
TWOEAGLES: A Model Transformation Tool
from Architectural Descriptions to Queueing Networks

Marco Bernardo1 Vittorio Cortellessa2 Mirko Flamminj2

1 Dipartimento di Scienze di Base e Fondamenti – Università di Urbino – Italy
2 Dipartimento di Informatica – Università dell’Aquila – Italy

Abstract. We present the implementation of a methodology for the modeling,
analysis, and comparison of software architectures based on their performance
characteristics. The implementation is part of a software tool that is called
TWOEAGLES, which extends the architecture-centric tool TwoTowers – based on
the stochastic process algebraic description language ÆMILIA – and integrates it
into Eclipse. The extension consists of a Java-coded plugin that we have called
AEmilia to QN. This plugin transforms ÆMILIA descriptions into queueing net-
work models expressed in the XML schema PMIF, which can then be rendered
via the QNEditor tool or analyzed by multiple queueing network solvers that can
be invoked through the Weasel web service.

1 Introduction

The importance of an integrated view of functional and nonfunctional characteristics in
the early stages of software development is by now widely recognized. This is a conse-
quence of the awareness of the risks arising either from considering those two classes
of characteristics on two different classes of system models that are not necessarily
consistent with each other, or from examining nonfunctional features at later stages of
the development cycle. This has resulted in the extension ofnumerous semi-formal and
formal notations with nonfunctional attributes yielding quantitative variants of logics,
automata, Petri nets, process calculi, and specification languages as well as suitable
UML profiles, many of which are surveyed, e.g., in [3].

The assessment of nonfunctional characteristics is not only instrumental to enhanc-
ing the quality of software systems. As an example, a number of alternative architectural
designs may be developed for a given system, each of which is functionally correct. In
that case, we need to establish some criteria for deciding which architectural design
is more appropriate and hence is the one to implement. As it turns out, performance
requirements and constraints are certainly among the most influential factors that drive
architecture-level design choices.

In order to address the various issues mentioned above, in [2] a methodology has
been proposed for predicting, improving, and comparing theperformance of software
architectures. This methodology, called PERFSEL in [1], consists of a number of phases
at the end of which typical performance indices are assessedin different scenarios for
the various architectural designs both at the system level and at the component level.
On the basis of those indices, it can be decided to discard some designs, improve others,
or select the one to be implemented.



Although the PERFSEL methodology is independent to a large extent from the nota-
tion in which architectural designs are expressed, as in [2,1] here we focus on ÆMILIA .
This is an architectural description language based on stochastic process algebra that
enables functional verification via model checking or equivalence checking, as well
as performance evaluation through the numerical solution of continuous-time Markov
chains or discrete-event simulation.

On the analysis side, PERFSEL instead employs queueing networks [10]. A main
motivation of this choice is that, in contrast to continuous-time Markov chains – which
are flat performance models – queueing networks are structured performance models
providing support for establishing a correspondence between their constituent elements
and the components of architectural descriptions. Moreover, some families of queueing
networks, like product-form queueing networks [4], are equipped with efficient solution
algorithms that do not require the construction of the underlying state space when calcu-
lating typical average performance indices at system levelor component level, such as
response time, throughput, utilization, and queue length.Therefore, the transformation
of ÆMILIA models into queueing networks enables a wider set of performance analysis
techniques on the same architectural model.

Starting from a number of alternative architectural designs – which we assume to
be functionally correct – of a software system to be implemented, PERFSEL requires
the designer to formalize each such design as an ÆMILIA description, which is sub-
sequently transformed into a queueing network model. Whenever one of these models
is not in product form, the model itself is replaced by an approximating product-form
queueing network model. The possibly approximate product-form queueing network
model associated with each architectural design is then evaluated in order to derive
the typical average performance indices both at the system level and at the component
level. The evaluation is done in several different scenarios of interest and the obtained
performance figures are interpreted on the various ÆMILIA descriptions.

On the basis of those figures, for each alternative a decisionhas to be made as to
whether the design is satisfactory, should be discarded, ormay be improved. When the
predict-improve cycle is terminated for all the survived architectural designs, a compar-
ison among them takes place in the various scenarios according to the average perfor-
mance indices. The selected architecture is finally checkedagainst the specific perfor-
mance requirements of the system under construction.

This final check is necessary for two reasons. Firstly, the selection is made by rely-
ing on general performance indices, which are not necessarily connected in any way to
the specific performance requirements. Secondly, the product-form queueing network
model associated with the selected architecture may have been subject to approxima-
tions. Although the perturbation of the average performance indices introduced by the
approximations cannot be easily quantified, we recall from [11] that queueing network
models are in general robust, in the sense that even their approximate analysis is in any
case helpful to get useful insights into the performance of the systems they represent.

The key point of PERFSEL is the combined use of the two above mentioned for-
malisms: ÆMILIA for component-oriented modeling purposes and queueing networks
for component-oriented performance analysis purposes. Asobserved in [2, 1], the two
formalisms are quite different from each other. On the one hand, ÆMILIA is a com-



pletely formal, general-purpose architectural description language handling both func-
tional and performance aspects, whose basic ingredients are actions and behavioral op-
erators. On the other hand, queueing networks are instancesof a queue-based graphical
notation for performance aspects only, in which some details like the queueing dis-
ciplines are usually expressed in natural language. Another important feature to take
into account is the different level of granularity of the models expressed in the two for-
malisms. In particular, it turns out that the components of an ÆMILIA description cannot
be precisely mapped to the customer populations and the service centers of a queueing
network model, but on finer parts called queueing network basic elements that represent
arrival processes, buffers, service processes, fork processes, join processes, and routing
processes. Therefore, not all ÆMILIA descriptions can be transformed into queueing
network models, but only those satisfying certain constraints specified in [2, 1].

This paper presents an implementation of PERFSEL and is organized as follows. In
Sect. 2, we define the model transformation carried out by theplugin ÆMILIA to QN
within TWOEAGLES. In Sect. 3, we introduce the plugin ÆMILIA to QN itself. In
Sect. 4, we describe the architecture of TWOEAGLES and we show how it interoperates
with other tools via ÆMILIA to QN. In Sect. 5, we illustrate by means of an automated
teller machine example the adequacy of the model transformation and the higher de-
gree of scalability achieved by TWOEAGLES in the performance evaluation of software
architectures. Finally, in Sect. 6 we report some concluding remarks.

2 The Transformation from Æ MILIA to Queueing Networks

In this section, we present the transformation from ÆMILIA descriptions to queueing
network models that we have implemented. More precisely, after recalling the transfor-
mation source (Sect. 2.1) and the transformation target (Sect. 2.2), we give an idea of
how the transformation works in accordance with the queueing network basic elements
identified in [2, 1] (Sect. 2.3). Finally, we detail the transformation through a hierarchy
that we have specifically developed for our implementation of PERFSEL, which is com-
posed of an action classification, a behavioral pattern classification, pattern combination
rules, and connectivity rules for the queueing network basic elements (Sect. 2.4).

2.1 The Transformation Source: ÆMILIA

ÆMILIA [1] is an architectural description language based on stochastic process al-
gebra. An ÆMILIA description represents an architectural type, which is a family of
software systems sharing certain constraints on the observable behavior of their com-
ponents as well as on their topology. As shown in Table 1, the textual description of
an architectural type in ÆMILIA starts with its name and its formal parameters (ini-
tialized with default values), then comprises an architectural behavior section and an
architectural topology section.

The first section defines the overall behavior of the system family by means of
types of software components and connectors, which are collectively called architec-
tural element types. The definition of an AET, which starts with its name and its formal
parameters, consists of the specification of its behavior and its interactions.



ARCHI TYPE ⊳name and initialized formal parameters⊲

ARCHI BEHAVIOR
...

...
ARCHI ELEM TYPE ⊳AET name and formal parameters⊲

BEHAVIOR ⊳sequence of stochastic process algebraic equations
built from stop, action prefix, choice, and recursion⊲

INPUT INTERACTIONS ⊳input synchronous/semi-synchronous/asynchronous
uni/and/or-interactions⊲

OUTPUT INTERACTIONS ⊳output synchronous/semi-synchronous/asynchronous
uni/and/or-interactions⊲

...
...

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES ⊳AEI names and actual parameters⊲

ARCHI INTERACTIONS ⊳architecture-level AEI interactions⊲
ARCHI ATTACHMENTS ⊳attachments between AEI local interactions⊲

END

Table 1.Structure of an ÆMILIA textual description

The behavior of an AET has to be provided in the form of a sequence of behavioral
equations written in a verbose variant of stochastic process algebra allowing only for
the inactive process (rendered asstop), the action prefix operator supporting possible
boolean guards and value passing, the alternative composition operator (rendered as
choice), and recursion. Every action represents an activity and isdescribed as a pair
composed of the activity name and the activity duration. On the basis of their duration,
actions are divided into exponentially timed (durationexp(r)), immediate (duration
inf(l, w)), and passive (duration(l, w)).

The interactions of an AET are actions occurring in the stochastic process algebraic
specification of the behavior of the AET that act as interfaces for the AET itself, while
all the other actions are assumed to represent internal activities. Each interaction has
to be equipped with three qualifiers, with the first qualifier establishing whether the
interaction is an input or output interaction.

The second qualifier represents the synchronicity of the communications in which
the interaction can be involved. We distinguish among synchronous interactions which
are blocking (default qualifierSYNC), semi-synchronous interactions which cause no
blocking as they raise an exception if prevented (qualifierSSYNC), and asynchronous
interactions which are completely decoupled from the otherparties involved in the
communication (qualifierASYNC). Every semi-synchronous interaction is implicitly
equipped with a boolean variable usable in the architectural description, which is auto-
matically set to true if the interaction can be executed, false if an exception is raised.

The third qualifier describes the multiplicity of the communications in which the
interaction can be involved. We distinguish among uni-interactions which are mainly



involved in one-to-one communications (qualifierUNI), and-interactions guiding inclu-
sive one-to-many communications like multicasts (qualifier AND), and or-interactions
guiding selective one-to-many communications like in a server-clients setting (quali-
fier OR). It can also be established that an output or-interaction depends on an input
or-interaction, in order to guarantee that a selective one-to-many output is sent to the
same element from which a selective many-to-one input was received (keywordDEP).

The second section of an ÆMILIA description defines the topology of the system
family. This is accomplished in three steps. Firstly, we have the declaration of the in-
stances of the AETs – called AEIs – which represent the actualsystem components and
connectors, together with their actual parameters. Secondly, we have the declaration
of the architectural (as opposed to local) interactions, which are some of the interac-
tions of the AEIs that act as interfaces for the whole systemsof the family. Thirdly, we
have the declaration of the architectural attachments among the local interactions of the
AEIs, which make the AEIs communicate with each other. An attachment is admissible
only if it goes from an output interaction of an AEI to an inputinteraction of another
AEI. Moreover, a uni-interaction can be attached only to oneinteraction, whereas an
and/or-interaction can be attached only to uni-interactions. Within a set of attached in-
teractions, at most one of them can be exponentially timed orimmediate.

The semantics for ÆMILIA is given by translation into stochastic process algebra.
Basically, the semantics of every AEI is the sequence of stochastic process algebraic
equations defining the behavior of the corresponding AET. Then, the semantics of
an entire architectural description is the parallel composition of the semantics of the
constituent AEIs, with synchronization sets determined bythe attachments. From the
state-transition graph underlying the resulting stochastic process term, a continuous-
time Markov chain can be derived for performance evaluationpurposes, provided that
there are no transitions labeled with passive actions (performance closure) and all the
transitions labeled with immediate actions are suitably removed.

2.2 The Transformation Target: Queueing Networks

A queueing network (see, e.g., [10, 11]) is a collection of interacting service centers that
represent resources shared by classes of customers, where customer competition for
resources corresponds to queueing into the service centers. In contrast to continuous-
time Markov chains, queueing networks are structured performance models because
they elucidate system components and their connectivity.

This brings a number of advantages in the architectural design phase. Firstly, typ-
ical average performance indices like throughput, utilization, mean queue length, and
mean response time can be computed both at the level of an entire queueing network
and at the level of its constituent service centers. Such global and local indicators can
then be interpreted back at the level of an entire architectural description and at the level
of its constituent components, respectively, in order to obtain diagnostic information.
Secondly, there exist families of queueing networks that are equipped with fast solution
algorithms that do not require the construction of the underlying state space. Among
those families, we mention product-form queueing networks[4], which can be ana-
lyzed compositionally by solving each service center in isolation and then combining
their solutions via multiplications. This provides support for a performance analysis that



scales with respect to the number of components in architectural descriptions. Thirdly,
the solution of a queueing network can be expressed symbolically in the case of certain
topologies. This feature is useful in the early stages of thesoftware development cycle,
since the actual values of system performance parameters may be unknown at that time.

2.3 The Transformation at a Glance

As mentioned in Sect. 1, the transformation source and target are quite different from
each other. In particular, the respective models have different levels of granularity. As
a consequence, the AEIs of an ÆMILIA description cannot be precisely mapped to
the customer populations and the service centers of a queueing network model. For
this reason, in [2, 1] a number of finer parts called queueing network basic elements
(QNBE for short) have been identified together with suitablesyntactical restrictions
that establish when an AEI can be transformed into one of those elements and when the
AEIs from which those elements have been derived are connected in a way that yields
a well-formed queueing network. The various QNBEs are shownin Fig. 1, wheref
(resp.r) denotes the number of alternative destinations (resp. sources),h denotes the
number of customer classes, and interarrival and service times are expressed through
phase-type distributions, i.e., suitable combinations ofexponential distributions.

An arrival process is a generator of arrivals of customers ofa certain class. While
a single arrival process is enough in the case of an unboundedpopulation, an instance
of the arrival process is necessary for each customer in the case of a finite population,
with the return of the customer being explicitly modeled. A buffer is a repository of
customers of different classes that are waiting to be servedaccording to some queueing
discipline that we assume to be first-come-first-served. In the case of a bounded buffer,
incoming customers of classi can be accommodated only if the buffer capacityci for
that class is not exceeded. A service process is a server for customers of various classes,
whose service times can be different for each class. When a service center is composed
of multiple servers, it is necessary to represent each of them through an instance of
the service process. A fork process splits requests coming from customers of a certain
class into subrequests directed to different service centers, which are then recombined
together by a join process. Finally, a routing process simply forwards customers of a
certain class towards different destinations.

2.4 A Hierarchical Approach to the Transformation

We now describe the hierarchical approach that we have developed for implementing
the transformation. As sketched in Sect. 2.3, we need to build a mapping between
ÆMILIA elements and the QNBEs depicted in Fig. 1. Due to the notational gap be-
tween these two modeling languages, in the mapping implementation we have followed
a bottom-up approach that starts from small-grained ÆMILIA elements and ends up to
assemblies of QNBEs. In particular, this section presents:the ÆMILIA action classifi-
cation, the ÆMILIA behavioral pattern classification, the ÆMILIA pattern combination
rules to make QNBEs, and the connectivity rules for QNBEs.

For the sake of readability, in the remainder of this sectionactions areitalicized,
behavioral patterns aretypewritten, and QNBEs arebolded.
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Fig. 1.Queueing network basic elements

Action Classification In Table 2, the classification of ÆMILIA actions is illustrated.
Actions are placed on the table rows. The first column is used to partition the rows into
three groups of actions, which are: input interactions, output interactions, and internal
actions. The other columns represent respectively: the name given to the action, the
action duration (i.e., exponential, immediate, passive),the connection multiplicity of
the action in the case that it is an interaction (i.e., uni, and, or), and the QNBEs that
need such an action within their behavioral description (see Fig. 1).

For example, the first row of Table 2 specifies that a passive input uni-interaction
might represent areturn action in aSingle Client Arrival Processof a queueing net-
work. Similarly, an immediate internal action namedpre-exitcan belong to many dif-
ferent QNBEs such asArrival andService Processes.



Action Name Action Duration Action Multiplicity QNBEs

return passive uni Single Client Arrival Process
get passive uni, or (Finite or Infinte Capacity) Buffer

select immediate uni Buffered Service Process,
Input Buffered Fork Process,
Interactions Buffered Routing Process

arrive passive uni, or Unbuffered Service Process,
Unbuffered Fork Process,
Unbuffered Routing Process

join immediate and (Buffered or Unbuffered) Join Process
exit passive, immediateuni, or (Single Client or Infinite) Arrival Process,

(Buffered or Unbuffered) Service Process,
Output (Buffered or Unbuffered) Join Process,
Interactions (Buffered or Unbuffered) Routing Process

put passive uni, or (Finite or Infinte Capacity) Buffer
fork immediate and (Buffered and Unbuffered) Fork Process

pre-exit immediate N/A (Single Client or Infinite) Arrival Process,
(Buffered or Unbuffered) Service Process,
(Buffered or Unbuffered) Join Process,

Internal (Buffered or Unbuffered) Routing Process
Actions exp-phase exponential N/A (Single Client or Infinite) Arrival Process,

(Buffered or Unbuffered) Service Process
pre-phase immediate N/A (Single Client or Infinite) Arrival Process,

(Buffered or Unbuffered) Service Process

Table 2.ÆMILIA action classification

This classification helps to restrict the focus on the 11 actions that have been listed
in Table 2. Behavioral patterns of interest for the transformation are built only using
these actions. Therefore, such actions represent the alphabet to build words, which are
the behavioral patterns introduced in next paragraph to model QNBE behaviors.

Behavioral Pattern Classification Following our bottom-up approach, we build up
on the actions classified in Table 2 to obtain patterns that typically describe (partial)
behaviors of QNBEs. The result is illustrated in Table 3, where we have identified 8 be-
havioral patterns. The table has an organization similar tothe one of Table 2. Behavioral
patterns are on the table rows and they are grouped into input, output, and internal be-
haviors. A name is assigned to each pattern, then the patternis described in the third
column of the table, and the QNBEs where such pattern occurs are listed in the fourth
column. Parameters are associated with names of patterns that depend on their values
(e.g.,uncond-get(i,n)).

For example, the sixth row of Table 3 (i.e., the first output behavior) specifies that
anexit behavior describes a job exiting a QNBE and routing somewhere else. Such
a behavior can manifest itself in two ways: either as a set of unconditioned alternative
behaviors, where each behavior has anexit action, or as a singleexit action.

These behavioral patterns represent the words that can be used to build sentences
representing QNBEs, as it will be illustrated in the next paragraph.

Combination Rules for Behavioral Patterns The last step to obtain the mapping
illustrated in Fig. 1 between ÆMILIA constructs and QNBEs is accomplished by in-



troducing rules to combine the previously identified behavioral patterns into QNBEs1.
When parsing an ÆMILIA description, the ÆMILIA to QN component of Fig. 1 looks
for such combinations of behavioral patterns in order to identify QNBEs within an
ÆMILIA description and to generate them.

Pattern Name Pattern Description QNBEs

return The return of a job can be described in two dif-
ferent ways: (i) two or more alternative processes,
each made of an unconditionedreturnaction; (ii) a
process represented by areturn action

Single Client Arrival Process

uncond-get(i,n) An unconditioned get process for thei-th class
of clients is made of an unconditionedget ac-
tion, and a behavioral call with actual parameters
pa1, pa2, ..., pan that satisfy the following con-
straints:paj = pj + 1 for j = i andpaj = pj

for j 6= i, wherepj is the current number of
clients ofj-th class

Infinite Capacity Buffer

Input
Behaviors

cond-get(i,n,Ni) A conditioned get process for thei-th class of
clients is made of: the conditionpi < Ni (where
Ni is the buffer capacity for thei-th class of
clients), agetaction, and a behavioral call with ac-
tual parameterspa1, pa2, ..., pan that satisfy the
following constraints:paj = pj + 1 for j = i

andpaj = pj for j 6= i, wherepj is the current
number of clients ofj-th class

Finite Capacity Buffer

select A selection behavior is made of one or more alter-
native processes, where each process starts with an
unconditionedselectaction

Buffered Service Process,
Buffered Fork Process,
Buffered Routing Process

arrive An arrival behavior is made of one or more alter-
native processes, where each process starts with an
unconditionedarrive action

Unbuffered Service Process,
Unbuffered Fork Process,
Unbuffered Routing Process

exit A job exit (and routing) can be described in two dif-
ferent ways: (i) two or more alternative processes,
each made of an unconditionedpre-exitaction fol-
lowed by anexit action; (ii) a process represented
by anexit action

(Buffered or Unbuffered)
Service Process, (Buffered
or Unbuffered) Join Process,
(Buffered or Unbuffered)
Routing Process, (Single
Client or Infinite) Arrival
Process

Output
Behaviors

put(i,n) A put process for thei-th class of clients is
made of: the conditionpi > 0, a put ac-
tion, and a behavioral call with actual parameters
pa1, pa2, ..., pan that satisfy the following con-
straints:paj = pj − 1 for j = i andpaj = pj

for j 6= i, wherepj is the current number of
clients ofj-th class

(Finite or Infinite Capacity)
Buffer

Internal
Behaviors

phase The behavior of a phase-type distribution is an arbi-
trary combination ofexp-phaseandpre-phaseac-
tions that determine a set of alternatives, where
each alternative terminates with a non-phase be-
havior

(Single Client or Infinite) Ar-
rival Process, (Buffered or
Unbuffered) Service Process

Table 3.ÆMILIA behavioral pattern classification

These rules are defined in Table 4. The order of QNBEs in the table is the same as
the one in Fig. 1. Each row in Table 4 represents a QNBE, where the second column
provides the combination rules for behavioral patterns that define the QNBE behav-
ior, whereas the third column represents additional assumptions that have to be verified

1 All behaviors occurring in ÆMILIA descriptions are assumed to be tail recursive.



before generating the QNBE itself. Note that where behavioral patterns have been num-
bered (e.g.,Infinite Arrival Process ), it means that a simple sequencing rule has to be
applied to those patterns. In some cases, such asBuffered Fork Process, rules have to
be applied to simple actions beside behavioral patterns.

For example, aSingle Client Arrival Process is defined as a sequence of three
behavioral patterns (i.e.,phase, exit, andreturn), with the additional conditions
that the process must only haveexit output interactions andreturn input interactions.
As another example, aJoin Processis defined as a sequence of ajoin action and an
exit behavioral pattern, with the additional conditions that the only input interaction
is thejoin action and the process must only haveexit output interactions.

QNBE Combination rules of behavioral patterns Additional assumptions

Infinite 1.phase a. output interactions must only beexit
Arrival 2.exit b. no input interactions
Process
Single Client 1.phase a. output interactions must only beexit
Arrival 2.exit b. input interactions must only bereturn
Process 3.return
Infinite · Parametersp1, p2, ..., pn have to be declared a. output interactions must only beput
Capacity · Parameters have to be initialized to non-negative numbers(with different names)
Buffer · 2n alternative processes have to be defined: b. input interactions must only beget

n uncond-get(i,n) patterns and (with different names)
n put(i,n) patterns

Finite · Parametersp1, p2, ..., pn have to be declared a. output interactions must only beput
Capacity · Parameters have to be initialized to non-negative numbers(with different names)
Buffer and have to be all declared as intervals of integers b. input interactions must only beget

· Each parameterpi has to fall within the[0, Ni] interval (with different names)
· 2n alternative processes have to be defined:
n cond-get(i,n) patterns and
n put(i,n) patterns

Buffered 1.select a. output interactions must only beexit
Service 2.phase b. input interactions must only beselect
Process 3.exit
Unbuffered 1.arrive a. output interactions must only beexit
Service 2.phase b. input interactions must only bearrive
Process 3.exit
Buffered 1. select a. the only output interaction is thefork
Fork action
Process 2. fork b. the only input interaction is theselect

action
Unbuffered 1. arrive a. the only output interaction is thefork
Fork action
Process 2. fork b. the only input interaction is thearrive

action
Buffered 1. join a. output interactions must only beexit
or Unbuffered 2.exit b. the only input interaction is thejoin action
Join Process
Buffered 1. select a. output interactions must only beexit
Routing 2.exit b. the only input interaction is theselect
Process action
Unbuffered 1. arrive a. output interactions must only beexit
Routing 2.exit b. the only input interaction is thearrive
Process action

Table 4.Combining behavioral patterns into QNBEs



Connectivity Rules for Queueing Network Basic ElementsFinally, we introduce
several connectivity rules that allow QNBEs to be assembledin semantically valid
queueing network models:

– An arrival process can be followed only by a service or fork process, possibly pre-
ceded by a buffer.

– A buffer can be followed only by a service, fork, join, or routing process.
– A service process can be followed by any QNBE.
– A fork process can be followed only by a service process or another fork process,

possibly preceded by a buffer.
– A join process can be followed by any QNBE.
– A routing process can be followed by any QNBE.

3 The Eclipse Plugin ÆMILIA to QN

In order to enable the application of PERFSEL, we have developed ÆMILIA to QN,
a Java-coded Eclipse plugin for transforming ÆMILIA descriptions into queueing net-
works. As shown in Sect. 2, the model transformations realized by ÆMILIA to QN rely
on two queue-driven classifications – one for actions and onefor behavioral patterns
built from actions and process algebraic operators that canoccur in ÆMILIA descrip-
tions, respectively – which hierarchically formalize mostof the syntactical restrictions
of [2, 1]. These two classifications are then complemented bya number of rules es-
tablishing which combinations of behavioral patterns result in QNBEs (combination
rules) and, in turn, how QNBEs should be connected to each other in order to yield
well-formed queueing networks (connectivity rules).

Given an ÆMILIA description, ÆMILIA to QN parses the behavioral part of the
ÆMILIA representation of each AEI to search for occurrences of the previously identi-
fied action classes and queue-like behavioral patterns. Whenever this search is success-
ful on all AEIs and the combination rules are respected, thenÆMILIA to QN trans-
forms each AEI into the corresponding QNBE. Afterwards, ÆMILIA to QN checks the
topological part of the ÆMILIA description for compliance with the previously estab-
lished connectivity rules of QNBEs. If this check succeeds too, ÆMILIA to QN trans-
forms the entire ÆMILIA description into a queueing network model.

The queueing network models produced by ÆMILIA to QN are stored in PMIF
format [13]. The reason is that this is an XML schema that actsas an interchange format
and hence makes it possible to pass those models as input to queueing network tools.

4 The Architecture of TWOEAGLES

ÆMILIA to QN can be launched from within TWOEAGLES. This is a new version of
TwoTowers [5] – a software tool for the functional verification, performance evalua-
tion, and security analysis of software architectures described with ÆMILIA – which is
entirely integrated in the Eclipse framework.

The software architecture of TWOEAGLES is depicted in Fig. 2, where the pro-
vided interfaces of components are represented by lollipops whereas required interfaces



Fig. 2.Composition and environment of TWOEAGLES

by dashed arrows. In the box labeled with TWOEAGLES, only the components that
strictly belong to the tool have been included, which are: ÆMILIA to QN, TT GUI,
and TwoTowers. The remaining components of Fig. 2 are eitherexternal tools (i.e.,
NuSMV and Eclipse) or in-house built components that support the TWOEAGLES task
but do not belong to the tool (i.e., QNEditor and QNSolver).

In order to embed TwoTowers in Eclipse, TWOEAGLES relies on a new graphical
user interface for TwoTowers – the TTGUI component in Fig. 2 – which has been de-
veloped as an Eclipse plugin. TTGUI tailors the Eclipse environment to offer all the
original TwoTowers functionalities to users, along with the model transformation intro-
duced in this paper. This wrapping of TwoTowers has allowed its implementation to be
kept basically unchanged – including the use of the externalmodel checker NuSMV [6]
– whereas its interfaces can be invoked, as they are, throughthe TT GUI component.

In addition to TTGUI, there are other three Eclipse plugins in Fig. 2. The firstone,
ÆMILIA to QN, has already been described in the previous section. Since it relies on
PMIF, it acts as a bridge between TwoTowers on one side and thenext two plugins on
the other side. The second one, QNEditor, allows PMIF-based queueing networks to
be imported and edited in Eclipse and supports their graphical visualization. The third
one, QNSolver, is the client side of a web service called Weasel [15], which can be
exploited to invoke several existing queueing network solvers.

A typical scenario for the architecture in Fig. 2 is the following. TWOEAGLES starts
and TTGUI, within Eclipse, is ready to accept user commands. For example, the user
opens the ÆMILIA editor, which is part of TwoTowers, and enters an ÆMILIA de-
scription. The user may then run any (functional, security,or performance) analysis
technique provided by the original TwoTowers release, including the NuSMV model
checker. In addition, due to the extension presented in thispaper, the user may decide
to invoke a model transformation that generates a queueing network from the ÆMILIA

description (i.e., the ÆMILIA to QN component in Fig. 2). The output queueing net-
work, which can also be modified with the QNEditor, is represented in PMIF and can
be rendered (i) in a textual XML format through the standard Eclipse XML editor or
(ii) in a graphical format through the QNEditor component shown in Fig. 2. The lat-
ter is able to import and export queueing networks in PMIF format and to graphically
represent them within Eclipse. Finally, the user can invokethe queueing network solver
(i.e., QN Solver in Fig. 2), which is a web service able to invoke different existing
solvers. The solution results are represented in the standard Eclipse text editor.



5 TWOEAGLES at Work: An Automated Teller Machine

In this section, we illustrate TWOEAGLES at work on an automated teller machine
(ATM), a system made of a certain number of distributed client terminals from where it
is possible to require services to a central server. Common types of service requests are:
withdrawal, deposit, and balance. Terminals only enable clients to perform I/O opera-
tions, whereas large part of computation is performed on thecentral server. The experi-
ments that we illustrate on this example are aimed at: (i) showing the tool usability, (ii)
validating the transformation from ÆMILIA descriptions to queueing network models
on the basis of numerical results, and (iii) showing the larger scalability of queueing
network solvers with respect to TwoTowers traditional performance evaluator.

Fig. 3.Eclipse user interface for TWOEAGLES

The application of ÆMILIA to QN (see Fig. 3) to the ÆMILIA description of the
ATM system (which is not shown here due to lack of space) results in a queueing net-
work formed by four QNBEs (corresponding to as many AEIs):ThinkDevice, which is
the workload generator for the whole network, together withCPU, DISKS, andVIDEO,
whose service times are0.5 ms,0.5 ms, and1 ms, respectively (these values are only
approximations of real scenarios, as we are more interestedin the validation of the
transformation and the analysis of pros and cons of our approach, rather than in the



numbers themselves). Jobs originated fromThinkDeviceare delivered toCPU. On the
basis of interaction rates,CPU decides whether sending jobs toDISKSand/orVIDEO.
Thereafter, jobs are sent back toThinkDevice. Being a closed queueing network, the
parameters that drive our performance analysis are: the numberN of client terminals
and the thinking timeZ of each client.

In Fig. 4, we have reported the throughput (on the left) and the utilization (on the
right) that we have obtained for the main ATM devices, which are CPU andDISKS,
while varying the number of clientsN in the system, with a fixed thinking time of
Z = 1 s. Four curves are shown because for each device we have represented both the
values obtained with the TwoTowers performance solver and the ones obtained with the
external queueing network solver after the ÆMILIA description has been transformed
into a queueing network. As can be seen, the two solvers obtain exactly the same nu-
merical results for both considered devices, and this supports the correctness of the
transformation of the ÆMILIA description into the queueing network model. However,
the TwoTowers solver, whose results are labeled as TwoTowers in the figure, is un-
able to solve models with more than 7 clients. This is due to the state space explosion
phenomenon encountered when the solver handles the continuous-time Markov chain
model. In contrast, the queueing network solver, whose results are labeled as PMVA
in the figure, is able to solve larger models in few seconds. This is due to the prod-
uct form [10] of the resulting queueing network model, whichallows polynomial-time
solution algorithms such as Mean Value Analysis (MVA) to be applied.
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Fig. 4.ATM throughput (left) and utilization (right)

6 Conclusions and Future Work

In this paper, we have presented a tool integrated into Eclipse that allows ÆMILIA -
based architectural descriptions to be transformed into queueing network models and
hence supports the PERFSEL methodology of [2, 1]. As shown by the ATM example, the
tool TWOEAGLES improves on TwoTowers because the possibility of exploiting queue-
ing network solvers makes the performance evaluation process faster and applicable to
larger software architectures with respect to continuous-time Markov chain solvers.



Many approaches have been introduced in the last decade to transform architectural
models into performance models [3], but very few of them havebeen implemented
in working tools and rely on structured models like queueingnetworks. Moreover,
most implementations are based on UML, whereas in TWOEAGLES we consider a fully
fledged, formally defined architectural description language as source notation.

With regard to future work, we intend to strengthen the transformation implemented
in TWOEAGLES by moving from a general-purpose programming language likeJava
to model transformation languages like ATL [9] and QVT [12].Moreover, we would
like to investigate whether results relating stochastic process algebras and queueing
networks [8, 7, 14] can be exploited in our architectural framework.

Acknowledgment: Work funded by MIUR-PRIN projectPaCo – Performability-Aware
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