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Abstract. Peer-to-peer botnets, as exemplified by the Storm Worm and
Stuxnet, are a relatively new threat to security on the internet: infected
computers automatically search for other computers to be infected, thus
spreading the infection rapidly. In a recent paper, such botnets have been
modeled using Stochastic Activity Networks, allowing the use of discrete-
event simulation to judge strategies for combating their spread. In the
present paper, we develop a mean-field model for analyzing botnet be-
havior and compare it with simulations obtained from the Moebius tool.
We show that the mean-field approach provides accurate and orders-
of-magnitude faster computation, thus providing very useful insight in
spread characteristics and the effectiveness of countermeasures.

Keywords : mean-field approximation, simulation, differential equations,
peer-to-peer botnet spread.

1 Introduction

A peer-to-peer botnet can be seen as a very large population (possibly all com-
puters in the Internet) of interacting components (peers), where infected nodes
infect more and more other computers. Due to the large numbers of (poten-
tially) active components, the analysis of the spreading speed of such large-scale
systems is time consuming and computationally expensive.

Recently, a stochastic model for the growth of peer-to-peer botnets was in-
troduced in [1]. The model is a Stochastic Activity Network (SAN) [2] with an
unbounded number of tokens per place, hence, no solutions can be obtained an-
alytically. The authors of [1] simulate the model with the Moebius toolset [3] to
gain insight into the effectiveness of defense strategies. Although such simulation
is possible, it is very time-consuming and does result in statistical uncertainties.

Recently, much work has been done on the analysis of large populations of
interacting objects. Markovian Agents have been used to predict the propagation
of earth quake waves [4] or the behavior of sensor networks [5]. The dissemina-
tion of gossip information [6] and disease spread between islands [7] was analyzed
using mean-field approximation. Hybrid approaches, combining mean-field and
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simulation, have been proposed for general systems of interacting objects [8], but
also to predict predator and prey behavior [9]. Ordinary differential equations
(ODEs) have been used to analyze the behavior of intracellular signaling path-
ways [10] and together with PEPA for epidemiological models [11]. Note that the
relationship between the different techniques is currently not well investigated;
what all have in common is that they provide an approach to deal efficiently
with very large numbers of similar interacting objects.

Out of the many available approaches, in this paper we limit ourselves to
mean-field analysis and the direct derivation of ODEs from the SAN. The Marko-
vian agent approach was deemed less suitable here, because it explicitly takes
into account locality (i.e., the amount of interaction between entities depends on
their location), which is not present in the botnet model studied in [1]. We also
have not explicitly tried the approach of deriving ODEs from PEPA, as done in
[12]; however, due to similarities among the methods, we expect the resulting
ODEs to be the same as the ones we obtained.

While in this paper we are not directly interested in obtaining new insights
on botnet behavior, our goal is to show how a quicker analysis method can
be used to obtain different measures of interest that cannot be obtained using
simulation. We use a model based on the one developed in [1] in order to compare
simulation and mean-field approximation. The comparison shows that the mean-
field method is much faster than simulation, therefore it allows to address more
complicated and resource consuming questions, such as the dependency of botnet
spread on several parameters. We explore the speed-up, and show that it can be
used it to obtain more insight into the botnet behavior, by taking into account
costs for running antimalware software and costs that occur due to computers
being infected. Furthermore, we discuss the differences between the mean-Field
method and simulation and the resulting suitability in different settings.

For completeness, we point out that the spreading phase of the botnet is
quite similar to worm propagation, of which several studies using differential
equations have been published. For example, [13] briefly introduces a simple
model of worm behavior and compares results with the real measured data,
while the main focus of the paper is on the discussion of the different types
of worms. The authors of [14] use Interactive Markov Chains to calculate sim-
ple bounds of the infected population size and compare results with simula-
tion. A density-dependent Markov jump process model and hybrid determinis-
tic/stochastic model for Random Constant Scanning worm are presented in [15].
A continuous-time approximation of process-algebra models is used in [12] for
analysis of the worms spread.

The paper is further organized as follows. In Section 2 we develop a model
describing the behavior of an individual computer in a botnet. In Section 3
the mean-field approximation method is applied to the botnet spread model.
The mean-field results and the simulation results obtained from Moebius are
compared in Section 4. In Section 5 the full potential of the mean-field method
in consequence of the attained speedup is explored. In Section 6 the applicability



of other large-scale analysis methods to the botnet spread model is discussed.
The conclusions and future work are discussed in Section 7.

2 Model of the botnet behavior
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Fig. 1: CTMC for an individual computer.

A Stochastic Activity Network (SAN) model was introduced for Peer-To-Peer
botnets in [1]. It models how the infection spreads through an infinite population
of computers. The model closely reflects the states a computer goes through after
the initial infection has taken place. The original SAN model consist of: (i) one
place for each phase of infection a system can be in, that can each hold an
unbounded number of tokens, representing the number of computers per phase,
and (ii) transitions, which move tokens from place to place, as the infection
spreads. The SAN model represents the entire population of infected computers,
hence, the number of computers in each state (phase) can be directly derived
from the model. However, as the population of computers can be very large or
even infinite, it is only possible to derive measures of interest from the SAN model
using simulation. This is very time consuming and computationally expensive.
Using mean-field analysis, it is possible to compute performance measures of
a large population of identical components in a very efficient way. For this, a
model is needed which reflects the individual behavior of a single computer. We
develop a continuous time Markov chain (CTMC) model for the behavior of an
individual computer based on the SAN model from [1], as follows.

Each place in the SAN model is also represented in the CTMC model as
an individual state, however, an additional state is added, that represents a
computer which is not infected yet. The CTMC model is depicted in Figure 1
and the corresponding transition rates can be found in Table 1.



k1 RateOfAttack·ProbInstallInitialInfection

k∗
1 Rate depends on k1 and the environment

k2 RateConnectBotToPeers·ProbConnectToPeers

k3 RateConnectBotToPeers·(1-ProbConnectToPeers)

k4 RateSecondaryInjection·ProbSecondaryInjectionSuccess·(1-ProbPropagationBot)

k5 RateSecondaryInjection·ProbSecondaryInjectionSuccess·ProbPropagationBot

k6 RateSecondaryInjection·(1-ProbSecondaryInjectionSuccess)

k7 RateWorkingBotWakens

k8 RateWorkingBotSleeps

k9 RatePropagationBotWakens

k10 RatePropagationBotSleeps

k11 RateInactiveWorkingBotRemoved

k12 RateActiveWorkingBotRemoved

k13 RateInactivePropagationBotRemoved

k14 RateActivePropagationBotRemoved

Table 1: Transition rates for the CTMC of a single computer.

A computer which is not infected yet enters the InitialInfection state with
rate k∗1 and it becomes initially infected. Then, it connects to the other bots
in the botnet, downloads the next part of the malware and possibly moves to
state ConnectedBot with rate k2. If the computer for any reason is not able to
download the malware it returns to the state NotInfected with rate k3.

After downloading the malware, the computer joins the botnet as either Inac-
tiveWorkingBot or as InactivePropagationBot with rates k4 and k5, respectively.
If downloading the malware is not possible, for example, because the connection
has failed, the computer moves backto the NotInfected state with rate k6. Once
the bot becomes either an InactiveWorkingBot or an InactivePropagationBot it
never switches between Working or propagation bot. In order not to be detected,
the bot is inactive most of the time and only becomes active for a very short
period of time. Transitions from InactivePropagationBot to ActivePropagation-
Bot and back occur with rates k7 and k8, respectively. The transition rates for
moving from InactiveWorkingBot to ActiveWorkingBot and back are denoted
k9 and k10, respectively.

The computer can recover from its infection, e.g., if an antimalware software
discovers the virus, or if the computer is physically disconnected from the net-
work. It then leaves the InactivePropagationBot or the ActivePropagationBot
state and moves to the NotInfected state with rates k11, k12, respectively. The
same holds for the working bots; the transition rates from InactiveWorkingBot
and ActiveWorkingBot are k13, k14, respectively.

The transition rates in the SAN model are marking dependent, i.e., the rate
of moving from state s1 to state s2 linearly depends on the number of computers
in state s1. The transition rates for the CTMC model of the single computer,
as proposed here, are constant, with the only exception of k∗1 , which depends



on the number of active propagation bots in the environment; seen from this
perspective this CTMC is a non-homogeneous CTMC.

The CTMC model consists of seven states (S1, .., S7), where each state from
the state space S = (NotInfected, ...,ActiveWorkingBot), |S| = 7, represents a
certain phase of the infection of a single computer. The rate matrix R of the
CTMC is written as:

R =



0 k∗1 0 0 0 0 0
k3 0 k2 0 0 0 0
k6 0 0 k4 0 k5 0
k11 0 0 0 k7 0 0
k12 0 0 k8 0 0 0
k13 0 0 0 0 0 k9
k14 0 0 0 0 k10 0


(1)

The |S| × |S| generator matrix Q is given as follows: Qs1s2 is equal to the tran-
sition rate Rs1s2 to move from the state s1 to the state s2 and Qss is equal to
the negative sum of all the rates in row s. The only exception is the rate k∗1
to move from the NotInfected state (S1) to the InitialInfection state (S2). As
discussed above, this rate depends on k1 and on the number of computers in
the ActivePropagationBot state, but it should not depend on the total number
of computers in the environment. We provide an expression for k∗1 in the next
section.

In the following, we use the mean-field method to model and study the popu-
lation of computers in a network that can possibly be infected, assuming that all
computers behave individually according to the CTMC model described above.
We leave the discussion of actual parameter values to Section 4.

3 Mean-field approximation

The mean-field method allows to compute the exact limiting behavior of an
infinite population of identical components, and suggests an approximation when
the number of components is sufficiently large. The global idea of the method is
to describe the behavior of the infinitely large population (overall behavior) via
the average behavior of the individual components, which are indistinguishable.
Both the overall behavior of the population and the individual behavior of a
single component are modeled as a Markov chain, where the transition rates in
the overall Markov model depend on the number of components in each state,
but not on the total number of components in the system.

Previously we discussed the CTMC (see Fig. 1) and the corresponding state
space S which describes the behavior of a single computer in the botnet. The
overall behavior of the population of N computers is then given by a CTMC
with a state space of size |S|N . This can be lumped due to the identicality of the
computers’ behavior, and then described by the number of computers in each
state s ∈ S at time t, i.e., by M(t) = (M1(t),M2(t)...M|S|(t)), where Ms(t) is
the number of computers in state s.



Recall that the generator matrix Q, as discussed in the previous section, has
one transition rate that depends on the environment: k∗1 . We can now express
this k∗1 in terms of M(t) from the overall CTMC, as follows. The total rate
of infections produced by all bots that are in the active propagation state is
k1 ·M7(t). These infections are spread out randomly over all not-yet infected
computers, of which there are M1(t). Hence, the infection rate k∗1 perceived by
each individual computer is given by the ratio:

k∗1(M(t)) =
k1 ·M7(t)

M1(t)
. (2)

The above equation completes the definition of Q and, hence, allows to build a
complete mean-field model. Given a population of N computers, we denote the
fraction of objects in an arbitrary state s at time t as ms(t) = Ms(t)/N , where
0 ≤ m(t) ≤ 1 is the normalized occupancy vector m(t) = (m1(t),m2(t)...,m|S|(t)),
which does not depend on N . The generator matrix Q(m(t)) for the normalized
vector m(t) is the same as Q(M(t) for the unnormalized vector, since its com-
ponents depend only the ratios of the vector elements.

We apply the mean-field method for the overall system using Theorem 1
from [16], which states that the normalized occupancy vector m(t) of the overall
behavior tends to be deterministic in distribution and satisfies the following
differential equations when N tends to infinity:

dm(t)

dt
= m(t)Q(m(t)). (3)

The system of equations describing the population behavior in the botnet
then equals: 

ṁ1(t) = k3m2(t) + k6m3(t) + k11m4(t)
+k12m5(t) + k13m6(t) + (k14 − k1)m7(t),

ṁ2(t) = −(k2 + k3)m2(t) + k1m7(t),
ṁ3(t) = k2m2(t)− (k4 + k5 + k6)m3(t),
ṁ4(t) = k4m3(t)− (k7 + k11)m4(t) + k8m5(t),
ṁ5(t) = k7m4(t)− (k8 + k12)m5(t),
ṁ6(t) = k5m3(t)− (k9 + k13)m6(t) + k10m7(t),
ṁ7(t) = k9m6(t)− (k10 + k14)m7(t).

(4)

Note that in the above, k∗1 is used as in (2), where the entries of the unnormalized
vector M(t) have been replaced with the corresponding entries of the normalized
occupancy vector m(t). These equations can be solved analytically, however the
closed forms are impractically large. We use the Wolfram Mathematica tool to
obtain the analytical solution. The system of ODEs (4) is applicable when N
tends to infinity. To obtain the approximation for the case when N is finite but
sufficiently large, we use the Corollary 2 from [16], which states, that:

When N is sufficiently large, the normalized state vector of the lumped pro-
cess, m(t), is a random vector whose mean can be approximated by the following
differential equation



Baseline Experiments
Parameter experiment 1 2 3 4 5 6

ProbInstallInitialInfection 0.1 0.06 0.04 0.1 0.1 0.1 0.1

ProbConnectToPeers 1 1 1 1 1 1 1

ProbSecondaryInjectionSuccess 1 1 1 1 1 1 1

ProbPropagationBot 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RateOfAttack 10.0 10.0 10.0 10.0 10.0 10.0 10.0

RateConnectBotToPeers 12.0 12.0 12.0 12.0 12.0 12.0 12.0

RateSecondaryInjection 14.0 14.0 14.0 14.0 14.0 14.0 14.0

RateWorkingBotWakens 0.001 0.001 0.001 0.001 0.001 0.001 0.001

RateWorkingBotSleeps 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RatePropagationBotWakens 0.001 0.001 0.001 0.001 0.001 0.001 0.001

RatePropagationBotSleeps 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RateInactiveWorkingBotRemoved 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.001

RateActiveWorkingBotRemoved 0.01 0.01 0.01 0.01 0.01 0.01 0.01

RateInactivePropagationBotRemoved 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.001

RateActivePropagationBotRemoved 0.01 0.01 0.01 0.07 0.04 0.02 0.015

Table 2: The setups for the different experiments. Bold font indicates difference w.r.t.
baseline experiment.

dE(mi(t))

dt
≈

∑
j∈S

E(mj(t))Qji(m(t)), i ∈ S. (5)

Considering this, the expected occupancy vector E(M(t)) is given as follows:
E(M(t)) ≈ N ·m(t), where m(t) is the solution of (4). In our experiments we
set N = 107.

4 Results

In this section we discuss the mean-field results in detail and compare them to
the simulation results we obtained from the model given in [1]. We carred out
out a similar series of experiments as in [1]; the chosen parameters for all these
experiments are given in Table 2.

The simulation of the model was done using the Moebius tool [3]. Each
experiment covered one week of simulated time. Each experiment was replicated
1000 times; the mean values and 95% confidence intervals of the measures of
interest are shown. The initial conditions for each experiment are as follows: 200
computers are located in the place ActivePropagationBots in the SAN, and all
the other places are empty. Note that the simulation results shown here differ
from those in [1]. Together with the authors of [1] we found a small mistake in the
simulator settings they used: because the rates in the SAN model are marking
dependent, a flag has to be set in the Moebius tool to ensure that the rates
are updated frequently. Not setting this flag can result in inaccurate numbers of
propagation bots, as illustrated below in Figure 2.



We use Mathematica [17] to obtain solutions for the set of differential equa-
tions (4) coupled with the transition rates from Table 2. To obtain the same
initial conditions for the mean-field model as for the SAN model we need to take
the additional state in the CTMC into account. Given an overall population
of N = 107, the fraction of computers in the state NotInfected is initialized as
m1(0) = (N−200)/N , the fraction of computers in the state ActivePropagation-
Bot is initialized as m7(0) = 200/N , and the fractions of computers in all other
states are initialized as zero.
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Fig. 2: Number of propagation bots over
time in the Baseline experiment obtained
from Moebius simulations with and with-
out the rates-updating flag set, as well as
obtained from mean-field approximations.

Baseline experiment

Experiment 1

Experiment 2

0 50 100 150

1000

104

105

Time HhoursL

ð
Pr

op
ag

at
io

n
B

ot
s

Fig. 3: Number of propagation bots over
time in the Baseline experiment and in Ex-
periment 1 and 2 obtained from Moebius
simulation and from mean-field analysis

Figure 2 shows the number of the propagation bots in a botnet. The number
of propagation bots (both active and inactive, states S6 and S7) has been taken
as measure of interest since they actively infect ”healthy” computers. The lower
solid line depicts the mean-field results of the Baseline experiment together with
the 95% confidence intervals of the corrected Moebius simulation. As can be
seen, the mean-field results are very accurate in this case, since they lie mostly
within the confidence intervals, even though the confidence intervals are very
narrow. The upper solid line represents the mean value of the original Moebius
simulation from [1]. Comparing the original Moebius results with the new results
from the correct simulator setting, reveals that the number of propagation bots
(both active and inactive) differs from the results stated in [1]; during the first
fifty hours the unflagged simulation provides slightly lower results (about 20%),
however on this scale the difference is hardly noticeable. Starting from fifty
hours, the unflagged simulation over-estimates; after a week the difference is
about 42% (754755 vs. 440073). Note that the simulation takes longer than 5
days of runtime, versus 1 second for the mean-field method. We come back to
this at the end of the section.

The goal of this paper is not to study the growth of botnets under differ-
ent conditions, but to compare the results obtained from mean-field approxi-



mation with those obtained from simulations. Hence, we compare results for a
representative selection of experiments in order to discuss the advantages and
disadvantages of both approaches.

To investigate how a reduced infection spread would influence the growth of
botnets, Experiments 1 and 2 were done in [1]. The ”user factor” (ProbInstalIn-
fection) is reduced to 60% and 40%, respectively, as compared to the Baseline
experiment to represent a lower probability of, e.g., opening infected files. The
results are, together with those from the Baseline experiment, presented in Fig-
ure 3. A logarithmic scale has been chosen for the number of propagation bots,
in order to better visualize the exponential growth. For both experiments, the
results obtained with the mean-field model are very accurate and lie well within
the confidence intervals most of the time.
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Fig. 4: Number of propagation bots over
time in Experiments 5, 6, 7, and 8, ob-
tained from Moebius simulation and from
mean-field analysis.

Experiment Simulation mean-field

Baseline 5 d., 3 h., 25 min. 1 sec.

Experiment 1 9 h., 51 min. 1 sec.

Experiment 2 5 h., 37 min. 1 sec.

Experiment 3 31 min 1 sec.

Experiment 4 40 min 1 sec.

Experiment 5 45 min 1 sec.

Experiment 6 36 min 1 sec.

Table 3: Time spent on simulation and
mean-field approximation.

To investigate how efficient anti-malware software can control or even stop
the botnet spread, experiments with increased removal rates were done in [1].
To make a comparison of the approaches, we conducted a series of experiments,
where the removal rate of active propagation bots varies between 0.01 and 0.1.
The mean-field approximation provides an explicit result, which in most of the
cases lies well within the 95% confidence intervals (see Figure 4).

At first sight the high accuracy of the analytical results might be surprising,
since the underlying assumption of mean-field approximation is that the num-
ber of interacting components is large. However, apparently in Experiment 3
(cf. Figure 4) the initial set of active propagation bots hardly gets a chance to
infect more computers before being disinfected themselves. In terms of the local
CTMC, it means that the transition from the state NotInfected to the state Ini-
tialInfection is taken by (almost) none of the computers. This transition happens
to be the only one whose rate depends on the environment; if we remove it from
the local CTMC, we are left with a CTMC with constant rates. With all rates
in the CTMC constant, the ODEs (4) are easily seen to be the Kolmogorov dif-
ferential equations, whose solution is the probability distribution over the states



of the CTMC as a function of time. Also, removing this transition in the SAN
simulation model reduces it to a set of many independent CTMCs. Taking the
number of markings per state as a function of time, and dividing by the total,
obviously results in an unbiased estimate of the probability distribution of the
CTMC in the course of time. Thus, clearly the two approaches should match, as
they in fact do and this explains why the mean-field results are still accurate,
even though in this case the overall number of components is small.

It is interesting that the confidence intervals in Experiment 6 are much nar-
rower than the ones in Experiment 3. As the average number of propagation bots
decreases over time, the confidence intervals seem to get wider on the logarithmic
scale (see Figure 4). In fact, however, the absolute width of the intervals gets
smaller, but less quickly than the estimate itself. The reason for this is that the
actual number of propagation bots always is a non-negative integer; therefore,
when the estimated average decreases much below 1, it must be the average of
many 0’s and a few 1’s (or even fewer higher integers). Such an estimate in-
herently has a large coefficient of variation; in fact, this is the main problem of
rare-event simulation, cf. [18].

Another thing to remark about these experiments, is that when the number
of propagation bots reaches 0, and there are also no bots in the states InitialIn-
fection and ConnectedBot anymore, no new infections can occur. The number of
propagation bots will then remain 0. Thus, when the graph indicates that after
a week the average number of propagation bots is about 0.01, this means that
in most (about 99%) of the simulation runs the botnet is extinct and will stay
so, while only a few runs still have some botnet activity.

In Table 3, the computer run times for the simulation and for the mean-field
computation are compared. The results were obtained on a Core-i7 processor
with 3 GB RAM and 4 cores and hyper threading. One sees that the simula-
tion can take a very long time, namely up to several days, while the mean-field
approximation is always done within one second. The difference between the
simulation time for the different experiments is due to the marking dependency
of the rates. For example, in the Baseline experiment the number of ActiveProp-
agationBots is large, hence, the rate of infection becomes very large and more
time is needed to simulate the resulting large number of events. The time spent
on the simulation of the experiments with lower numbers of computers involved
is reasonably smaller; however the mean-field approximation is still much faster
in all cases. In any case, the simulation times should only be taken as indications,
since the simulations were not run completely independently, but with 2, 3 or 4
of them simultaneously on a 4-core computer, so the jobs may have interfered
with each other.

5 Exploiting the speed-up

In the previous section we have shown how fast and efficient the mean-field
method is (cf. Table 3), and that it gives correct results. This allows us to
use the mean field method in this section to address problems which are not



feasible using simulation: (i) we study the dependence of the botnet spread on
two parameters, while the results in the previous section are only functions of
time for a given set of parameter values, (ii) and we study the behavior of the
botnet in the presence of cost constraints. The purpose of this section is to show
the difference between the simulation and the mean-field capabilities, and, at
the same time, to show the advantages of the fast analysis.

Fig. 5: Number of propagation bots for
(k13, k14) ∈ [8 ·10−5; 10−3]× [8 ·10−3; 10−1]
at time T = 3days, all other parameters
are the same as for Baseline experiment
(see Table 2).

Fig. 6: Cost of the system performance for
D1 = 0.01, D2 = 4 · 10−5.

The authors of [1] used time-consuming simulation to show in a couple of
examples that there is no considerable difference in increasing the detection of
active or inactive bots (namely increasing the removal rates k11, k13 or k12, k14).
The mean-field method allows to make the analysis faster and to obtain more
information. We calculate the number of propagation bots as a function of k13
and k14 (see Figure 5). As one can see, there is no considerable difference in
a relative increase of one or the other parameter. It is known that inactive
computers are much harder to detect (increasing k13 is more difficult), therefore
the above results might be helpful for the antivirus software developers to find
the better strategy for botnet removal.

Next, we introduce a cost concept to analyze the economical side of an infec-
tion. In the following, two types of costs are considered: (i) the cost of a computer
being infected, that occurs for example due to the loss of information or produc-
tivity, and (ii) the cost of more frequent checking with antivirus software. On
one hand the number of infected computers, and hence their cost grows if com-
puters are not frequently checked. On the other hand, if computers are checked
too often the botnet is not growing, but running the antivirus software becomes
very expensive. We analyze this trade-off in more detail in the following. We
calculate the cumulative cost as follows:

C(t0, t1, RR,D1, D2) =
∫ t1
t0

(D1 · InfBots(t, RR)+

D2 ·RR ·AllComp) dt
(6)



where RR is the change in removal rates k11, ..., k14 with respect to the rates in
the Baseline experiment, i.e. k11 = RR ·k11,baseline and similarly for k12, k13, k14;
D1 is the cost of infection; InfBots(t, RR) is the number of infected computers
for a given RR, at time t, including active and inactive working and propagation
bots; D2 is the cost of one computer being checked, which probably is much
lower than the cost of infection (D1); AllComp is the number of the computers
in the system.

We calculate the cumulative cost of the system performance for three days.
For RR from the interval [0.001; 5] we calculate the cost as a function of time
for given D1 and D2. Results are depicted in Figure 6 and, one can see, that the
cost grows exponentially with time and quite linearly with decreasing RR if the
computers are not checked frequently (for the RR between 0 and 1). However,
if antimalware software is used too often (RR above 2), the cost grows linearly
with RR.

We see that the mean-field method can be easily used for finding the removal
rates which minimize the cost at a given moment of time. It can help network
managers with careful decision-making, based on the situation at hand. Even
though not all parameters might be known in reality, such analysis can help to
obtain a better understanding of the characteristics of botnet spread.

In this section we studied different aspects of botnet spread and gained a
deeper understanding of the trade-off which occurs when costs are induced. The
set of problems discussed in this section demonstrates the efficient application
of the mean-field method. One can think of other questions to address, however
our aim was to show the potential of the method by addressing problems which
can not be solved using simulation.

6 Variations of the method

As an alternative to the method described in Section 3, we also applied a discrete-
time approximation to the model. The uniformisation of the CTMC was done
and the corresponding DTMC for the single node behavior was obtained. We
used the mean-field convergence theorem from [6] to obtain the approximation.
As was expected, the results for discrete time approximation are identical to the
results for the continuous time approximation, and therefore omitted here.

In [10], a method is proposed to systematically derive a set of ordinary dif-
ferential equations governing the concentrations of reactants in (bio)chemical
systems. This approach can also be applied to the botnet model, by interpreting
each of the 7 states as a chemical ”reactant”, and each transition between the
states as a ”chemical reaction”. The concentrations then represent the fraction
of all computers that are in that particular state; the method allows sufficient
freedom in the dependence of the reaction rates on the concentrations to fit the
botnet model. Applying the systematic method from [10] to this model results
in a set of ODEs that is identical to the equations (4) which we derived using
the mean-field approximation.



It turns out that there is a good explanation for the match between this
ODE method and the mean-field approximation. The main premise in mean-field
analysis is that there is a large number N of identical entities (computers in the
botnet case), of which some number are in each state. The quantity of interest
then is the fraction of the entities that is in each state (the vector m(t)). Now, a
concentration in the (bio)chemical context of [10] is also a fraction, namely the
fraction of all molecules that are of a certain type (assuming that the number of
solvent molecules far exceeds the others, so that the total number of molecules
is practically constant). With this interpretation, the two methods are identical.
The main difference between the two methods is that in mean-field analysis, the
total number of entities is called N and is explicitly taken in the limit to infinity.
In contrast, this limit is not made explicit in the (bio)chemistry ODE method;
this may be justified by the typically extremely large number of molecules in
chemical systems (cf. Avogadro’s number).

A similar argument holds for ODEs derived from a PEPA model, as done
in [12]. The PEPA model describes a large CTMC, which in fact models many
identical computers, each of which can be in one of a small number of states. For
deriving ODEs, only the total number per state is taken into account. These total
numbers are then treated as continuous rather than discrete variables, which is
equivalent to setting the total number to infinity. Although we did not explicitly
do so, it is clear that this PEPA-based approach to our botnet model would
again result in the same set of ODEs.

7 Conclusion

In this paper, we have compared different approaches for evaluating a Markov
model for peer-to-peer botnet spreading. We have shown that the mean-field ap-
proach is much faster than simulation, taking about 1 second instead of minutes
to days of computation time. The results from the mean-field analysis match
those from the simulation very well, being mostly inside the 95% confidence
interval.

Due to the speed-up of the mean-field method we have been able to address
various questions which cannot practically be answered with simulation, such
as questions involving cost trade-offs; this is useful in typical engineering appli-
cations. We also considered several other approaches that can be used for the
analysis of large-scale systems, such as automatically deriving ODEs and deriv-
ing ODEs from process algebra models, and found them to be equivalent to the
mean-field approach.

In general, the mean-field method is only a first-order approximation to the
real Markov chain model, which becomes better as the number of entities in-
volved increases. However, in the present model we did not observe any signif-
icant difference between the mean-field results and the simulation results. In
contrast to the mean-field approximation, the precision of the simulation results
suffers when the mean number of bots being estimated, becomes close to zero.



This is because the standard deviation does not go to zero as fast as the mean
value. Note that this is, in fact, the problem that rare-event simulation addresses.

The present research shows the usefulness of the mean-field approach, as
it is able to provide very accurate results very quickly. However, even in cases
where mean-field results are less accurate for small population numbers, it can be
useful as a quick check of the simulation. In fact, the simulator setting problem
discussed in Section 4 was found due to the mismatch with the mean-field results.

Future work will involve further exploration of the conditions under which
mean-field results are correct. As noted above, even when the number of entities
involved was small, our mean-field results remained correct, and we could explain
why this was the case. Presumably, more general conditions for such correctness
can be found.
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