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Abstract. We present the implementation of a methodology for the modeling,
analysis, and comparison of software architectures based on th&rrpance
characteristics. The implementation is part of a software tool that is called
TwOEAGLES, which extends the architecture-centric tool TwoTowers — based on
the stochastic process algebraic description language ¥ — and integrates it
into Eclipse. The extension consists of a Java-coded plugin that we hied ¢
AEmilia_to_QN. This plugin transforms M&LIA descriptions into queueing net-
work models expressed in the XML schema PMIF, which can then beeredd
via the QNEditor tool or analyzed by multiple queueing network solvers that can
be invoked through the Weasel web service.

1 Introduction

The importance of an integrated view of functional and nanfional characteristics in

the early stages of software development is by now widelggeized. This is a conse-
quence of the awareness of the risks arising either fromiderisg those two classes
of characteristics on two different classes of system n®tlet are not necessarily
consistent with each other, or from examining nonfunctideatures at later stages of
the development cycle. This has resulted in the extensionmwierous semi-formal and
formal notations with nonfunctional attributes yieldingasptitative variants of logics,

automata, Petri nets, process calculi, and specificatiogulages as well as suitable
UML profiles, many of which are surveyed, e.g., in [3].

The assessment of nonfunctional characteristics is ngtinsirumental to enhanc-
ing the quality of software systems. As an example, a numitadternative architectural
designs may be developed for a given system, each of whicmibnally correct. In
that case, we need to establish some criteria for decidinighadrchitectural design
is more appropriate and hence is the one to implement. Asristaut, performance
requirements and constraints are certainly among the mibséntial factors that drive
architecture-level design choices.

In order to address the various issues mentioned above] arf#&thodology has
been proposed for predicting, improving, and comparingpirormance of software
architectures. This methodology, calledR¥SEL in [1], consists of a number of phases
at the end of which typical performance indices are assaasdifferent scenarios for
the various architectural designs both at the system lewetlad the component level.
On the basis of those indices, it can be decided to discard sesigns, improve others,
or select the one to be implemented.



Although the ERFSEL methodology is independent to a large extent from the nota-
tion in which architectural designs are expressed, as it fZere we focus on AZILIA .
This is an architectural description language based orhastic process algebra that
enables functional verification via model checking or egléace checking, as well
as performance evaluation through the numerical solutfaontinuous-time Markov
chains or discrete-event simulation.

On the analysis side,BRFSEL instead employs queueing networks [10]. A main
motivation of this choice is that, in contrast to continudinse Markov chains — which
are flat performance models — queueing networks are steccfpgrformance models
providing support for establishing a correspondence batwieeir constituent elements
and the components of architectural descriptions. Monegeene families of queueing
networks, like product-form queueing networks [4], areippgad with efficient solution
algorithms that do not require the construction of the ulyiteg state space when calcu-
lating typical average performance indices at system levebmponent level, such as
response time, throughput, utilization, and queue lengterefore, the transformation
of AEmILIA models into queueing networks enables a wider set of pedocamanalysis
techniques on the same architectural model.

Starting from a number of alternative architectural desigrwhich we assume to
be functionally correct — of a software system to be implei®@énRERFSEL requires
the designer to formalize each such design as anu/E description, which is sub-
sequently transformed into a queueing network model. Whesrave of these models
is not in product form, the model itself is replaced by an agpnating product-form
queueing network model. The possibly approximate proéretr queueing network
model associated with each architectural design is theluateal in order to derive
the typical average performance indices both at the systeeh &nd at the component
level. The evaluation is done in several different scersanfanterest and the obtained
performance figures are interpreted on the variousil2 descriptions.

On the basis of those figures, for each alternative a deci&srto be made as to
whether the design is satisfactory, should be discardemhagrbe improved. When the
predict-improve cycle is terminated for all the survivedhatectural designs, a compar-
ison among them takes place in the various scenarios aogotaithe average perfor-
mance indices. The selected architecture is finally cheekaéhst the specific perfor-
mance requirements of the system under construction.

This final check is necessary for two reasons. Firstly, thectien is made by rely-
ing on general performance indices, which are not necégsarnected in any way to
the specific performance requirements. Secondly, the ptddum queueing network
model associated with the selected architecture may haate figbject to approxima-
tions. Although the perturbation of the average perforreandices introduced by the
approximations cannot be easily quantified, we recall frafdj fhat queueing network
models are in general robust, in the sense that even theixpyate analysis is in any
case helpful to get useful insights into the performancéefslystems they represent.

The key point of BRFSEL is the combined use of the two above mentioned for-
malisms: AmiLIA for component-oriented modeling purposes and queueirvgonkes
for component-oriented performance analysis purposesb8srved in [2, 1], the two
formalisms are quite different from each other. On the onedh#@BviLIA is a com-



pletely formal, general-purpose architectural desaiptanguage handling both func-
tional and performance aspects, whose basic ingredientsctions and behavioral op-
erators. On the other hand, queueing networks are instafieegueue-based graphical
notation for performance aspects only, in which some detiéie the queueing dis-
ciplines are usually expressed in natural language. Anathgortant feature to take
into account is the different level of granularity of the natxlexpressed in the two for-
malisms. In particular, it turns out that the componentsofaiLIA description cannot
be precisely mapped to the customer populations and theesarenters of a queueing
network model, but on finer parts called queueing networicteisments that represent
arrival processes, buffers, service processes, fork psese join processes, and routing
processes. Therefore, not allMiEIA descriptions can be transformed into queueing
network models, but only those satisfying certain constsaspecified in [2, 1].

This paper presents an implementation 8RPSEL and is organized as follows. In
Sect. 2, we define the model transformation carried out bylhgin AvILIA to_.QN
within TWOEAGLES. In Sect. 3, we introduce the plugin ME_IA _to_QN itself. In
Sect. 4, we describe the architecture @fGEAGLES and we show how it interoperates
with other tools via AdiLIA to_QN. In Sect. 5, we illustrate by means of an automated
teller machine example the adequacy of the model transtosmand the higher de-
gree of scalability achieved byWIOEAGLES in the performance evaluation of software
architectures. Finally, in Sect. 6 we report some conclyd@amarks.

2 The Transformation from A MILIA to Queueing Networks

In this section, we present the transformation frormuEA descriptions to queueing
network models that we have implemented. More preciseigr aécalling the transfor-
mation source (Sect. 2.1) and the transformation targett(3€2), we give an idea of
how the transformation works in accordance with the quapeatwork basic elements
identified in [2, 1] (Sect. 2.3). Finally, we detail the tréorsnation through a hierarchy
that we have specifically developed for our implementatidRERFSEL, which is com-
posed of an action classification, a behavioral patterrsifieation, pattern combination
rules, and connectivity rules for the queueing networkdakments (Sect. 2.4).

2.1 The Transformation Source: /BVILIA

AEMILIA [1] is an architectural description language based on sfi@hprocess al-
gebra. An AMILIA description represents an architectural type, which ismalyaof
software systems sharing certain constraints on the adisierbehavior of their com-
ponents as well as on their topology. As shown in Table 1, ¢ékeutl description of
an architectural type in MLIA starts with its name and its formal parameters (ini-
tialized with default values), then comprises an architedtbehavior section and an
architectural topology section.

The first section defines the overall behavior of the systemilfaby means of
types of software components and connectors, which areativily called architec-
tural element types. The definition of an AET, which start§wits name and its formal
parameters, consists of the specification of its behavidiitaninteractions.



ARCHI _TYPE <name and initialized formal parameters
ARCHI _BEHAVI OR

ARCHI _ELEMTYPE <AET name and formal parameters
BEHAVI OR <sequence of stochastic process algebraic equatipns
built from stop, action prefix, choice, and recursion

I NPUT_I NTERACTI ONS  «input synchronous/semi-synchronous/asynchronous
uni/and/or-interactions

OUTPUT_I NTERACTI ONS <output synchronous/semi-synchronous/asynchrgnous
uni/and/or-interactions

ARCHI _-TOPOLOGY

ARCHI _ELEMI NSTANCES  <AEIl names and actual parameters
ARCHI _| NTERACTI ONS <architecture-level AEl interactions
ARCHI _ATTACHVENTS <attachments between AEI local interactions

END

Table 1. Structure of an AILIA textual description

The behavior of an AET has to be provided in the form of a secgefbehavioral
equations written in a verbose variant of stochastic proedgebra allowing only for
the inactive process (renderedsasop), the action prefix operator supporting possible
boolean guards and value passing, the alternative congosiperator (rendered as
choi ce), and recursion. Every action represents an activity anessribed as a pair
composed of the activity name and the activity duration. i@ntasis of their duration,
actions are divided into exponentially timed (duratexp( r) ), immediate (duration
i nf (1, w)),and passive (duratioff| , w)).

The interactions of an AET are actions occurring in the sistih process algebraic
specification of the behavior of the AET that act as interddoe the AET itself, while
all the other actions are assumed to represent internaitesti Each interaction has
to be equipped with three qualifiers, with the first qualifistablishing whether the
interaction is an input or output interaction.

The second qualifier represents the synchronicity of thengonications in which
the interaction can be involved. We distinguish among syomobus interactions which
are blocking (default qualifieBYNC), semi-synchronous interactions which cause no
blocking as they raise an exception if prevented (qualB®YNC), and asynchronous
interactions which are completely decoupled from the ofteaties involved in the
communication (qualifieASYNC). Every semi-synchronous interaction is implicitly
equipped with a boolean variable usable in the architelcti@scription, which is auto-
matically set to true if the interaction can be executedefd an exception is raised.

The third qualifier describes the multiplicity of the comnations in which the
interaction can be involved. We distinguish among unifismt&ons which are mainly



involved in one-to-one communications (qualifi ), and-interactions guiding inclu-
sive one-to-many communications like multicasts (qualifisD), and or-interactions
guiding selective one-to-many communications like in asseclients setting (quali-
fier OR). It can also be established that an output or-interactepedds on an input
or-interaction, in order to guarantee that a selective tormany output is sent to the
same element from which a selective many-to-one input waswed (keywordEP).

The second section of an M. IA description defines the topology of the system
family. This is accomplished in three steps. Firstly, weénhthe declaration of the in-
stances of the AETs — called AEls — which represent the asjisém components and
connectors, together with their actual parameters. Ségomne have the declaration
of the architectural (as opposed to local) interactionschviare some of the interac-
tions of the AEIs that act as interfaces for the whole systehtise family. Thirdly, we
have the declaration of the architectural attachments grti@local interactions of the
AEls, which make the AEIs communicate with each other. Aadhiinent is admissible
only if it goes from an output interaction of an AEI to an inpuateraction of another
AEI. Moreover, a uni-interaction can be attached only to mneraction, whereas an
and/or-interaction can be attached only to uni-interasti®Vithin a set of attached in-
teractions, at most one of them can be exponentially timéchorediate.

The semantics for A&ILIA is given by translation into stochastic process algebra.
Basically, the semantics of every AEI is the sequence ofhststic process algebraic
equations defining the behavior of the corresponding AETenThhe semantics of
an entire architectural description is the parallel contjmos of the semantics of the
constituent AEls, with synchronization sets determinedhwgyattachments. From the
state-transition graph underlying the resulting stodbgstocess term, a continuous-
time Markov chain can be derived for performance evalugtiemposes, provided that
there are no transitions labeled with passive actions ¢padnce closure) and all the
transitions labeled with immediate actions are suitabhyoeed.

2.2 The Transformation Target: Queueing Networks

A queueing network (see, e.g., [10, 11]) is a collection tdiiacting service centers that
represent resources shared by classes of customers, whgtomer competition for
resources corresponds to queueing into the service ceimiarentrast to continuous-
time Markov chains, queueing networks are structured pmdoce models because
they elucidate system components and their connectivity.

This brings a number of advantages in the architecturabdgsnase. Firstly, typ-
ical average performance indices like throughput, utilimg mean queue length, and
mean response time can be computed both at the level of ae gméueing network
and at the level of its constituent service centers. Sucbhagland local indicators can
then be interpreted back at the level of an entire architakttiescription and at the level
of its constituent components, respectively, in order ttawbdiagnostic information.
Secondly, there exist families of queueing networks thaeguipped with fast solution
algorithms that do not require the construction of the ulyitey state space. Among
those families, we mention product-form queueing netwd#fswhich can be ana-
lyzed compositionally by solving each service center itaion and then combining
their solutions via multiplications. This provides supidor a performance analysis that



scales with respect to the number of components in archi@aiescriptions. Thirdly,

the solution of a queueing network can be expressed synaltiglio the case of certain
topologies. This feature is useful in the early stages oftfevare development cycle,
since the actual values of system performance parametgrbenanknown at that time.

2.3 The Transformation at a Glance

As mentioned in Sect. 1, the transformation source andttargequite different from
each other. In particular, the respective models haverdiitdevels of granularity. As
a consequence, the AEls of anvfEIA description cannot be precisely mapped to
the customer populations and the service centers of a qupueitwork model. For
this reason, in [2, 1] a number of finer parts called queueigtgvark basic elements
(QNBE for short) have been identified together with suitatyatactical restrictions
that establish when an AEI can be transformed into one oftetements and when the
AEls from which those elements have been derived are coediétta way that yields
a well-formed queueing network. The various QNBEs are shimwrig. 1, wheref
(resp.r) denotes the number of alternative destinations (respces)yh denotes the
number of customer classes, and interarrival and servicestiare expressed through
phase-type distributions, i.e., suitable combinationexgionential distributions.

An arrival process is a generator of arrivals of customera oértain class. While
a single arrival process is enough in the case of an unboupaiealation, an instance
of the arrival process is necessary for each customer inabe of a finite population,
with the return of the customer being explicitly modeled. éffer is a repository of
customers of different classes that are waiting to be seagedrding to some queueing
discipline that we assume to be first-come-first-servechércise of a bounded buffer,
incoming customers of clagscan be accommodated only if the buffer capacityor
that class is not exceeded. A service process is a servardtoroers of various classes,
whose service times can be different for each class. Wherveseenter is composed
of multiple servers, it is necessary to represent each ohttieough an instance of
the service process. A fork process splits requests comimy €ustomers of a certain
class into subrequests directed to different service cgntéhich are then recombined
together by a join process. Finally, a routing process sinfiiwards customers of a
certain class towards different destinations.

2.4 A Hierarchical Approach to the Transformation

We now describe the hierarchical approach that we have ajge@lfor implementing
the transformation. As sketched in Sect. 2.3, we need ta tauiimapping between
AMILIA elements and the QNBEs depicted in Fig. 1. Due to the notdtigap be-
tween these two modeling languages, in the mapping impleatien we have followed
a bottom-up approach that starts from small-grainedi /2 elements and ends up to
assemblies of QNBEs. In particular, this section preseéhesZviLIA action classifi-
cation, the AmILIA behavioral pattern classification, thevVAEIA pattern combination
rules to make QNBESs, and the connectivity rules for QNBEs.
For the sake of readability, in the remainder of this sectotions ardtalicized,

behavioral patterns ateypewr i t t en, and QNBESs arbolded.



arrival process for unbounded population:
departy,i nf (15,rp)
depar tg,i nf (1¢,rp)
arrival process for single customer of finite population:
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fork process preceded by external buffer: fork process without external buffer:
. forkyinf . forky,inf
fork,inf forke,inf
join process preceded by external buffers: join process without external buffers:
join,inf ><I eavey,inf (l4,rp) join, _ ><I eavey,inf (1 5,rp)
join,inf | eavey,inf (l¢,rpy) join, _ | eavey,inf (l¢,rp)
routing process preceded by external buffer: routing process without external buffer:
. forwardyinf(l,,rp) . forwardyinf(ly,rp)
forwardginf(l¢rp forward;inf(lsrp

Fig. 1. Queueing network basic elements

Action Classification In Table 2, the classification of ¥ELIA actions is illustrated.

Actions are placed on the table rows. The first column is usgaditition the rows into

three groups of actions, which are: input interactionspouinteractions, and internal
actions. The other columns represent respectively: theergiwen to the action, the
action duration (i.e., exponential, immediate, passitie), connection multiplicity of

the action in the case that it is an interaction (i.e., und,aor), and the QNBEs that
need such an action within their behavioral descriptioe (&g. 1).

For example, the first row of Table 2 specifies that a passpetinni-interaction
might represent geturn action in aSingle Client Arrival Processof a queueing net-
work. Similarly, an immediate internal action nhama@-exitcan belong to many dif-
ferent QNBES such a&rrival andService Processes



[JAction Namd[Action Duration  JAction Multiplicity [JONBEs

return passive uni Single Client Arrival Process
get passive uni, or (Finite or Infinte Capacity) Buffer
select immediate uni Buffered Service Process,
Input Buffered Fork Process,
Interactions Buffered Routing Process
arrive passive uni, or Unbuffered Service Process,

Unbuffered Fork Process,
Unbuffered Routing Process

join immediate and (Buffered or Unbuffered) Join Process
exit passive, immediateuni, or (Single Client or Infinite) Arrival Process,
(Buffered or Unbuffered) Service Process,
Output (Buffered or Unbuffered) Join Process,
Interactions (Buffered or Unbuffered) Routing Process
put passive uni, or (Finite or Infinte Capacity) Buffer
fork immediate and (Buffered and Unbuffered) Fork Process
pre-exit [[immediate N/A (Single Client or Infinite) Arrival Process,

(Buffered or Unbuffered) Service Process,
(Buffered or Unbuffered) Join Process,

Internal (Buffered or Unbuffered) Routing Process
Actions exp-phase || exponential N/A (Single Client or Infinite) Arrival Process,
(Buffered or Unbuffered) Service Process
pre-phase ||immediate N/A (Single Client or Infinite) Arrival Process,

(Buffered or Unbuffered) Service Process

Table 2. EMILIA action classification

This classification helps to restrict the focus on the 1loastithat have been listed
in Table 2. Behavioral patterns of interest for the transfation are built only using
these actions. Therefore, such actions represent thebaptwbuild words, which are
the behavioral patterns introduced in next paragraph toetm@QUIBE behaviors.

Behavioral Pattern Classification Following our bottom-up approach, we build up
on the actions classified in Table 2 to obtain patterns thait&ly describe (partial)
behaviors of QNBEs. The result is illustrated in Table 3, kghge have identified 8 be-
havioral patterns. The table has an organization simildré@ne of Table 2. Behavioral
patterns are on the table rows and they are grouped into, inptgut, and internal be-
haviors. A name is assigned to each pattern, then the pastelescribed in the third
column of the table, and the QNBESs where such pattern occaréséed in the fourth
column. Parameters are associated with names of pattexndepend on their values
(e.g.,uncond-get (i, n)).

For example, the sixth row of Table 3 (i.e., the first outputdaor) specifies that
anexit behavior describes a job exiting a QNBE and routing somesvhkse. Such
a behavior can manifest itself in two ways: either as a senobnditioned alternative
behaviors, where each behavior hasaitaction, or as a singlexitaction.

These behavioral patterns represent the words that caneldetaiduild sentences
representing QNBEs, as it will be illustrated in the nextgumaph.

Combination Rules for Behavioral Patterns The last step to obtain the mapping
illustrated in Fig. 1 between KHLIA constructs and QNBEs is accomplished by in-



troducing rules to combine the previously identified bebealipatterns into QNBES
When parsing an M#ILIA description, the AiLIA _to_.QN component of Fig. 1 looks
for such combinations of behavioral patterns in order tonife QNBEs within an
AEMILIA description and to generate them.

[[Pattern Name

[[Pattern Description [

[QNBEs ]

return

The return of a job can be described in two

gisingle Client Arrival Process]

ferent ways: (i) two or more alternative proces
each made of an unconditionegturn action; (ii)
process represented byeturn action

€es,

uncond-get (i, n)

An unconditioned get process for theth class
of clients is made of an unconditioneget ac-

Infinite Capacity Buffer

tion, and a behavioral call with actual parame]
pai, pas, ..., pa, that satisfy the following con
straints:pa; = p; + 1for j = ¢ andpa; = p;

for j # 4, wherep; is the current number of

clients of j-th class

rs

Input
Behaviors

cond-get (1, n, V)

A conditioned get process for theth class o
clients is made of: the conditiom; < N; (wherg
N, is the buffer capacity for the-th class o
clients), agetaction, and a behavioral call with g

tual parametergas, pas, ..., pa,, that satisfy the

following constraintspa; = p; + 1forj = i

andpa; = p; for j # i, wherep; is the current

number of clients ofj-th class

Finite Capacity Buffer

193

sel ect

A selection behavior is made of one or more ali@uffered Service Process

native processes, where each process starts Wi
unconditionedselectaction

Baffered Fork Process
Buffered Routing Process

arrive

An arrival behavior is made of one or more al
native processes, where each process starts wj
unconditionedarrive action

donbuffered Service Process,
babuffered Fork Process
Unbuffered Routing Process

exit

Ajob exit (and routing) can be described in two (i

ferent ways: (i) two or more alternative procesg&grvice Process, (Buffered

each made of an unconditionpee-exitaction fol-
lowed by anexit action; (ii) a process represen
by anexitaction

i(Buffered or Unbuffered)

or Unbuffered) Join Process
gBuffered or Unbuffered)
Routing Process, (Single
Client or Infinite) Arrival
Process

Output
Behaviors

put (i, n)

A put process for the:-th class of clients ig(Finite or Infinite Capacity)

made of: the conditionp; > 0, a put ac-
tion, and a behavioral call with actual paramef
pai,pas, ..., pay that satisfy the following col
straints:;pa; = p; — 1forj = i andpa; = p;

for j # 4, wherep; is the current number gf

clients of j-th class

Buffer
ers

Internal
Behaviors

phase

The behavior of a phase-type distribution is an g
trary combination ofexp-phaseand pre-phaseac-|
tions that determine a set of alternatives, w%

each alternative terminates with a non-phas
havior

tBingle Client or Infinite) Ar-
rival Process, (Buffered o
@iabuffered) Service Proces
be-

Table 3. /EMILIA behavioral pattern classification

These rules are defined in Table 4. The order of QNBEs in tHe talthe same as
the one in Fig. 1. Each row in Table 4 represents a QNBE, whereécond column
provides the combination rules for behavioral patterns tledine the QNBE behav-
ior, whereas the third column represents additional assangthat have to be verified

L All behaviors occurring in AlILIA descriptions are assumed to be tail recursive.



before generating the QNBE itself. Note that where behaVmatterns have been num-
bered (e.g.Infinite Arrival Process), it means that a simple sequencing rule has to be
applied to those patterns. In some cases, su@uffsred Fork Process rules have to

be applied to simple actions beside behavioral patterns.

For example, &ingle Client Arrival Processis defined as a sequence of three
behavioral patterns (i.ephase, exi t, andr et ur n), with the additional conditions
that the process must only haggit output interactions anckturn input interactions.
As another example, doin Processis defined as a sequence ojaén action and an
exi t behavioral pattern, with the additional conditions that ¢imly input interaction
is thejoin action and the process must only hawit output interactions.

[QNBE [[Combination rules of behavioral patterns [Additional assumptions |
Infinite 1.phase a. output interactions must only leit
Arrival 2.exit b. no input interactions
Process
Single Client [|1.phase a. output interactions must only leit
Arrival 2.exit b. input interactions must only beturn
Process 3.return
Infinite - Parameterg, , p2, ..., pn have to be declared a. output interactions must only pet
Capacity - Parameters have to be initialized to non-negative numbeitk different names)
Buffer - 2n alternative processes have to be defined: b. input interactions must only lget

n uncond- get (i, n) patterns and (with different names)

n put (i, n) patterns
Finite - Parameterg, , ps, ..., pn, have to be declared a. output interactions must only pet
Capacity - Parameters have to be initialized to non-negative numgeith different names)
Buffer and have to be all declared as intervals of integers b. input interactions must only lget

- Each parametey; has to fall within the[0, N;] interval |(with different names)
- 2n alternative processes have to be defined:
n cond- get (i, n) patterns and

n put (i, n) patterns

Buffered 1.sel ect a. output interactions must only leit

Service 2.phase b. input interactions must only Eelect

Process 3.exit

Unbuffered l.arrive a. output interactions must only le&it

Service 2.phase b. input interactions must only kearive

Process 3.exit

Buffered 1. select a. the only output interaction is thierk

Fork action

Process 2. fork b. the only input interaction is theelect
action

Unbuffered 1. arrive a. the only output interaction is thierk

Fork action

Process 2.fork b. the only input interaction is therrive
action

Buffered 1.join a. output interactions must only leit

or Unbuffered || 2. exi t b. the only input interaction is thjein action|

Join Process

Buffered 1. select a. output interactions must only leit

Routing 2.exit b. the only input interaction is theelect

Process action

Unbuffered 1.arrive a. output interactions must only leait

Routing 2.exit b. the only input interaction is therrive

Process action

Table 4. Combining behavioral patterns into QNBEs



Connectivity Rules for Queueing Network Basic ElementsFinally, we introduce
several connectivity rules that allow QNBEs to be assembiesemantically valid
gqueueing network models:

— An arrival process can be followed only by a service or forbgass, possibly pre-
ceded by a buffer.

— A buffer can be followed only by a service, fork, join, or ring process.

— A service process can be followed by any QNBE.

— A fork process can be followed only by a service process othamdork process,
possibly preceded by a buffer.

— Ajoin process can be followed by any QNBE.

— Arouting process can be followed by any QNBE.

3 The Eclipse Plugin AvILIA to QN

In order to enable the application 0ERFSEL, we have developed ¥ELIA to_QN,
a Java-coded Eclipse plugin for transforming//EA descriptions into queueing net
works. As shown in Sect. 2, the model transformations redlizy AviLIA _to_QN rely
on two queue-driven classifications — one for actions andfonbehavioral patterns
built from actions and process algebraic operators thabcaar in AvILIA descrip-
tions, respectively — which hierarchically formalize mo$the syntactical restrictions
of [2,1]. These two classifications are then complemented Ioymber of rules es-
tablishing which combinations of behavioral patterns tesuQNBES (combination
rules) and, in turn, how QNBESs should be connected to eaatr athorder to yield
well-formed queueing networks (connectivity rules).

Given an AmILIA description, AMILIA to_QN parses the behavioral part of the
AEMILIA representation of each AEI to search for occurrences ofrbé@qusly identi-
fied action classes and queue-like behavioral patterns. @vkethis search is success-
ful on all AEIs and the combination rules are respected, tAamLIA to_ QN trans-
forms each AEI into the corresponding QNBE. Afterwardsyu#iA to_ QN checks the
topological part of the AiLIA description for compliance with the previously estab-
lished connectivity rules of QNBES. If this check succeexts ¥EvILIA to_QN trans-
forms the entire AILIA description into a queueing network model.

The queueing network models produced by1#HA to_ QN are stored in PMIF
format [13]. The reason is that this is an XML schema thatastsn interchange format
and hence makes it possible to pass those models as inpwueigg network tools.

4 The Architecture of TWOEAGLES

AEMILIA to_QN can be launched from withinWOEAGLES. This is a new version of
TwoTowers [5] — a software tool for the functional verificatj performance evalua-
tion, and security analysis of software architectures miesd with /AviLIA —which is
entirely integrated in the Eclipse framework.

The software architecture of WWOEAGLES is depicted in Fig. 2, where the pro-
vided interfaces of components are represented by lokipdrereas required interfaces



Fig. 2. Composition and environment ofATOEAGLES

by dashed arrows. In the box labeled witiv®EAGLES, only the components that
strictly belong to the tool have been included, which arexida to_QN, TT_GUI,
and TwoTowers. The remaining components of Fig. 2 are egk#rnal tools (i.e.,
NuSMV and Eclipse) or in-house built components that suiber TWOEAGLES task
but do not belong to the tool (i.e., QEditor and QNSolver).

In order to embed TwoTowers in EclipseWbDEAGLES relies on a new graphical
user interface for TwoTowers — the TGUI component in Fig. 2 — which has been de-
veloped as an Eclipse plugin. TGUI tailors the Eclipse environment to offer all the
original TwoTowers functionalities to users, along witk thodel transformation intro-
duced in this paper. This wrapping of TwoTowers has alloviedhiplementation to be
kept basically unchanged — including the use of the extenoalel checker NuSMV [6]
—whereas its interfaces can be invoked, as they are, thitheghT_GUI component.

In addition to TT.GUI, there are other three Eclipse plugins in Fig. 2. The @in,
AEMILIA to_QN, has already been described in the previous sectione &imelies on
PMIF, it acts as a bridge between TwoTowers on one side andetktetwo plugins on
the other side. The second one, @HMitor, allows PMIF-based queueing networks to
be imported and edited in Eclipse and supports their grapkisualization. The third
one, QNSolver, is the client side of a web service called Weasel, [@bjch can be
exploited to invoke several existing queueing network exdy

A typical scenario for the architecture in Fig. 2 is the follng. TWOEAGLES starts
and TT.GUI, within Eclipse, is ready to accept user commands. Fangte, the user
opens the AILIA editor, which is part of TwoTowers, and enters amiEA de-
scription. The user may then run any (functional, secuatyperformance) analysis
technique provided by the original TwoTowers release,uidicig the NuSMV model
checker. In addition, due to the extension presented inpdgier, the user may decide
to invoke a model transformation that generates a queuetvgonk from the AMILIA
description (i.e., the AiLIA to_.QN component in Fig. 2). The output queueing net-
work, which can also be modified with the QBtitor, is represented in PMIF and can
be rendered (i) in a textual XML format through the standactigse XML editor or
(i) in a graphical format through the QEditor component shown in Fig. 2. The lat-
ter is able to import and export queueing networks in PMIfrfatrand to graphically
represent them within Eclipse. Finally, the user can invbleequeueing network solver
(i.e., QNLSolver in Fig. 2), which is a web service able to invoke difar existing
solvers. The solution results are represented in the stafttdipse text editor.



5 TwoEAGLES at Work: An Automated Teller Machine

In this section, we illustrate WOEAGLES at work on an automated teller machine
(ATM), a system made of a certain number of distributed ¢lierminals from where it
is possible to require services to a central server. Comgpastof service requests are:
withdrawal, deposit, and balance. Terminals only enabétd to perform I/O opera-
tions, whereas large part of computation is performed orcéiméral server. The experi-
ments that we illustrate on this example are aimed at: (vatpthe tool usability, (ii)
validating the transformation from ¥ELIA descriptions to queueing network models
on the basis of numerical results, and (iii) showing thedagralability of queueing
network solvers with respect to TwoTowers traditional parfance evaluator.
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Fig. 3. Eclipse user interface forWWOEAGLES

The application of AzILIA to_QN (see Fig. 3) to the MILIA description of the
ATM system (which is not shown here due to lack of space) tesula queueing net-
work formed by four QNBES (corresponding to as many AET$)inkDevicewhich is
the workload generator for the whole network, together @iy, DISKS andVIDEO,
whose service times afe5 ms, 0.5 ms, andl ms, respectively (these values are only
approximations of real scenarios, as we are more interéstéte validation of the
transformation and the analysis of pros and cons of our agprarather than in the



numbers themselves). Jobs originated froninkDeviceare delivered taCPU. On the
basis of interaction rate§PU decides whether sending jobsdSKSand/orVIDEQ.
Thereafter, jobs are sent back ThinkDevice Being a closed queueing network, the
parameters that drive our performance analysis are: théauv of client terminals
and the thinking timeZ of each client.

In Fig. 4, we have reported the throughput (on the left) ardutilization (on the
right) that we have obtained for the main ATM devices, which @PU and DISKS
while varying the number of clientd in the system, with a fixed thinking time of
Z =1 s. Four curves are shown because for each device we haveeafad both the
values obtained with the TwoTowers performance solver hadhes obtained with the
external queueing network solver after thewfEA description has been transformed
into a queueing network. As can be seen, the two solversrobtaictly the same nu-
merical results for both considered devices, and this stippbe correctness of the
transformation of the AiLIA description into the queueing network model. However,
the TwoTowers solver, whose results are labeled as TwoEoimethe figure, is un-
able to solve models with more than 7 clients. This is due écstiate space explosion
phenomenon encountered when the solver handles the cousifiime Markov chain
model. In contrast, the queueing network solver, whoseltseare labeled as PMVA
in the figure, is able to solve larger models in few secondss Ehdue to the prod-
uct form [10] of the resulting queueing network model, whidlows polynomial-time
solution algorithms such as Mean Value Analysis (MVA) to pelaed.

Throughput

Utilization

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr PR
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number of clients number of clients

Fig. 4. ATM throughput (left) and utilization (right)

6 Conclusions and Future Work

In this paper, we have presented a tool integrated into §lthat allows AILIA -
based architectural descriptions to be transformed ingueing network models and
hence supports theeRFSEL methodology of [2, 1]. As shown by the ATM example, the
tool TWOEAGLES improves on TwoTowers because the possibility of explgitineue-
ing network solvers makes the performance evaluation psofaester and applicable to
larger software architectures with respect to continugus-Markov chain solvers.



Many approaches have been introduced in the last decadmgidrm architectural
models into performance models [3], but very few of them hbgen implemented
in working tools and rely on structured models like queuenagworks. Moreover,
most implementations are based on UML, whereasWwEAGLES we consider a fully
fledged, formally defined architectural description larggias source notation.

With regard to future work, we intend to strengthen the tiamsation implemented
in TWOEAGLES by moving from a general-purpose programming languageJike
to model transformation languages like ATL [9] and QVT [1Rforeover, we would
like to investigate whether results relating stochastimcpss algebras and queueing
networks [8, 7, 14] can be exploited in our architecturafrfeavork.
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