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Abstract

The task of expert finding has been getting increasing attention in information
retrieval literature. However, the current state-of-the-art is still lacking in principled
approaches for combining different sources of evidence in an optimal way. This
paper explores the usage of learning to rank methods as a principled approach for
combining multiple estimators of expertise, derived from the textual contents, from
the graph-structure with the citation patterns for the community of experts, and
from profile information about the experts. Experiments made over a dataset of
academic publications, for the area of Computer Science, attest for the adequacy
of the proposed approaches.

1 Introduction

The automatic search for knowledgeable people in the scope of specific user communities,
with basis on documents describing people’s activities, is an information retrieval problem
that has been receiving increasing attention [17]. Usually referred to as expert finding,
the task involves taking a short user query as input, denoting a topic of expertise, and
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returning a list of people sorted by their level of expertise in what concerns the query
topic.

Several effective approaches for finding experts have been proposed, exploring different
retrieval models and different sources of evidence for estimating expertise. However, the
current state-of-the-art is still lacking in principled approaches for optimally combining
the multiple sources of evidence that can be used to estimate expertise. In traditional
information retrieval tasks such as ad-hoc retrieval, there has been an increasing interest
on the usage of machine learning methods for building retrieval formulas capable of
estimating relevance for query-document pairs [I3]. The general idea is to use hand-
labeled data (e.g., document collections containing relevance judgments for specific sets of
queries, or information regarding user-clicks aggregated over query logs) to train ranking
models, this way leveraging on data to combine the different estimators of relevance in
an optimal way. However, few previous works have specifically addressed the usage of
learning to rank approaches in the task of expert finding.

This paper explores the usage of learning to rank methods in the expert finding
task, specifically combining a large pool of estimators for expertise. These include es-
timators derived from the textual similarity between documents and queries, from the
graph-structure with the citation patterns for the community of experts, and from profile
information about the experts. We have built a prototype expert finding system using
learning to rank techniques, and evaluated it on an academic publication dataset from
the Computer Science domain.

The rest of this paper is organized as follows: Section 2 presents the main concepts and
related works. Section 3 presents the learning to rank approaches used in our experiments.
Section 4 introduces the multiple features upon which we leverage for estimating expertise.
Section 5 presents the experimental evaluation of the proposed methods, detailing the
dataset and the evaluation metrics, as well as the obtained results. Finally, Section 6
presents our conclusions and points directions for future work.

2 Concepts and Related Work

Serdyukov and Macdonald have surveyed the most important concepts and representa-
tive previous works in the expert finding task [I7, 15]. Two of the most popular and
well-performing types of methods are the profile-centric and the document-centric ap-
proaches [6l, 21]. Profile-centric approaches build an expert profile as a pseudo document,
by aggregating text segments relevant to the expert [I]. These profiles of experts are
latter indexed and used to support the search for experts on a topic. Document-centric
approaches are typically based on traditional document retrieval techniques, using the
documents directly. In a probabilistic approach to the problem, the first step is to esti-
mate the conditional probability p(q|d) of the query topic ¢ given a document d. Assuming
that the terms co-occurring with an expert can be used to describe him, p(g|d) can be
used to weight the co-occurrence evidence of experts with ¢ in documents. The condi-
tional probability p(c|q) of an expert candidate ¢ given a query ¢ can then be estimated
by aggregating all the evidences in all the documents where ¢ and ¢ co-occur. Experi-
mental results show that document-centric approaches usually outperform profile-centric
approaches [21].



Many different authors have proposed sophisticated probabilistic retrieval models,
specific to the expert finding task, with basis on the document-centric approach [I} [16,
17]. For instance Cao et al. proposed a two-stage language model combining document
relevance and co-occurrence between experts and query terms [4]. Fang and Zhai derived a
generative probabilistic model from the probabilistic ranking principle and extend it with
query expansion and non-uniform candidate priors [10]. Zhu et al. proposed a multiple
window based approach for integrating multiple levels of associations between experts
and query topics in expert finding [27]. More recently, Zhu et al. proposed a unified
language model integrating many document features for expert finding [22]. Although
the above models are capable of employing different types of associations among query
terms, documents and experts, they mostly ignore other important sources of evidence,
such as the importance of individual documents, or the co-citation patterns between
experts available from citation graphs. In this paper, we offer a principled approach for
combining a much larger set of expertise estimates.

In the Scientometrics community, the evaluation of the scientific output of a scientist
has also attracted significant interest due to the importance of obtaining unbiased and
fair criteria. Most of the existing methods are based on metrics such as the total number
of authored papers or the total number of citations. A comprehensive description of
many of these metrics can be found in [19, 20]. Simple and elegant indexes, such as the
Hirsch index, calculate how broad the research work of a scientist is, accounting for both
productivity and impact. Graph centrality metrics inspired on PageRank, calculated over
citation or co-authorship graphs, have also been extensively used [14]. In the context of
academic expert search systems, these metrics can easily be used as query-independent
estimators of expertise, in much the same way as PageRank is used in the case of Web
information retrieval systems.

For combining the multiple sources of expertise, we propose to leverage on previous
works concerning the subject of learning to rank for information retrieval (L2R4IR). Tie-
Yan Liu presented a good survey on the subject [13], categorizing the previously proposed
algorithms into three groups, according to their input representation and optimization
objectives:

e Pointwise approach - L2R4IR is seen as either a regression or a classification
problem. Given feature vectors of each single document from the data for the input
space, the relevance degree of each of those individual documents is predicted with
scoring functions which can sort all documents and produce the final ranked list.

e Pairwise approach - L2R4IR is seen as a binary classification problem for docu-
ment pairs, since the relevance degree can be regarded as a binary value which tells
which document ordering is better for a given pair of documents. Given feature
vectors of pairs of documents from the data for the input space, the relevance de-
gree of each of those documents can be predicted with scoring functions which try
to minimize the average number of misclassified document pairs. Several different
pairwise methods have been proposed, including SVMrank [12].

e Listwise approach - L2R4IR is addressed in a way that takes into account an
entire set of documents, associated with a query, as instances. These methods train
a ranking function through the minimization of a listwise loss function defined on



the predicted list and the ground truth list. Given feature vectors of a list of
documents of the data for the input space, the relevance degree of each of those
documents can be predicted with scoring functions which try to directly optimize
the value of a particular information retrieval evaluation metric, averaged over all
queries in the training data [I3]. Several different listwise methods have also been
proposed, including SVMmap [25].

In this paper, we made experiments with the application of representative learning to
rank algorithms from the pairwise and the listwise approaches, namely the SVMrank and
the SVMmap algorithms, in a task of expert finding within digital libraries of academic
publications.

3 Learning to Rank Experts

In this paper, we follow a general approach which is common to most supervised learning
to rank methods, consisting of two separate steps, namely training and testing. Figure
provides an illustration.
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Figure 1: The general procedure of learning to rank for expert search.

Given a set of queries @ = {qi, ..., ¢} and a collection of experts £ = {ei,...,eg},
each associated with specific documents describing the topics of expertise, a training cor-
pus for learning to rank is created as a set of query-expert pairs, each (g;,e;) € Q X E,
upon which a relevance judgment indicating the match between ¢; and e; is assigned by
a labeler. This relevance judgment can be a binary label, e.g., relevant or non-relevant,
or an ordinal rating indicating relevance, e.g., definitely relevant, possibly relevant, or
non-relevant. For each instance (¢;, €;), a feature extractor produces a vector of features
that describe the match between ¢; and e;. Features can range from classical IR esti-
mators computed from the documents associated with the experts (e.g., term frequency,
inverse document frequency, BM25, etc.) to link-based features computed from networks
encoding relations between the experts in E (e.g., PageRank). The inputs to the learn-
ing algorithm comprise training instances, their feature vectors, and the corresponding



relevance judgments. The output is a ranking function, f, where f(¢;,e;) is supposed to
either give the true relevance judgment for (¢, e;), or produce a ranking score for e; so
that when sorting experts according to these scores the more relevant ones appear on the
top of the ranked list.

During the training process, the learning algorithm attempts to learn a ranking func-
tion capable of sorting experts in a way that optimizes a particular bound on an infor-
mation retrieval performance measure (e.g., Mean Average Precision). In the test phase,
the learned ranking function is applied to determine the relevance between each expert
e; in I/ and a new query ¢. In this paper, we experimented with the following learning
to rank algorithms:

e SVMrank [12] : This pairwise method builds a ranking model in the form of a
linear scoring function, i.e. f(x) = w?x, through the formalism of Support Vector
Machines (SVMs). The idea is to minimize the following objective function over

a set of n training queries {¢;}_,, their associated pairs of experts (1:&”,:17&“) and
the corresponding relevance judgment yff)v over each pair of experts (i.e., pairwise
preferences resulting from a conversion from the ordered relevance judgments over

the query-expert pairs):

m1n—\|w||2—|—CZ Z £Z

=1 ) (1)
st w!(z® — 20y >=1 - 50% , if yl(fz} = 1,51(;)1) >=0,i=1,...,n

Differently from standard SVMs, the loss function in SVMrank is a hinge loss
defined over document pairs. The margin term %||w||2 controls the complexity of

the pairwise ranking model w. The method introduces slack variables, 51(2,, (i.e.,
a variable that is added to an optimization constraint to turn an inequality into
an equality where a linear combination of variables is less than or equal to a given
constant), which measure the degree of misclassification of the datum z;. The
coefficient C' affects the trade-off between model complexity and the proportion of
non-separable samples. If it is too large, we have a high penalty for non-separable
points and we may store many support vectors and overfit. If it is too small, we
may have underﬁttlng The objective function is increased by a function which
penalizes non-zero fuv, and the optimization becomes a trade off between a large
margin, and a small error penalty.

e SVMmap [25] : This listwise method builds a ranking model through the formalism
of structured Support Vector Machines [23], attempting to optimize the metric of
Average Precision (AP). Suppose x = {z;}7, is the set of all the experts associated

with a training query ¢, and yz(f)v represents the corresponding ground truth labels.
Any incorrect label for x is represented as y¢. The SVMmap approach can be
formalized as follows, where AP is used in the constraints of the structured SVM
optimization problem.
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In the constraints, ¥ is called the joint feature map, whose definition is:

Upa)= Y (e w)
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(3)

Since there are an exponential number of incorrect labels for the documents, it is
a big challenge to directly solve the optimization problem involving an exponential
number of constraints for each query. The formalism of structured SVMs efficiently
tackles this issue by maintaining a working set with those constraints with the
largest violation:

Violation = 1 — AP(y°) + w" W (y°, x) (4)

The survey by Tie-Yan Liu discusses the above methods in more detail [13].

4 Features for Estimating Expertise

The considered set of features for estimating the expertise of a researcher towards a given
query can be divided into three groups, namely textual features, profile features and graph
features. The textual features are similar to those used in standard text retrieval systems
and also in previous learning to rank experiments (e.g., TF-IDF and BM25 scores). The
profile similarity features correspond to importance estimates for the authors, derived
from their profile information (e.g., number of papers published). Finally, the graph
features correspond to importance and relevance estimates computed from the author
co-authorship and co-citation graphs.

4.1 Features Based on Textual Similarity

Similarly to previous expert finding proposals based on document-centric approaches,
we also use textual similarity between the query and the contents of the documents to
build estimates of expertise. In the domain of academic digital libraries, the associations
between documents and experts can easily be obtained from the authorship information
associated to the publications. For each topic-expert pair, we used the Okapi BM25
document-scoring function, to compute the textual similarity features. Okapi BM25 is
a state-of-the-art IR ranking mechanism composed of several simpler scoring functions
with different parameters and components (e.g., term frequency and inverse document fre-
quency). It can be computed through the formula shown in Equation , where T'erms(q)
represents the set of terms from query ¢, Freq(i, d) is the number of occurrences of term
i in document d, |d| is the number of terms in document d, and A is the average length
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of the documents in the collection. The values given to the parameters k; and b were 1.2
and 0.75 respectively. Most previous IR experiments use these default values for the k;
and b parameters.

BM25(q,d) = Y log(N FTGQ(H%)x

i€Terms(q) FTGq( ) +05 (5)
Freq(i,d)
(k1 +1) x =5
Eredld 4y x (1—b+bx 19

We also experimented with other textual features commonly used in ad-hoc IR systems,
such as Term Frequency and Inverse Document Frequency.

Term Frequency (TF) corresponds to the number of times that each individual term
in the query occurs in all the documents associated with the author. Equation [6] describes
the TF formula, where Terms(q) represents the set of terms from query ¢, Docs(a) is the
set of documents having a as author, F'req(i,d;) is the number of occurrences of term i
in document d; and |d;| represents the number of terms in document d;.

Z Z Fre‘(ii(jz'{ d;) ©)

j€Docs(a) i€Terms(q)

The Inverse Document Frequency (IDF) is the sum of the values for the inverse doc-
ument frequency of each query term and is given by Equation [7] In this formula, |D] is
the size of the document collection and f; p corresponds to the number of documents in
the collection where the iy, query term occurs.

D]
sz

Other features used were the number of unique authors associated with documents
containing the query topics, the range of years since the first and last publications of the
author containing the query terms, and the document length, in terms of the number of
words, for all the publications associated to the author.

In the computation of these textual features, we considered two different textual
streams from the documents, namely (i) a stream consisting of the titles, and (ii) a
stream using the abstracts of the articles.

IDF,= > log (7)

i€Terms(q)

4.2 Features Based on Profile Information

We also considered a set of profile features related to the amount of published materials
associated with authors, generally taking the assumption that highly prolific authors are
more likely to be considered experts. Most of the features based on profile information
are query independent, meaning that they have the same value for different queries. The
considered set of profile features are based on the temporal interval between the first and
the last publications, the average number of papers and articles per year, and the number
of publications in conferences and in journals with and without the query topics in their
contents.



4.3 Features Based on Graphs Co-citation and Co-authorship

Scientific impact metrics computed over scholarly networks, encoding co-citation and co-
authorship information, can offer effective approaches for estimating the importance of
the contributions of particular publications, publication venues, or individual authors.
Thus, we considered a set of features that estimate expertise with basis on co-citation
and co-authorship information. The features considered are divided in two sets, namely
(i) citation counts and (ii) academic indexes. In what regards citation counts, we used
the total, the average and the maximum number of citations of papers containing the
query topics, the average number of citations per year of the papers associated with an
author and the total number of unique collaborators which worked with an author. On
what regards academic impact indexes, we used the following features:

e Hirsch index of the author and of the author’s institution, measuring both the
scientific productivity and the apparent scientific impact [11]. An author/institution
has an Hirsch index of A if h of his IV, papers have at least h citations each, and the
other (N, — h) papers have at most h citations each. Authors with a high Hirsch
index, or authors associated with institutions with a high Hirsch index, are more
likely to be considered experts.

e The h-b-index, which extends the Hirsch index for evaluating the impact of scien-
tific topics in general [2]. In our case, the scientific topic is given by the query terms
and thus the query has an h-b-index of 7 if ¢ of the N, papers containing the query
terms in the title or abstract have at least ¢ citations each, and the other (N, — i)
papers have at most ¢ citations each.

e Contemporary Hirsch index of the author, which adds an age-related weighting
to each cited article, giving less weight to older articles [I§]. A researcher has a
contemporary Hirsch index h¢ if h¢ of his N, articles get a score of S°(i) >= h°
each, and the rest (IV, — h¢) articles get a score of S°(i) <= h¢. For an article i,
the score S¢(i) is defined as:

5¢(i) = v * (Year(now) — Year(i) + 1)7° x |CitationsTo(i)| (8)

The v and ¢ parameters are set to 4 and 1, respectively, meaning that the citations
for an article published during the current year account four times, the citations for
an article published 4 years ago account only one time, the citations for an article
published 6 years ago account 4/6 times, and so on.

e Trend Hirsch index [I8] for the author, which assigns to each citation an expo-
nentially decaying weight according to the age of the citation, this way estimating
the impact of a researcher’s work in a particular time instance. A researcher has a
trend Hirsch index h' if h' of his N, articles get a score of S*(i) >= h' each, and
the rest (N, — h') articles get a score of S*(i) <= h'. For an article 4, the score
St(i) is defined as:

SH(i) = v * Z (Year(now) — Year(z) +1)7° 9)
VzeC(i)

The v and 6 parameters are set to 4 and 1, respectively.



e Individual Hirsch index of the author, computed by dividing the value of the
standard Hirsch index by the average number of authors in the articles that con-
tribute to the Hirsch index of the author, in order to reduce the effects of frequent
co-authorship with influential authors [3].

e The a-index of the author/institution, measuring the magnitude of the most influ-
ential articles. For an author or institution with an Hirsch index of h that has a total
of N, citations toward his papers, we say that he has an a-index of a = N, 4,1 /h*.

e The g-index of the author/institution, also quantifying scientific productivity with
basis on the publication record [9]. Given a set of articles associated with the
author /institution, ranked in decreasing order of the number of citations that they
received, the g-index is the unique largest number g such that the top g articles
received on average at least g citations.

e The e-index of the author [26] which represents the excess amount of citations
of an author. The motivation behind this index is that we can complement the
h-index by taking into account these excess amounts of citations which are ignored
by the h-index. The e-index is given by the Equation where cit; are the citations
received by the j;h paper and h is the h-index.

e= Z \cit; — h? (10)

J=1

Besides the above features, and following the ideas of Chen et al. [5], we also considered
a set of graph features that estimate the influence of individual authors using PageRank,
a well-known graph linkage analysis algorithm that was introduced by the Google search
engine.

PageRank assigns a numerical weighting to each element of a linked set of objects
(e.g., hyperlinked Web documents or articles in a citation network) with the purpose
of measuring its relative importance within the set. The PageRank value of a node is
defined recursively and depends on the number and PageRank scores of all other nodes
that link to it (i.e., the incoming links). A node that is linked to by many nodes with
high PageRank receives a high rank itself.

Formally, given a graph with N nodes ¢ = 1,2,--- , N, with L directed links that
represent references from an initial node to a target node with weights a = 1,2,--- , L,
the PageRank Pr; for the ith node is defined by:

0.5 a; Pr;
Pri==-=405 — 2 11
Y * Z outlinks(L, j) (11)

j€inlinks(L,i)

In the formula, the sum is over the neighboring nodes j in which a link points to node

1. The first term represents the random jump in the graph, giving a uniform injection

of probability into all nodes in the graph. The second term describes the propagation of

probability corresponding to a random walk, in which a value at node j propagates to
node i with probability M%TTJL;)

The features that we considered correspond to the sum and average of the PageRank

values associated to the papers of the author that contain the query terms, computed



Property Value

Total Authors 1 033 050
Total Publications 1632 440
Total Publications containing Abstract 653 514
Total Papers Published in Conferences 606 953
Total Papers Published in Journals 436 065
Total Number of Citations Links 2 327 450

Table 1: Statistical characterization of the DBLP dataset used in our experiments

over a directed graph representing citations between papers. Each citation link in the
graph is given a score of 1/N, where N represents the number of authors in the paper.
Authors with high PageRank scores are more likely to be considered experts.

5 Experimental Validation

The main hypothesis behind this work is that learning to rank approaches can be effec-
tively used in the context of expert search tasks, in order to combine different estimators
of relevance in a principled way, this way improving over the current state-of-the art. To
validate this hypothesis, we have built a prototype expert search system, reusing existing
implementations of state-of-the-art learning to rank algorithms, namely the SVMranA{|
implementation by Thorsten Joachims [12] and the SVMmayﬂ implementation by Yue
et al [25].

We implemented the methods responsible for computing the features listed in the
previous section, using Microsoft SQL Server 2008 (e.g., the full-text search capabilities
for computing the textual similarity features) and several existing Java software packages
(e.g., the LAWE] package for computing PageRank).

The validation of the prototype required a sufficiently large repository of textual
contents describing the expertise of individuals within a specific area. In this work, we
used a dataset for evaluating expert search in the Computer Science research domain,
corresponding to an enriched version of the DBLPY] database made available through the
Arnetminer project.

DBLP data has been used in several previous experiments regarding citation analy-
sis [19, 20] and expert search [§]. It is a large dataset covering both journal and conference
publications for the computer science domain, and where substantial effort has been put
into the problem of author identity resolution, i.e., references to the same persons pos-
sibly with different names. Table [1| provides a statistical characterization of the DBLP
dataset.

To train and validate the different learning to rank methods, we also needed a set of
queries with the corresponding author relevance judgments. For the Computer Science
domain, we used the relevant judgments provided by Arnetminer’| which have already

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
Zhttp://projects.yisongyue.com/svmmap/
3http://law.dsi.unimi.it/software.php
“http://www.arnetminer.org/citation
Shttp://arnetminer.org/lab-datasets/expertfinding/
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been used in other expert finding experiments [24].

The Arnetminer dataset comprises a set of 13 query topics from the Computer Science
domain, each associated to a list of expert authors. In order to add negative relevance
judgments (i.e., complement the dataset with unimportant authors for each of the query
topics), we searched the dataset with the keywords associated to each topic, retrieving
the top n/2 authors according to the BM25 metric and retrieving n/2 authors randomly
selected from the dataset, where n corresponds to the number of expert authors associated
to each particular topic. This way, we obtained twice the relevant judgments provided by
Arnetminer, ending up with 2794 records for all 13 queries. Table [2]shows the distribution
for the number of experts associated to each topic, as provided by Arnetminer.

Query Topics Rel. Authors Query Topics Rel. Authors
Boosting (B) 46 Natural Language (NL) 41
Computer Vision (CV) 176 Neural Networks (NN) 103
Cryptography (C) 148 Ontology (O) 47

Data Mining (DM) 318 Planning (P) 23
Information Extraction (IE) 20 Semantic Web (SW) 326
Intelligent Agents (IA) 30 Support Vector Machines (SVM) 85
Machine Learning (ML) 34

Table 2: Characterization of the Arnetminer dataset of Computer Science experts.

The test collection was used in a leave-one-out cross-validation methodology, in which
different experiments used 9 different queries to train a ranking model, which was then
evaluated over the remaining queries. The averaged results from the four different cross-
validation experiments are finally used as the evaluation result. To measure the quality
of the results produced by the different learning to rank algorithms, we used two different
performance metrics, namely the Precision@k (P@k) and the Mean Average Precision
(MAP).

Precision at rank k is used when a user wishes only to look at the first k retrieved
domain experts. The precision is calculated at that rank position through Equation [12]

pag = "% (12)
k
In the formula, (k) is the number of relevant authors retrieved in the top k positions.
P@QFk only considers the top-ranking experts as relevant and computes the fraction of such
experts in the top-k elements of the ranked list.
The Mean of the Average Precision over test queries is defined as the mean over the

precision scores for all retrieved relevant experts. For each query r, the Average Precision
(AP) is given by:

_ i, POk{r] x I{g,, = max(g)}

2 k=1 1{gr, = max(g)}

As before, n is the number of experts associated with query ¢ and g, is the relevance
grade for author k in relation to the query r. In the case of our datasets, max(g) = 1
(i.e., we have 2 different grades for relevance, 0 or 1).

Table |3| presents the obtained results over the DBLP dataset. The obtained results
attest for the adequacy of both learning to rank approaches, showing that SVMrank and

AP[r] (13)
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SVMmap achieve a similar performance, with SVMrank slightly outperforming SVMmap
in our experiments in terms of MAP.

P@5 P@10 pPalbs P@20 MAP
SVMrank 0.9333 0.9104 0.8848 0.8698 0.8150
SVMmap 0.9458 0.8979 0.8778 0.8721 0.8131

Table 3: Results of the SVMmap and SVMrank methods.

In a separate experiment, we attempted to measure the impact of the different types of
ranking features on the quality of the results. Using the best performing learning to rank
algorithm, SVMrank, we separately measured the results obtained by ranking models
that considered (i) only the textual similarity features, (ii) only the profile features, (iii)
only the graph features, (iv) only a representative graph feature, namely the h-b-index,
(v) textual similarity and profile features, (vi) textual similarity and graph features and
(vii) profile and graph features. Table {4] shows the obtained results, also presenting the
previous results reported by Yang et al. [24] over the same dataset, as well as the results
obtained by the h-b-index bibliographic index.

p@5s P@10 pP@15 P@20 MAP
Text Similarity + Profile + Graph 0.9333 0.9104 0.8848 0.8698 0.8150
Text Similarity + Profile 0.6917 0.6583 0.6861 0.6552 0.6601
Text Similarity + Graph 0.9250 0.8934 0.8167 0.7896 0.7677
Profile + Graph 0.8667 0.8250 0.8273 0.8125 0.7943
Text Similarity 0.7042 0.6646 0.6597 0.6511 0.6569
Profile 0.7500 0.7646 0.7389 0.7313 0.7464
Graph 0.8750 0.8438 0.8181 0.8021 0.7846
h-b-Index 0.7385 0.7077 0.6821 0.6700 0.6053
Expert Finding (Yang et al.) [24] 0.5500 0.6000 0.6333 - 0.6356

Table 4: The results obtained with different sets of features and comparison with other
approaches.

As we can see, the set with the combination of all features has the best results. The
results also show that, individually, textual similarity features have the poorest results.
This means that considering only textual evidence provided by query topics, together with
article’s titles and abstracts, may not be enough to determine if some authors are experts
or not, and that indeed the information provided by citation and co-authorship patterns
can help in expert retrieval. Finally, the results show that the different combinations of
all features proposed in this paper outperform the previously proposed learning to rank
approach for expert finding made by Yang et al. [24]

Figure [2| plots the obtained average precision in each of the individual query topics
for the best performing approach, namely SVMrank with the combination of all features.
The figure presents the query topics in the same order as they are given in Table [2|
The horizontal dashed line corresponds to the MAP obtained in the same experiment.
The results show that there are only slightly variations in performance for the different
queries.

Finally, Table [5| shows the top five people which were returned by the system for
four different queries, corresponding to the best and worst results in terms of the P@5
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Figure 2: Average precision over the different query topics.

metric. The system performed well for the queries Neural Networks, Machine Learning
and Support Vector Machines (SVMs). Although these are very related topics, the system
managed to distinguish between them and still identify the relevant experts in these areas
correctly. However, worse results were returned for the query Boosting. These poor
results can be explained by the absence of the query topics in the titles and abstracts of
the publications of authors working in the area. We realized that the authors which were
judged as relevant, and therefore considered experts, did not have too many query topics
present in their publication’s titles or abstracts, leading to misclassifications.

Best Results Worst Results
Neural Networks Machine Learning SVMs Boosting
Geoffrey E. Hinton Robert E. Schapire Thorsten Joachims J. Ross Quinlan
Erkki Oja Vladimir Vapnik Robert E. Schapire B. Han
Yann LeCun Thomas G. Dietterich Vladimir Vapnik W. Shireen
Thomas G. Dietterich Michael I. Jordan Christopher J. C. Burges L. Carlos de Freitas
Michael 1. Jordan Manfred K. Warmuth Tomaso Poggio Robert E. Schapire

Table 5: Top five people returned by the system for four different queries.

6 Conclusions

This paper explored the usage of learning to rank methods in the context of expert
searching within digital libraries of academic publications. We argue that learning to
rank provides a sound approach for combining multiple estimators of expertise, derived
from the textual contents, from the graph-structure of the community of experts, and
from expert profile information. Experiments on datasets of academic publications show
very good results in terms of P@5 and MAP, attesting for the adequacy of the proposed
approaches.

Despite the interesting results, there are also many ideas for future work. Recent
advancements in the area of learning to rank for information retrieval are, for instance,
concerned with query-dependent ranking (i.e., using different ranking models according
to the type of queries being issued) and it would be interesting to test these techniques
in expert searching tasks.

Our approach to the expert finding problem can also be generalized to any type of
entity search. The introduction of Entity Ranking Track in INEX 2007, with basis on a
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Wikipedia dataset, provides a good platform for general entity search evaluation [7]. For
future work, it would be interesting to experiment with learning to rank methods, similar
to the ones proposed in this paper, over the more general entity search problem.
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