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Abstract. The discovery of surprising relations in large, heterogeneous 
information repositories is gaining increasing importance in real world 
data analysis. If these repositories come from diverse origins, forming dif­
ferent domains, domain bridging associations between otherwise weakly 
connected domains can provide insights into the data that can other­
wise not be accomplished. In this paper, we propose a first formalization 
for the detection of such potentially interesting, domain-crossing rela­
tions based purely on structural properties of a relational knowledge 
description. 

1 Motivation 

Classical data mining approaches propose two major alternatives to make sense 
of knowledge representing data collections. One is to formulate specific, semantic 
queries on the given data. However, this is not always useful since users often do 
not know ahead of time what exactly they are searching for. Alternatively, Ex­
plorative (or Visual) Data Mining attempts to overcome this problem by creating 
a more abstract overview of the entire data together with subsequent drill-down 
operations. Thereby it additionally enables the search for interesting patterns on 
a structural level, detached from the represented semantical information. How­
ever, such overviews still leave the entire search for interesting patterns to the 
user and therefore often fail to actually point to interesting and truly · novel 
details. 

In this paper we propose an approach to explore integrated data by finding 
unexpected and potentially interesting connections that hopefully trigger the 
user's interest, ultimately supporting creativity and outside-the-box thinking. 
The approach we propose attempts to find such unexpected relations between 
seemingly unrelated domains. As pointed out by Henri Poincare [11]: "Among 
chosen combinations the most fertile will often be those formed of elements 
drawn from domains which are far apart .. . Most combinations so formed would 
be entirely sterile; but certain among them, very rare , are the most fruitful of 
all. " Consequently, instead of only fusing different domains and sources to gain 
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a large knowledge base, we try to identify (possibly hidden) domains and search 
for rare instead of frequent patterns, i.e. exclusive, domain crossing connections. 

In this paper we assume a knowledge representation fulfilling very few con­
ditions and address two subproblems: the identification of domains and the as­
sessment of the potential interestingness of connections between these domains. 

2 Networks, Domains and Bisociations 

In this section, we transfer the theoretical concept of domain crossing associa­
tions which are called bisociations [8] (to emphasize the difference to associations 
within a single domain) to a setting where a relational description of knowledge 
is given. We will explain the model that incorporates our knowledge base, nar­
row down the basic theoretical concepts underlying domains and bisociations 
and identify corresponding measures of interestingness. 

2.1 Knowledge Modeling 

As a preliminary, we assume that the available knowledge is integrated into a 
unifying data model. We model this as an undirected, unweighted graph struc­
ture with nodes representing units of information and edges representing their 
relations. Examples for information units are terms, documents, genes or experi­
ments. Relations could arise from references, co-occurrences or explicitly encoded 
expert knowledge. A graph is described as G = (V, E) with node set V, edge 
set E ~ (~) and n = IVI the number of nodes. The degree of a node, i.e. the 
number of incident edges, is denoted as d( v) and we access the structure of G 
via its adjacency matrix A, with (A)uv = 1 if {u, v} E E and 0 otherwise. 

An important aspect of the model is the semantic of the employed links. We 
consider two different types of links, which either express similarity or another 
semantic relation. Consider for example a knowledge network with scientific 
articles as information units. Links in a derived network could either encode 
similarities between articles or the fact that one article references another. 

2.2 Domains 

In this context, a domain is a set of information units from the same field or 
area of knowledge. Domains exist with different granularity and thus can be 
(partially) ordered in a hierarchical way from specific to general. An example is 
provided by the domains of quantum physics, physics in general, and science. 
Consequently, the granularity of a domain depends on a specific point of view, 
which can be a very local one. 

Due to their hierarchical nature, information units can belong to several do­
mains which are not necessarily related. E.g. the eagle belongs to the animal 
domain and in addition to the unrelated coat of arms domain. 

Intuitively, a set of highly interconnected nodes indicates an intense interre­
lation that should be interpreted as a common domain. While this is a sound 



308 

assumption when connections express similarities between the involved concepts, 
it is not true when links express other semantic relations. Consider for exa m­
ple scientific articles approaching a common problem. The similarity of these 
articles is not necessarily reflected by mutual references, especially if they were 
written at the same time. However, they will very likely share a number of refer­
ences. Consequently, we derive domains from common neighborhoods instead of 
relying on direct connections between information units. This allows domains to 
be identified when the connections express either references or similarities since 
densely connected nodes also have similar neighborhoods. 

Domain Recovery. Two information units that share all (or - more realistically -
almost all) their connections to other information units should therefore belong 
to a common domain. Since they are in this respect indistinguishable and their 
relations form the sole basis for our reasoning about them, all possibly iden­
tifiable domains have to contain either both or none of them. We will show a 
node similarity that expresses this property and relaxes the conditions. Recursive 
merging of nodes based on this similarity leads to a merge tree as produced by 
hierarchical clustering. Consequently, we consider the inner nodes of this merge 
tree as candidates for domains. Note that this clustering process is distinguished 
from classical graph clustering by the employed node similarity. 

The resulting domains form a hierarchy on the information units which is 
similar to an ontology. I.e. considering two arbitrary domains, either one domain 
is completely contained in the other, or they are disjoint. Apparently, a number 
of domains could remain unidentified since the set of domains is not restricted 
to hierarchies but could also contain partially overlapping domains. We consider 
this as an unavoidable approximation for now, posing the extraction of domains 
as a separate problem. 

2.3 Bisociations 

A connection - usually indirect - between information units from multiple, oth­
erwise unrelated domains is called bisociation in contrast to associations that 
connect information units within the same domain. The term was introduced by 
Koestler [7] in a theory to describe the creative act in humor, science and art. 
An example of a creative discovery triggered by a bisociation is the theory of 
electromagnetism by Maxwell [9] that connects electricity and magnetism. 

Up to now, three different patterns of bisociation have been described in this 
context: bridging concepts, bridging graphs and structural similarity [8]. Here we 
focus on the discovery of bridging graphs, i.e. a collection of information units 
and connections providing a "bisociative" relation between diverse domains. 

Among the arbitrary bisociations one might find, not all are going to be in­
teresting. To assess their interestingness, we follow Boden [2] defining a creative 
idea in general as new, surprising, and valuable. All three criteria depend on a 
specific reference point: A connection between two domains might be long known 
to some specialists but new, surprising, and hopefully valuable to a specific ob­
server, who is not as familiar with the topic. To account for this, Boden [2] 
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defines two types of creativity namely H-creativity and P-creativity. While H­
creativity describes globally (historical) new ideas, P-creativity (psychological) 
limits the demand of novelty to a specific observer. Our findings are most likely 
to be P-creative since the found connections have to be indicated by the ana­
lyzed data in advance. However a novel combination of information sources could 
even lead to H-creative bisociations. Analog to novelty, the value of identified 
bisociations is a semantically determined property and strongly depends on the 
viewers' perspective. Since both novelty and value cannot be judged automati­
cally, we leave their evaluation to the observer. In contrast, the potential surprise 
of a bisociation can be interpreted as the unlikeliness of a connection between 
the corresponding domains. We will express this intuition in more formal terms 
and use it as a guideline for an initial evaluation of possible bisociations. 

Identifying Bisociations. Based on these considerations, we now characterize the 
cases where a connection between two domains forms a bisociation. In the graph 
representation, two domains are connected either directly by edges between their 
nodes or more generally by nodes that are connected to both domains - the 
bridging nodes. These connecting nodes or edges bridge the two domains and 
together with the connected domains they form a bisociation candidate: 

Definition 1 (Bisociation Candidate). A bisociation candidate is a set of 
two domains and their connection within the network. 

Since it is impossible to precisely define what a surprising bisociation is, we 
rather define properties that distinguish promising bisociation candidates: ex­
clusiveness, size, and balance. These can be seen as technical demands derived 
from a more information-scientific view as e.g. expressed in [5]: In Fqrd's view, 
the creativity of a connection between two domains is related to (i) the dissim­
ilarity of the connected domains and (ii) the level of abstraction on which the 
connection is established. In the following we try to transport these notions into 
graph theoretic terms by capturing them in technical definitions. Therein we 
interpret the dissimilarity of two domains as their mutual reachability by edges 
restricted to short connections: either direct by edges linking nodes of the differ­
ent domains or indirect by nodes connected to both domains. Thus dissimilarity 
relates to the exclusiveness of the bisociation candidate: maximal dissimilarity 
is obviously rendered by two completely unconnected domains, closely followed 
by "minimally connected" domains. While the former case obviously does not 
yield a bridging graph based bisociation (i.e. the connection itself is missing) the 
latter is captured by exclusiveness. 

Exclusiveness states that a bisociation is a rare connection between the two 
domains, rendering the fact that bisociations are surprising connections between 
dissimilar domains. At the same time it excludes local exclusivity caused by 
nodes of high degree which connect almost everything, even unrelated domains, 
without providing meaningful connections. 

Definition 2 (Exclusiveness). A bisociation candidate is exclusive ~ff its do­
mains are bridged by a graph that is small in relation to the domains and which 
provides only few connections that are focused on the two domains. 
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This can additionally be related to connection probabilities: consider the prob­
ability that two nodes from diverse domains are related by a direct link or an 
intermediate node. If only a few of these relations exist between the domains, the 
probability that such a pair of randomly chosen information units is connected 
is low and thus the surprise or unlikeliness is high. 

Directly entangled with this argument is the demand for size: a connection 
consisting of only a few nodes and links becomes less probable with growing 
domain sizes. In addition, a relation between two very small domains is hard 
to judge. It could be an expression of their close relation being exclusive only 
due to the small size of the connected domains. In that case the larger domains 
containing these two would show even more relations. It could also be an exclu­
sive link due to domain dissimilarity. However, this situation would in turn be 
revealed when considering the larger domains, since these would also be exclu­
sively connected. In essence, the exclusiveness of such a connection is pointless if 
the connected domains are very small, while it is amplified by domains of larger 
size. We formalize this in the following definition: 

Definition 3 (Size). The size of a bisociation candidate is the number of nodes 
in the connected domains. 

In terms of [5] the demand for size relates to the level of abstraction. Obviously a 
domain is more abstract than its sub domains and thus an exclusive link between 
larger (i.e. more abstract) domains is a more promising bisociation than a link 
between smaller domains. 

Finally, the balance property assures that we avoid the situation of a very 
small domain attached to a large one: ' 

Definition 4 (Balance). A bisociation candidate is balanced iff the connected 
domains are of similar size . 

In addition, domains of similar size tend to be of similar granularity and are 
thus likely to be on comparable levels of abstraction. Thereby the demand for 
balance avoids exclusive links to small subdomains that are actually part of a 
broader connection between larger ones. 

Summarizing, a bisociation candidate is promising if it is exclusive, of reason­
able size, and balanced. 

3 Finding and Assessing Bisociations 

In this section, we translate the demands described in Section 2 into an algorithm 
for the extraction and rating of bisociations. Therein we follow the previously 
indicated division of tasks: (i) domain extraction and (ii) scoring of bisociation 
candidates. 

3.1 Domain Extraction 

As described in Section 2, domain affiliation of nodes is reflected by similar direct 
and indirect neighborhoods in the graph. Thus comparing and grouping nodes 
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based on their neighborhoods yields domains. In the following, we establish the 
close relation of a node similarity measure called activation similarity [12] to the 
above described demands. Based on this similarity, we show in a second part 
how domains can be found using hierarchical clustering. 

Activation similarity. The employed node similarity is based on spreading ac­
tivation processes in which initially one node is activated. The activation spreads 
iteratively from the activated node, along incident edges, to adjacent nodes and 
activates them to a certain degree as well. Given that the graph is connected and 
not bipartite, the process converges after sufficient iterations. The final acti va­
tion states are determined by the principal eigenvector of the adjacency matrix 
of the underlying graph as shown in [1]. Activation states of all nodes at a 
certain time k are represented by the activation vector a Ck) E IRn defined by 

a Ck) = AkaCO) / IIAkaCO) 11 2' where the value a1k
) (aCk) at index v) is the activa­

tion level of node v E V. Then a1k
) (u) represents the activation of node vat time 

k, induced by a spreading activation process started at node u, i.e. with a~O) = 1 

and a1°) = 0 for v =1= u. This reflects the relative (due to normalization) reacha­
bility of node v from node u via walks of length k. More precisely, it represents 
the weighted fraction of weighted walks of length k from u to v among all walks 
of length k started at u. In order to consider more than just walks of a certain 
length, the activation vectors are normalized and accumulated with an addi­
tional decay a E [0,1) to decrease the impact of longer walks. The accumulated 

activation vector of node u is then defined by a*(u) = D-t (~~:lx akaCk)(u)) , 

with D = diag(d(vI), .. . , d(vn )) being the degree matrix and kmax the number 
of spreading iterations. The degree normalization is useful to account for nodes 
of a very high degree. These are more likely to be reached and would thus dis­
tort similarities if not taken care of. The value a~ (u) represents the (normalized) 
sum of weighted walks of different lengths 1 ~ k ~ kmax from u to v propor­
tional to all weighted walks of different length starting at u and thus the relative 
reachability from u to v. 

In essence, the vector a*(v) describes the reachability of other nodes from 
v and thereby its generalized neighborhood. On this basis, we use the activa­
tion similarity O"act(u, v) = cos(a*(u), a*(v)) of nodes u and v to compare their 
neighborhoods. In case of identical neighborhoods, activation spreads identically, 
resulting in a similarity of 1. If the same nodes can be reached similarly from 
u and v the similarity between them is high, which corresponds with our as­
sumption about the properties of domains. For usual reasons, we will use the 
corresponding distance 1 - 0" act (u, v) for hierarchical clustering. 

Domain identification. We employ hierarchical clustering for domain identi­
fication using Ward's linkage method [13], which minimizes the sum of squared 
distances within a cluster. This tends to produce compact clusters and to merge 
clusters of similar size and thus corresponds well with the notion of a domain. 
First of all , we would expect a certain amount of similarity for arbitrary infor­
mation units within a domain and thus a compact shape. Further, clusters of 
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similar size are likely to represent domains on the same level of granularity and 
thus merging those corresponds to building upper-level domains. The resulting 
merge tree is defined as follows: 

Definition 5 (Merge tree). A merge tree T = (VT' ET) for a graph G = 

(V, E) is a tree produced by a hierarchical clustering with node set VT = V U A 
where A is the set of clusters obtained by merging two nodes, a node and a cluster 
or two clusters. ET describes the merging structure: {UA, VA} ~ ET iff the nodes 
or clusters U and V are merged into cluster A EA. 

However, not all clusters in the hierarchy are good domain candidates. If a cluster 
is merged with a single node, the result is unlikely to be an upper-level domain. 
Most likely, it is just an expansion of an already identified domain resulting from 
agglomerative clustering. These considerations lead to the domain definition: 

Definition 6 (Domain). A cluster 61 is a domain iff in the corresponding 
merge tree it is merged with another cluster: 

61 E A is a domain {:} ::362, K E A such that { { 61, K}, { 62, K} } ~ ET . 

I.e. a cluster is a domain, if it is merged with another cluster. 

3.2 Scoring Bisociation Candidates 

In the next step, we iterate over all pairs of disjoint domains and construct a 
bisociation candidate for each pair by identifying their bridging nodes: 

Definition 7 (Bridging nodes). Let 61 and 62 be two domains derived from 
the merge tree of the graph G = (V, E). A set of bridging nodes bn( 61,62) 'ts a 
set of nodes that are connected to both domains: 

Note that this definition includes nodes belonging to one of the two domains, 
thus allowing direct connections between nodes of these domains. 

We now define the b-score, expressing the combination of exclusiveness, size, 
and balance as defined in Section 2. We therefore consider each property sepa­
rately and combine them into an index at the end. Exclusiveness could be directly 
expressed by the number of nodes in bn ( 61 , 62). However, this is not a sufficient 
condition. Nodes of high degree are likely to connect different domains, maybe 
even some of them exclusively. Nevertheless, such nodes are unlikely to form 
good bisociations since they are not very specific. On the other hand, bridging 
nodes providing only a few connections at all (and thus a large fraction of them 
within 61 and 62) tend to express a very specific connection. Since we are only 
interested in the latter case, the natural way of measuring exclusiveness is by 
using the inverse of the sum of the bridging nodes' degrees: 2/ LVEbn«h,<h) d(v). 
The 2 in the numerator ensures that this quantity is bound to the interval [0 , 1], 
with 1 being the best possible value. The balance property is accounted for 
by relating the domain sizes in a fraction: min{1611, 1621}/max{ 1611 , 1621} , again 
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bound to [0, 1] with one expressing perfect balance. Finally, the size property is 
integrated as the sum of the domain sizes. 

As described above, a combination of all three properties is a necessary prereq­
uisite for an interesting bisociation. Therefore, our bisociation score is a product 
of the individual quantities . Only in the case of bn(01' (2) = 0 is our measure un­
defined. However, this situation is only possible if the domains are unconnected, 
so we define the score to be 0 in this case. For all non-trivial cases the score has 
strictly positive values and is defined as follows: 

Definition 8 (b-score) . Let 01 and 02 be two domains, then the b-score of the 
corresponding bisociation candidate is 

The above definition has two important properties.' Firstly, it has an intuitive 
interpretation: In our opinion, an ideal bisociation is represented by two equally 
sized domains connected directly by a single edge or indirectly by a node con­
nected to both domains. This optimizes the b-score, leaving the sum of the 
domain sizes as the only criterion for the assessment of this candidate. Further, 
every deviation from this ideal situation results in a deterioration of the b-score. 
Secondly, the calculation of the b-score only involves information about the two 
domains and their neighborhoods and not the whole graph, which is important 
when the underlying graph is very large. 

3.3 Complexity and Scalability 

To compute the pairwise activation similarities, the accumulated activation vec­
tors for all nodes need to be determined. This process is dominated by ma­
trix vector multiplications yielding a complexity of O(n3 ) . Note however , that 
exploitation of the network sparsity and the quick convergence of the power 
iteration leads to a much more efficient calculation. The complexity of the over­
all process is dominated by the evaluation of bisociation candidates. Here, we 
propose to prune the set of candidates by removing small domains and filter 
highly unbalanced candidates. E.g. in the example of Section 4 roughly 75% of 
all bisocation candidates involved domains with less than 4 nodes. 

4 Preliminary Evaluation 

To demonstrate our approach, we applied our method to the Schools-Wikipedia 
(2008/09) dataset1. Following the described method, we evaluated every pair of 
disjoint domains and manually explored the top rated bisociation candidates to 
verify the outcome of our method. 

1 For detailed description of the Schools-Wikipedia dataset see [12]. 
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The dataset consists of a subset of the English Wikipedia with about 5500 
articles. For our experiment, we consider each article as a separate unit of in­
formation and model it as a node. We interpret cross-references as relations 
and introduce an undirected edge whenever one article references another. The 
resulting graph is connected except for two isolated nodes which we removed 
beforehand. 

For the remaining nodes we extracted the domains as described. To focus on 
the local neighborhood of nodes we used the decay value ex = 0.3~ Due to this de­
cay and the graph structure the activation processes converged quickly allowing 
a restriction to kmax = 10 iterations for each process. This choice seems arbi­
trary, but we ensured that additional iterations do not contribute significantly 
to the distances. First of all, the values of the following iterations tend to vanish 
due to the exponentially decreasing scaling factor, e.g. 0.3 - 10 in the last itera­
tion. In addition, the order of distances between node pairs is unchanged by the 
additional iterations. Altogether we extracted 4,154 nested domains resulting in 
8,578,977 bisociation candidates. 

A part of a dendrogram involving birds is shown in Figure 1 to illustrate that 
our clustering yields conceptually well defined domains. In the example, birds of 
prey such as hawk, falcon, eagle etc. end up in the same cluster with carnivorous 
birds such as e.g. vulture, and are finally combined with non-carnivorous birds 
to a larger cluster. This example further illustrates that the nodes ' of a good 
domain are not necessarily connected, as there are few connections within the 
sets of birds, and yet they share a number of external references. 

Since the b-scores of the best bisociation candidates (Figure 2) decrease 
quickly, we considered only the top rated pairs. The bisociation candidate with 
the best b-score is shown in Figure 3a. One of its domains contains composers 
while the other incorporates operating systems. These two seemingly unrelated 
domains are connected by Jet Set Willy, a computer game with a title music 
adapted from the first movement of Beethoven's Moonlight Sonata and a level 
editor for Microsoft Windows. Except for the small domain sizes, Jet Set Willy 
meets all formulated demands. Following three variants of the Jet Set Willy biso­
ciation, the next best candidate is shown in Figure 3b. Nine Million Bicycles is 
a song connecting a south-east Asia domain with an astronomy domain. While 
Beijing is mentioned within the song itself, the corresponding article discusses 
lyrical errors concerning its statements about astronomical facts. To us these 
relations were new and surprising, though one might argue their value. 

An example of a bisociation with more than one bridging node is shown in 
Figure 3c. The substantially lower b-score of bisociations with more than one 
bridging node is a result of their lower exclusiveness. An example of a poor 
bisociation can be seen in Figure 3d. Clearly, this is neither balanced nor exclu­
sive (countries have a very high degree in Schools-Wikipedia) while its size is 
comparable to the other described candidates. 

The above examples illustrate that our index discriminates well with respect 
to exclusiveness and balance. A detailed examination showed in addition that size 
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is negatively correlated with both other index components. This and the limited 
size of the dataset could explain the small sizes of the best rated candidates. 

Our preliminary evaluation indicates the potential of the presented method 
to detect bisociations based on the analysis of the graph structure. Even though 
Schools-Wikipedia is a reasonable dataset for evaluation purposes, one cannot 
expect to find valuable or even truly surprising bisociations therein since it is 
limited to handpicked, carefully administrated common knowledge, suitable for 
children. We opted to manually evaluate the results since the value of a biso­
ciation is a semantic property and highly subjective, inhibiting an automatic 
evaluation - although an evaluation on a dataset with manually tagged bisoci­
ations would be possible, if such a dataset were available. An evaluation using 
synthetic data is complicated by the difficulty of realistic simulation and could 
in addition introduce an unwanted bias on certain types of networks, distorting 
the results. 

5 Related Work 

Although a wealth of techniques solving different graph mining problems already 
exist (see e.g. [4] for an overview), we found none to be suitable for the problem 
addressed here. Most of them focus on finding frequent subgraphs, which is not 
of concern here. Closely related to our problem are clustering and the identifi­
cation of dense substructures, since they identify structurally described parts of 
the graph. Yet bisociations are more complicated structures due to a different 
motivation and therefore require a different approach to be detected. 

The exclusiveness of a connection between different groups is also of concern 
in the analysis of social networks. Especially structural holes and the notion of 
betweenness seem to address similar problems at first glance. Burt [3] regards 
the exlusiveness of connections in a network of business contacts as part of the 
capital a player brings to the competitive arena. He terms such a situation a 
structural hole that is bridged by the player. However, in his index only the very 
local view of the player is integrated, ignoring the structure of the connected 
domains. Further, his index would implicitly render domains a product of only 
direct connections between concepts, whereas we showed earlier that a more 
specific concept of similarity is advisable. A global measure for the amount of 
control over connections between other players is provided by betweenness [6]. 
Analog to structural holes, this concept captures one important aspect while 
missing the rest and thus fails to capture the overall concept. 

Serendipitous discoveries strongly overlap with the bisociation concept since 
the involved fortuitousness is often caused by the connection of dissimilar do­
mains of knowledge. Different approaches (e.g. [10]) exist to integrate this con­
cept in recommender systems. They differ from bisociation detection in that they 
are concentrating on users' interests and not domains in general and are thus 
designed for a different setting and a different notion of optimality. 

However, none of the mentioned approaches provide a coherent, formal setting 
applicable to bisociation detection. 
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6 Conclusion 

We presented an approach for the discovery of potentially interesting, domain 
crossing associations, so-called bisociations. For this purpose we developed a f or­
mal framework to describe potentially interesting bisociations and corresponding 
methods to identify domains and rank bisociations according to interestingness. 
Our evaluation on a well-understood benchmark data set has shown promising 
first results. We expect that the ability to point the user to potentially interest­
ing, truly novel insights in data collections will play an increasingly important 
role in modern data analysis. 
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