UUUUUUUUUUUU

and Computer Science

Context-Bounded Model Checking of
LTL Properties for ANSI-C Software

Jeremy Morse, Lucas Cordeiro,
Bernd Fischer, Denis Nicole

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

UNIVERSITY OF

: South
Model Checking C il i

and Computer Science

Model checking:
« normally applied to formal state transition systems
« checks safety and temporal properties

Sofware model checking:
 models are abstractions, not necessarily precise
* no guarantee that model and software agree

BUT: C is difficult to model check:

« weakly typed = conversion increase model complexity
* pointers = Indirections increase model complexity
* Infinite state

« parts deliberately undefined, implementation- or host-specific
= need to handle useful or common interpretations

UNIVERSITY OF

ESBMC >outhampton

and Computer Science

SMT-based bhounded model checker for C, based on CBMC:

« symbolically executes C into SSA, produces QF formulae
« unrolls loons un to a maximum bound

* assertio Goal: support LTL formulas in properties

— safety
overflows,...)

— user-specified properties

Multi-threaded programs:

« produces one SSA program for each possible thread
Interleaving

* interleaves only at “visible” instructions
« optional context bound

UNIVERSITY OF

Southampton

LTL —Linear Temporal Logic s
Supported operators:

« U: p holds until g holds puUQq

* F: p will hold eventually in the future Fp

« G: p always holds in the future Gp

X i1s not well defined for C
— no notion of “next”

C expressions used as atoms in LTL.:

{keyInput == 1} -> F {displayKeyup}
({keyInput != 0} | {intr}) -> G{numInputs > 0}

\T—

[“event”: change of global variable used in LTL formula]

UNIVERSITY OF

. - Southampton
Blchi Automata (BA) etk o
* non-deterministic FSM over propositional expressions

 Inputs infinite length traces

e acceptance == trace passes through an accepting state
Infinitely often

« can convert from LTL to an equivalent BA
— use 1tl12ba, modified to produce C

UNIVERSITY OF

Southampton

Using BAs to check the program

and Computer Science

« Theory: check product of model and never claim for
accepting state

« SPIN: execute never claim in lockstep with model
« ESBMC:

— technically difficult to alternate between normal program
and never claim program

— Instead: run never claim program as a monitor thread
concurrently with other program thread(s)

= Nno distinction between monitor thread and other threads

UNIVERSITY OF

Southampton

Ensuring soundness of monitor thread ™ ..

Monitor thread will miss events:

* Interleavings will exist where events are skipped
(monitor thread scheduled out of sync)

= can cause false violations of the property being verified
= monitor thread must be run immediately after events

Solution:
« ESBMC maintains (global) current count of events

« monitor checks it processes events one at a time
(using assume statements)

= causes ESBMC to discard interleavings where monitor
does not act on relevant state changes

UNIVERSITY OF

Southampton

Example monitor thread

and Computer Science

bool cexpr_0; // “pressed”
bool cexpr_1l; // “charge > min”

typedef enum {TO_init, accept_S2 } T1tl2ba_state;

1t12ba_state state = TO_init; State transition
unsigned int visited_states[2]; and “event”
unsigned int trans_seen; counter setup

extern unsigned int trans_count;

void 1tl12ba_fsm(bool state_stats) {
unsigned int choice;

nondeterminism
while(1) { _—

choice = nondet_uint();
/* Force a context switch */

yieldOQ; only interleave
atomic_begin(Q; whole block
assume(trans_count <= trans_seen + 1); reject unsafe
trans_seen = trans_count; interleavings

Example monitor thread

switch(state) {
case TO_init:

if(choice == 0) {
assume((1));
state = TO_init;

} else if (choice == 1) {
assume((!cexpr_1l & cexpr_0));
state = accept_S2;

} else assume(0);

break;

case accept_S2:

if(choice == 0) {
assume((!cexpr_1));
state = accept_S2;

} else assume(0);

break;

}

atomic_end();

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

automata transitions
representing the
formula ' (p - Fq)

UNIVERSITY OF

Southampton

Infinite traces and BMC?

and Computer Science

BMC forces program execution to eventually end
— but BA are defined over infinite traces...

Solution:

 follow SPINs stuttering acceptance approach:
pretend final state extends infinitely

* re-run monitor thread after program termination,
with enough loop iterations to pass through each state twice

 If an accepting state is visited at least twice while stuttering,
BA accepts extended trace

— LTL property violation found

Experiments

and code with seeded errors

« all properties shown to hold on original code,
all seeded errors were found

checked properties of medical device firmware
mostly of the formp -> Fqor (Ip & & Fp) -> Fq
tested against original code base,

Test name Interleavings = Elapsed time(s)
start_btn 7764 199
up btn 3775 83

[approach requires large context switch bounds]

serial_rx

AN el
5454 \ %24

unwind bound:1, context bound: 40

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

UNIVERSITY OF

Southampton

State Hashing iz
« used to counter the state explosion problem in explicit-state
model checking:
— variable assignments concatenated into state vector
— hash values used to record which states have been explored
— hash collisions prevent unique parts of the state space from
being explored
« cannot be applied directly to symbolic model checking:

variable assignments can contain non-deterministic values
with constraints

UNIVERSITY OF

Southampton

Symbolic State Hashing

and Computer Science

Exploit SSA form:
« normalize RHS of each assignment in SSA form
« compute hash value and associate with LHS variable

 replace variable occurrences in RHS by variable hashes
— ... and re-hash

variables with same set of constraints hash to same values
= Independent of non-deterministic choices

Y

 variable hashes and thread program counters concatenated
Into state vector

* rest as before...
« hash algorithm not important, we use SHA256

UNIVERSITY OF

Southampton

Symbolic State Hashing — Limitations ™.

« Equivalent states can have different hash values if:
— constraints are arranged in different orders
— (semantically) different sets of constraints

= not all redundant states are removed

 However, we are primarily interested in reducing symmetry

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

State Hashing Experiments

* same experiments, with state hashing enabled
- all tests decreased total runtime

« observable increase in amount of runtime per interleaving

Test name | Interleavings | w/hashing | Elapsed time(s) w/ hashing
start_btn 7764 2245 199 71
up_btn 3775 1385 83 37
keyb_start 92795 49017 9796 4489
baud_conf 485 419 17 16
serial_rx 5454 3108 324 212

UNIVERSITY OF

Southampton

Relation to partial order reductions somprtcions

Partial order reductions are the more common way to reduce
number of redundant states explored

— demonstrably optimal method of doing this exists...

— ... but incurs additional complexity in detecting which context
switches are redundant

state hashing only eliminates the most obvious and
Immediate duplicate states...

... but only at the cost of extra overhead in symbolic execution
detailed comparison remains future work

UNIVERSITY OF

Southampton

Conclusions
and Computer Science

« BMC framework can be extended to check ANSI-C software
against an LTL formula (with reasonable efficiency)

« State hashing can be extended to symbolic model checking

* Runtime performance is improved by a modest amount by
the use of state hashing

Future Work

* Full comparison of state hashing with POR

« Evaluate how effective such optimisations are when run on
a distributed system

