Skip to main content

Summary

We generate Voronoi meshes over three dimensional domains with prescribed boundaries. Voronoi cells are clipped at one-sided domain boundaries. The seeds of Voronoi cells are generated by maximal Poisson-disk sampling. In contrast to centroidal Voronoi tessellations, our seed locations are unbiased. The exception is some bias near concave features of the boundary to ensure well-shaped cells. The method is extensible to generating Voronoi cells that agree on both sides of two-sided internal boundaries.

Maximal uniform sampling leads naturally to bounds on the aspect ratio and dihedral angles of the cells. Small cell edges are removed by collapsing them; some facets become slightly non-planar.

Voronoi meshes are preferred to tetrahedral or hexahedral meshes for some Lagrangian fracture simulations. We may generate an ensemble of random Voronoi meshes. Point location variability models some of the material strength variability observed in physical experiments. The ensemble of simulation results defines a spectrum of possible experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amenta, N.: Arbitrary dimensional convex hull, Voronoi diagram, Delaunay triangulation, http://www.geom.uiuc.edu/software/cglist/ch.html

  2. Bishop, J.: Simulating the pervasive fracture of materials and structures using randomly close packed voronoi tessellations. Computational Mechanics 44, 455–471 (2009), 10.1007/s00466-009-0383-6

    Article  MATH  Google Scholar 

  3. Bolander Jr., J.E., Saito, S.: Fracture analyses using spring networks with random geometry. Engineering Fracture Mechanics 61, 569–591 (1998)

    Article  Google Scholar 

  4. Bondesson, L., Fahlén, J.: Mean and variance of vacancy for hard-core disc processes and applications. Scandinavian Journal of Statistics 30(4), 797–816 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Paul Chew, L.: Guaranteed-quality triangular meshes. Technical Report 89-983, Department of Computer Science, Cornell University (1989)

    Google Scholar 

  6. Brad Barber, C., Dobkin, D., Huhdanpaa, H.: Qhull (1995), http://www.qhull.org/

  7. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review 41(4), 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ebeida, M.S., Mitchell, S.A., Davidson, A.A., Patney, A., Knupp, P.M., Owens, J.D.: Efficient and good Delaunay meshes from random points. In: Proc. 2011 SIAM Conference on Geometric and Physical Modeling (GD/SPM11). Computer-Aided Design (2011)

    Google Scholar 

  9. Ebeida, M.S., Mitchell, S.A., Patney, A., Davidson, A.A., Owens, J.D.: Maximal Poisson-disk sampling with finite precision and linear complexity in fixed dimensions. In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH-Asia 2011) (submitted 2011)

    Google Scholar 

  10. Ebeida, M.S., Patney, A., Mitchell, S.A., Davidson, A., Knupp, P.M., Owens, J.D.: Efficient maximal Poisson-disk sampling. In: ACM Transactions on Graphics (Proc. SIGGRAPH 2011), vol. 30(4) (2011)

    Google Scholar 

  11. Fortune, S.: Voronoi diagrams and Delaunay triangulations, pp. 193–233. World Scientific (1992), http://ect.bell-labs.com/who/sjf/Voronoi.tar

  12. Fu, Y., Zhou, B.: Direct sampling on surfaces for high quality remeshing. Computer Aided Geometric Design 26(6), 711–723 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gamito, M.N., Maddock, S.C.: Accurate multidimensional Poisson-disk sampling. ACM Transactions on Graphics 29(1), 1–19 (2009)

    Article  Google Scholar 

  14. Gärtner, B.: Fast and Robust Smallest Enclosing Balls. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 325–338. Springer, Heidelberg (1999), http://www.inf.ethz.ch/personal/gaertner/miniball.html

    Google Scholar 

  15. Johnson, J.: Geo1.stl (2008), http://www.3dvia.com/content/70FF9466784A5C6E

  16. Knupp, P.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23(1), 193–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Miller, G.L., Talmor, D., Teng, S.-H., Walkington, N., Wang, H.: Control volume meshes using sphere packing: Generation, refinement and coarsening. In: 5th International Meshing Roundtable, p. 4761 (1996)

    Google Scholar 

  18. Mitchell, S.A.: Mesh generation with provable quality bounds. Applied Math. Cornell PhD Thesis, Cornell CS Tech Report TR93-1327 (1993), http://ecommons.library.cornell.edu/handle/1813/6093

  19. Mitchell, S.A., Vavasis, S.A.: An aspect ratio bound for triangulating a d-grid cut by a hyperplane. In: Proceedings of the 12th Annual Symposium on Computational Geometry, pp. 48–57. ACM (1996)

    Google Scholar 

  20. Morris, D.: topmod-test.stl (2010), http://www.3dvia.com/content/4D4234435567794B

  21. Paoletti, S.: Polyhedral mesh optimization using the interpolation tensor. In: Proc. 11th International Meshing Roundtable, pp. 19–28 (2002)

    Google Scholar 

  22. Quey, R., Dawson, P.R., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering 200(17-20), 1729–1745 (2011)

    Article  Google Scholar 

  23. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms 18(3), 548–585 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comp. Geom.: Theory and Applications 22, 21–741 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shimada, K., Gossard, D.: Bubble mesh: Automated triangular meshing of non-manifold geometry by sphere packing. In: ACM Third Symposium on Solid Modeling and Applications, pp. 409–419. ACM (1995)

    Google Scholar 

  26. Shimada, K., Gossard, D.: Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis. Computer Aided Geometric Design 15(3), 199–222 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hang, S.: Tetgen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (2005-2011), http://tetgen.berlios.de/

  28. Spielman, D.A., Teng, S.-H., Üngör, A.: Parallel Delaunay refinement: Algorithms and analyses. Int. J. Comput. Geometry Appl. 17(1), 1–30 (2007)

    Article  MATH  Google Scholar 

  29. Üngör, A.: Off-centers: A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations. Comput. Geom. Theory Appl. 42, 109–118 (2009)

    MATH  Google Scholar 

  30. Wei, L.-Y.: Parallel Poisson disk sampling. ACM Transactions on Graphics 27(3), 1–20 (2008)

    Google Scholar 

  31. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., Wang, W.: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. In: ACM/EG Symp. Geometry Processing / Computer Graphics Forum (2009)

    Google Scholar 

  32. Yan, D.-M., et al.: Efficient Computation of 3D Clipped Voronoi Diagram. In: Mourrain, B., Schaefer, S., Xu, G. (eds.) GMP 2010. LNCS, vol. 6130, pp. 269–282. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebeida, M.S., Mitchell, S.A. (2011). Uniform Random Voronoi Meshes. In: Quadros, W.R. (eds) Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24734-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24734-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24733-0

  • Online ISBN: 978-3-642-24734-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics