked properties of medical device firmware

• mostly of the form p -> Fq or (!p && Fp) -> Fq

• tested against original code base,

and code with seeded errors

• all properties shown to hold on original code,

all seeded errors were found

Test name Interleavings Elapsed time(s)

start_btn 7764 199

up_btn 3775 83

keyb_start 92795 9796

baud_conf 485 17

serial_rx 5454 324

unwind bound:1, context bound: 40

approach requires large context switch bounds

State Hashing

• used to counter the state explosion problem in explicit-state

model checking:

– variable assignments concatenated into state vector

– hash values used to record which states have been explored

– hash collisions prevent unique parts of the state space from

being explored

• cannot be applied directly to symbolic model checking:

variable assignments can contain non-deterministic values

with constraints

Symbolic State Hashing

Exploit SSA form:

• normalize RHS of each assignment in SSA form

• compute hash value and associate with LHS variable

• replace variable occurrences in RHS by variable hashes

– ... and re-hash

⇒ variables with same set of constraints hash to same values

⇒ independent of non-deterministic choices

• variable hashes and thread program counters concatenated

into state vector

• rest as before...

• hash algorithm not important, we use SHA256

Symbolic State Hashing – Limitations

• Equivalent states can have different hash values if:

– constraints are arranged in different orders

– (semantically) different sets of constraints

⇒ not all redundant states are removed

• However, we are primarily interested in reducing symmetry

State Hashing Experiments

• same experiments, with state hashing enabled

• all tests decreased total runtime

• observable increase in amount of runtime per interleaving

 Test name Interleavings w / hashing Elapsed time(s) w / hashing

start_btn 7764 2245 199 71

up_btn 3775 1385 83 37

keyb_start 92795 49017 9796 4489

baud_conf 485 419 17 16

serial_rx 5454 3108 324 212

Relation to partial order reductions

• Partial order reductions are the more common way to reduce

number of redundant states explored

– demonstrably optimal method of doing this exists...

– ... but incurs additional complexity in detecting which context

switches are redundant

• state hashing only eliminates the most obvious and

immediate duplicate states...

• ... but only at the cost of extra overhead in symbolic execution

• detailed comparison remains future work

Conclusions

• BMC framework can be extended to check ANSI-C software

against an LTL formula (with reasonable efficiency)

• State hashing can be extended to symbolic model checking

• Runtime performance is improved by a modest amount by

the use of state hashing

Future Work

• Full comparison of state hashing with POR

• Evaluate how effective such optimisations are when run on

a distributed system

