Skip to main content

Group-Valued Regularization Framework for Motion Segmentation of Dynamic Non-rigid Shapes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

Understanding of articulated shape motion plays an important role in many applications in the mechanical engineering, movie industry, graphics, and vision communities. In this paper, we study motion-based segmentation of articulated 3D shapes into rigid parts. We pose the problem as finding a group-valued map between the shapes describing the motion, forcing it to favor piecewise rigid motions. Our computation follows the spirit of the Ambrosio-Tortorelli scheme for Mumford-Shah segmentation, with a diffusion component suited for the group nature of the motion model. Experimental results demonstrate the effectiveness of the proposed method in non-rigid motion segmentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, E.J., Bregler, C., Andriacchi, T.P.: Non-rigid modeling of body segments for improved skeletal motion estimation. Computational Modeling Engineering Science 4, 351–364 (2003)

    MATH  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Comm. on Pure and Appl. Math. 43(8), 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. Int. J. of Comp. Vision 68(2), 111–124 (2006)

    Article  Google Scholar 

  4. Andersen, M.S., Benoit, D.L., Damsgaarda, M., Ramsey, D.K., Rasmussen, J.: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis an in vivo study of knee kinematics. Journal of Biomechanics 43, 268–273 (2010)

    Article  Google Scholar 

  5. Anguelov, D., Koller, D., Pang, H.-C., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3d range data. In: Proc. Conf. on Uncertainty in Artificial Intelligence, pp. 18–26. AUAI Press, Arlington (2004)

    Google Scholar 

  6. Arcila, R., Buddha, S.K., Hétroy, F., Denis, F., Dupont, F.: A framework for motion-based mesh sequence segmentation. In: Int. Conf. on Comp. Graphics, Visual. and Comp. Vision, Plzen̆, Czech Republic (2010)

    Google Scholar 

  7. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation - a comparative study. In: Proc. IEEE Int. Conf. on Shape Modeling and Applications, pp. 7–18. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  8. Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. Trans. PAMI 14(2), 239–256 (1992)

    Article  Google Scholar 

  9. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. National Academy of Science (PNAS) 103(5), 1168–1172 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer-Verlag New York Inc. (2008)

    Google Scholar 

  11. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. of Comp. Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

  12. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graphics 28(3) (August 2009)

    Google Scholar 

  13. Cremers, D., Soatto, S.: Motion competition: A variational framework for piecewise parametric motion segmentation. Int. J. of Comp. Vision 62(3), 249–265 (2005)

    Article  Google Scholar 

  14. Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. SIGGRAPH, pp. 317–324 (1999)

    Google Scholar 

  15. DoCarmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Google Scholar 

  16. Duits, R., Burgeth, B.: Scale spaces on lie groups. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 300–312. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gur, Y., Sochen, N.A.: Regularizing flows over lie groups. J. of Math. in Imag. and Vis. 33(2), 195–208 (2009)

    Article  MathSciNet  Google Scholar 

  19. Hall, B.C.: Lie Groups, Lie Algebras,and Representations, An Elementary Introduction. Springer, Heidelberg (2004)

    Google Scholar 

  20. Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like spatial priors for articulated tracking. In: Proc. CVPR, pp. 425–437. Springer, Heidelberg (2010)

    Google Scholar 

  21. Hochbaum, D., Shmoys, D.: A best possible approximation for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Iserles, A., Munthe-kaas, H.Z., Nrsett, S.P., Zanna, A.: Lie group methods. Acta Numerica, 215–365 (2000)

    Google Scholar 

  23. Jain, V., Zhang, H.: Robust 3D shape correspondence in the spectral domain. In: Proc. of Shape Modeling International, pp. 118–129 (2006)

    Google Scholar 

  24. James, D.L., Twigg, C.D.: Skinning mesh animations. In: Proc. SIGGRAPH, vol. 24(3), pp. 399–407 (2005)

    Google Scholar 

  25. Eells Jr., J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. American J. of Math. 86(1), 106–160 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D Mesh Segmentation and Labeling. ACM Trans. Graphics 29(3) (2010)

    Google Scholar 

  27. Kobilarov, M., Crane, K., Desbrun, M.: Lie group integrators for animation and control of vehicles. ACM Trans. Graphics 28(2), 1–14 (2009)

    Article  Google Scholar 

  28. Kompatsiaris, I., Tzovaras, D., Strintzis, M.G.: Object articulation based on local 3D motion estimation. In: Leopold, H., García, N. (eds.) ECMAST 1999. LNCS, vol. 1629, pp. 378–391. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  29. Lee, T.-Y., Wang, Y.-S., Chen, T.-G.: Segmenting a deforming mesh into near-rigid components. Vis. Comput. 22(9), 729–739 (2006)

    Article  Google Scholar 

  30. Litke, N., Droske, M., Rumpf, M., Schröder, P.: An image processing approach to surface matching. In: Proc. SGP, pp. 207–216. Eurographics Association, Aire-la-Ville (2005)

    Google Scholar 

  31. Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: Proc. CVPR, pp. 1–8 (2008)

    Google Scholar 

  32. Müller, A., Terze, Z.: Differential-geometric modelling and dynamic simulation of multibody systems. Strojarstvo: Journal for Theory and Application in Mechanical Engineering 51(6), 597–612 (2009)

    Google Scholar 

  33. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  34. Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical shape matching. In: Bruckstein, A.M., et al. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 604–615. Springer, Heidelberg (accepted, 2011)

    Google Scholar 

  35. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D Letters 60, 259–268 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ruggeri, M.R., Patanè, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. Int. J. of Comp. Vision 89(2-3), 248–265 (2010)

    Article  Google Scholar 

  37. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation. In: Proc. CVPR, pp. 406–420. Springer, Heidelberg (2010)

    Google Scholar 

  38. Shamir, A.: A survey on mesh segmentation techniques. Computer Graphics Forum 27(6), 1539–1556 (2008)

    Article  MATH  Google Scholar 

  39. Subbarao, R., Meer, P.: Nonlinear mean shift over riemannian manifolds. Int. J. of Comp. Vision 84(1), 1–20 (2009)

    Article  Google Scholar 

  40. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: Proc. SIGGRAPH, pp. 399–405. ACM, New York (2004)

    Google Scholar 

  41. Tierny, J., Vandeborre, J.-P., Daoudi, M.: Fast and precise kinematic skeleton extraction of 3D dynamic meshes. In: Proc. Int. Conf. Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  42. Tuzel, O., Porikli, F., Meer, P.: Learning on lie groups for invariant detection and tracking. In: Proc. CVPR, pp. 1–8 (2008)

    Google Scholar 

  43. Wuhrer, S., Brunton, A.: Segmenting animated objects into near-rigid components. The Visual Computer 26, 147–155 (2010)

    Article  Google Scholar 

  44. Yamasaki, T., Aizawa, K.: Motion segmentation for time-varying mesh sequences based on spherical registration. EURASIP Journal on Applied Signal Processing (2009)

    Google Scholar 

  45. Yanenko, N.N.: The method of fractional steps: solution of problems of mathematical physics in several variables. Springer, Heidelberg (1971) (translated from Russian)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosman, G., Bronstein, M.M., Bronstein, A.M., Wolf, A., Kimmel, R. (2012). Group-Valued Regularization Framework for Motion Segmentation of Dynamic Non-rigid Shapes. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics